Iterating 1in Perl: Loops

Computers are great for doing repetitive tasks.

All programming languages come with some way of iterating
over some interval.

These methods of iteration are called ‘loops’.

Perl comes with a variety of loops, we will cover 4 of them:
1. if statement and if-else statement

2. while loop and do-while loop

3. for loop

4. foreach loop

1f statement

Svyntax:

if (conditional)

{

..some code...

}

- if the conditional is ‘true’ then the
body of the statement (what’s in
between the curly braces) is
executed.

#!'/usr/bin/perl -w
Svarl = 1333;
if (Svarl > 10)

{

Output?

1333 1s greater than 10

print “$varl is greater than 10\n”;

exit;

1f-else statement

Syntax:
if (conditional)

{
}
else

{
}

...some code..

..some different code..

#!'/usr/bin/perl -w
Svarl = 13;

if (Svarl > 100)
{

-1f the conditional is ‘true’ then execute
the code within the first pair of curly
braces.

- otherwise (else) execute the code in
the next set of curly braces

Output?

13 is less than 100

print “$varl is greater than 100\n”;

