
Hidden Markov Models.

Want to model sequences more realistically.

Behavior of biomolecule sequence is not sim-

ply a set of iid’s from position to position.

One way to think of this is: we have expert

knowledge of some functions and structures of

biomolecules. Rather than counting frequen-

cies across all amino acid positions, let us bin

positions according to these localized functions

and then do frequency counts. This will lead

to position specific scoring matrices.

There are many ways of going about this. Gen-

eral cadre is sometimes referred to as machine

learning. We want to either classify some data

according to some categories (“α-helical seg-

ment”, or “nucleotide binding domain”, e.g.).

Want to convert expert knowledge into an ex-

ecutable algorithm. It is a natural area for

probabilistic inference, and more specifically,

for a Bayesian framework. Various versions

exist: hidden Markov models, artificial neural



networks, Bayesian networks, graphical mod-

els, etc., roughly in increasing order of gener-

ality. We will start here with hidden Markov

models (HMM’s) because they are relatively

simple, yet flexible enough to be very applica-

ble for recognition and classification problems

in molecular biology.

The main problems which will emerge are the

following:

a.) Modeling the situation.

This usually means finding a graphical rep-

resentation of how the data is to be orga-

nized. Often this is where a great deal of

expertise goes, even before the data is an-

alyzed. It is often represented in terms of

graphs where the nodes of a graph might rep-

resent discrete states, and the nodes are joined

by edges which represent transitions from one

state to another. These transitions will be

probabilistic, due to uncertain knowledge of



when we should transition from one state to

another.

b.) Training the model.

This means assigning the probabilistic parame-

ter values in the model, which must be learned

from (sufficient!) reliable data.

c.) Validating the model.

Here one must compare the model of a., as

parametrized in b., against independent data

for the problem to see whether the combina-

tion correctly classify or align or perform what-

ever comparison function (to what degree, that

is).

Dependencies: Markov Models.

We use discrete Markov chains. Here the dy-

namics will follow, instead of time, as earlier (in

PAM, e.g.), the sequence position, from left



to right. So, we have, e.g., a.a. residues at

positions 1,2, . . . , n, . . . , We will be interested

in calculating the probabilities of various se-

quences,

P (x1 . . . xn),

and we can telescope this into the successive

conditional probabilities:

P (x1 . . . xn) = P (xn|x1 . . . xn−1) · P (x1 . . . xn−1)
= . . .

= Πi=n
i=1P (xi|x1 . . . xi−1)

The (first order) Markov assumption is that

P (xi|x1 . . . xi−1) = P (xi|xi−1).

k-th order Markov assumption is

P (xi|x1 . . . xi−1) = P (xi|xi−k . . . xi−1).

Such a model will assume that the observed

residue at position n is not independent of the

other residues viewed, but depends on what is

to the left of the position, either one place or

k. It localizes the dependencies.



A hidden Markov model assumes that there are

two random processes (Markov chains) occur-

ring, of which only one is observed, the other

hidden. For discrete (e.g., finite) alphabets for

the sequences we are observing, this can be

viewed as the position specific scoring matrix.

It is useful to start with a dice model, the dis-

honest casino. A casino rolls a die and the

number is observed. This is an obvious Markov

chain, if the die is rolled independently each

time. However, assume that there are two dice,

and that the casino switches between them.

Suppose one of the dice is biased, the other

fair. Then there is a second Markov process,

choosing which die to roll. This process is not

observed (hopes the casino!). To understand

the observed process (which number is visible)

you need to understand the unobserved pro-

cess. This example has two main states, “fair”

or “biased”. We may not know exactly what

state the roll is in, but we can hope to ascer-

tain or estimate the transition probabilities for



these main states. Each main state has its own

emission probabilities, that is, its probability, in

that state, of displaying a 1, 2, ... 5 or 6. In

the casino example, these will be different.

Here is a particular version of this problem: it

is very simple in that you are given the number

of main states, the transition probabilities of

the hidden Markov process, and the emission

probabilities of the two main states. The data

is the sequence of rolls which have been ob-

served, the problem is to determine the main

state chain, i.e., classify each roll into “fair” or

“biased”. There are 300 rolls recorded here.

Dice Data for the “Dishonest Casino”

P (1) = . . . = P (5) = 0.1;P (6) = 0.5.

P (fair → fair) = 0.95
P (fair → biased) = 0.05
P (biased → fair) = 0.1
P (biased → biased) = 0.9.



• Data:

315116246446644245311321631164
152133625144543631656626566666
651166453132651245636664631636
663162326455236266666625151631
222555441666566563564324364131
513465146353411126414626253356
366163666466232534413661661163
252562462255265252266435353336
233121625364414432335163243633
665562466662632666612355245242

We want to come up with the most probable

sequence of 300 F ’s and L’s (for “loaded”)

to explain the data. There is a trio of three

simple algorithms which apply here, which we

describe for situations graphically the same as

the dice problem. They will be modified flex-

ibly later. The algorithms are DP algorithms,

and the main requirement is to have a direction

for the problem.



Let us say that we have a finite set of main

states {π(1), . . . , π(K)}, and we have a Markov

chain π1π2 . . . πn from these possible states. We

have transition probabilities

ak` = P (π(k) → π(`)).

Suppose we have observed states {x(1), . . . , x(M)}.
Each main state has its own emission proba-

bilities

e`(x
(b)) = P (x(b)| in stateπ(`)).

We often simplify by setting

πk = “k”;x(b) = “b”,

so that e`(x
(b)) becomes e`(b). The first algo-

rithm (the Viterbi algorithm) finds the path of

maximal probability through the main states,

that is π∗ = pathπ1 . . . πL such that P (x, π)

is maximal over all paths π through the main

states.

For convenience, we add two artificial main

states, “Begin” (B) and “End” (E).



Given the observed sequence x1 . . . xL, with x0 =
B and xL+1 = E, let vk(i), k = 1, . . . , K, j =
1, . . . , L be the maximal probability for a path
π1 . . . πi with emissions xj in the j-th position.
The basic equation is elementary:

vk(i + 1) = ek(xi+1) ·max
`

(v`(i)a`k).

We will need a traceback pointer: ptri(π
∗
i =

π(s)) = π∗i−1, where π∗i−1 = π(j) so that ` = j

realizes the max in max`(v`(i− 1)a`s).

Viterbi Algorithm

Initialisation: vB(0) = 1;
vk(0) = 0, k > 0.

Recursion: vk(i) = ek(xi)
(i = 1, . . . L) ×max`(v`(i− 1)a`k);

ptri(k) = as above.
Termination: P (x, π∗) = maxk(vk(L)akE);

π∗L = argmaxk(vk(L)akE).
Traceback: π∗i−1 = ptri(π

∗
i ).

Two remarks here: we have modeled the end
of the sequence explicitly (akE above). This



should be set = 1 we don’t model this explic-
itly. This is related to modeling the length
of the sequence observed. Also, the compu-
tations should be done in “log space”, since
products of many probabilities give underflow
errors computationally.

Here is the Viterbi algorithm applied to the
dishonest casino problem:

For further use, we need to compute the over-
all probability P (x) of an observed sequence.
There are two ways to do this, left to right
(forward algorithm) and right to left (back-
wards algorithm).

Set

fk(i) = P (x1 . . . xi, πi = π(k)).

Forward Algorithm.

Initialization: fB(0) = 1,
fk(0) = 0, k > 1;

Recursion: fk(i + 1) = ek(xi+1)
∑

` f`(i)a`k.
Termination: P (x) =

∑
k fk(L)akE.



Same remarks about B, E. Note convention

B = π(0), E = π(K+1).

Finally, it turns out to be useful to know how to

compute the total probability going from right

to left, the backward algorithm. Let bi(k) =

P (xi+1 . . . xL|πi = π(k)).

Backward Algorithm.

Initialization: bk(L) = akE, for all k.
Recursion: bk(i) =

∑
` e`(xi+1)b`(i + 1)a`k.

Termination: P (x) =
∑

` e`(x1)b`(1)aB`.

You almost never need the termination step,

because the typical application is computing

the posterior probabillity

P (πi = π(k)|x)

=
P (x1 . . . xi, πi = π(k))P (xi+1 . . . xL|πi = π(k))

P (x)

=
fk(i)bk(i)

P (x)
.



This gives rise to another way to parse or de-

code the sequence, the maximal posterior de-

coding:

π̂i = argmaxk P (πi = π(k)|x).

Minus: can lead to impossible path through

the hidden Markov model (may require some

transitions which have probability 0).

Plus: sometimes can hear weak signal which

Viterbi misses. See two examples (from DE).

Note: to begin, used transitions B → π(i). This

is equivalent to giving an initial distribution for

the (hidden) states. In implementations usu-

ally referred to as the prior distribution.

Training HMM’s.

The HMM above had several parameters: ak`,

ek(x
(i)) and the prior aBk. We may also need



akE, if we are modeling length explicitly. Dis-

tinguish two cases: paths known and paths un-

known.

a.) Paths known.

This means we have data of the sort we want

to parse, along with the knowledge of the hid-

den states at each position. Then data can be

sorted to give frequency estimates:

ak` =
#{k → ` transitions observed}

#{all transitions k → `′}

=
Ak`∑
`′ Ak`′

,

and similarly

ek(b) =
Ek(b)∑
b′ Ek(b′)

.

Gives maximum likelihood estimation: maxi-

mizes the likelihood

P (D|θ) = P (data observed |par. vals. = θ),

or “prob. of the data, given the model”.



Insufficient data: use pseudocounts, or use a
smoother prior distribution, such as a Dirichlet
distribution.

b.) Paths unknown.

This falls in the cadre of missing data prob-
lems: missing the state paths. Thus, must
learn them from the data presented. This will
be an optimization problem. Key algorithm is
the Baum-Welch training algorithm. This is
a case of the expectation maximization algo-
rithm.

c.) Expectation maximization.

Given x, y outcomes for a model. x stands for
known data, for us

x =


x(1)
. . .
x(N)

=


x(1),1 . . . x(1),L1
. . .
x(N),1 . . . x(N),LN



data from N sequences. For now, assume L’s
all equal. These would be the observed states.
Collection of y variables for the missing data
(similar matrix of hidden states). Idea is to
iteratively improve estimations, cut off at a
threshold.

Try to maximize the log-likelihood;

logP (x|θ) = log
∑
y

P (x, y|θ),

sum over possible values of y. Conditioning
says

P (x, y|θ) = P (y|x, θ)P (x|θ),

giving

logP (x|θ) = logP (x, y|θ)− logP (y|x, θ).

Given estimate for the parameters θ = θ(i),
seek better estimate θ(i+1). Multiply by P (y|x, θ(i)),
and sum over y’s:

logP (x|θ) =
∑
y

P (y|x, θ(i)) logP (x, y|θ)

−
∑
y

P (y|x, θ(i))P (y|x, θ).



Set

Q(θ, θ(i)) =
∑

P (y|x, θ(i)) logP (x, y|θ),

and write

logP (x|θ)− logP (x|θ(i))

= Q(θ|θ(i))−Q(θ(i), θ(i))

+
∑
y

P (y|x, θ(i)) log
P (y|x, θ)

P (y|x, θ(i))
.

Notice last is relative entropy, so ≥ 0:

logP (x|θ)−logP (x|θ(i)) ≥ Q(θ, θ(i))−Q(θ(i), θ(i)).

To find a θ(i+1) which would raise the log-

likelihood, we can maximize Q(θ, θ(i)) as func-

tion of θ. Set this = θ(i+1). So, compute

Q (expectation step), then maximize. Iterate

until below threshold for improvement

logP (x|θ(i+1))− logP (x|θ(i)) ≤ ε.

This is an improvement! For us, the forward

and backward algorithms make the necessary



calculations easy. The log-likelihood is given
by

logP (x|θ) =
∑
π

logP (x, π|θ),

where π is the path through the hidden states.
These are the missing data y above. You start
by fixing model parameters arbitrarily. Then
we can calculate the expected values Ak`, Ek(b).
This is done as follows: given a single sequence
x, and model parameters θ, the probability that
ak` is used from position i to position i + 1 is
given by

P (πi = k, πi+1 = `|x, θ)

=
fk(i)ak`e`(xi+1)b`(i + 1)

P (x)
.

Now, if we have N training sequences x(j) as
above, then the probable number of times we
expect to see ak` used in the data is

Ak` =

j=N∑
j=1

1

P (x(j))

∑
i

f(j);kak`e`(x(j);i+1)b(j);`(i + 1).



Similarly, we expect a count Ek(b) of b-emissions

from state k given by

Ek(b) =
∑
j

1

P (x(j))

∑
{i|x(j);i=b}

f(j);k(i)b(j);k(i).

Now given our basic model, if we knew the

paths through the hidden states we would get

P (x, π|θ) = ΠkΠb[ek(b)]
Ek(b,π)ΠkΠ`a

Ak`(π)
k` .

Take logs, get

Q(θ, θ(i)) =
∑
π

P (π|x, θ(i))×

∑
k

∑
b

Ek(b, π) log ek(b) +
∑
k

∑
`

Ak`(π) log ak`

 .

Do the π sum first, get

Q(θ, θ(i)) =
∑
k

∑
b

Ek(b) log ek(b)+
∑
k

∑
`

Ak` log ak`.

To maximize this, it turns out we just deter-

mine θ(i+1) by

a′k` =
Ak`∑
`′ Ak`′

; e′k(b) =
Ek(b)∑
b′ Ek(b′)

.



Compare this to any other choice of ak`. The

difference would be

∑
k

∑
`

Ak` log
a′k`

ak`
=

∑
k

∑
`′

Ak`′

 ∑
`

a′k` log
a′k`

ak`
.

But these last summands are all relative en-

tropies, and so are all ≥ 0 and = 0 iff a′k` = ak`.

Similar story for the sum with the Ek(b)’s.

Summarizing, we start with an estimation for

the parameters, then calculate the expected

number of times we would see the various tran-

sitions or emissions in our data under these

parameter values, then we re-estimate the pa-

rameters using these expected number of oc-

currences as the new counts; iterate.



Baum-Welch Training Algorithm.

Initialization: Take arbitrary parameter
values for the model.
(Take A’s and E’s equal
to pseudocount values.)

Recursion: For each training
sequence x(j), j = 1, . . . , N ,
calculate forward, backward
variables; calculated expected
values Ak`, Ek(b) and
sum over j.
Calculate new parameters
from new A’s, E’s.
Calculate new log likelihood.

Termination: Threshold: ∆LL small enough,
or no. of iterations large.

We started from an arbitrary set of parameter

values for the model. Can add a randomizer

that will test the algorithm’s progress against

a random sample of the space of parameters

for maximization.



Architecture.

Described HMM for the simplest case, along a

straight line, with fixed length. Our first exam-

ple will be to model the properties of a related

family of proteins. Want to model length ex-

plicitly. Consider the following examples, pic-

torially, where we add some new connections

between the nodes of our graph.


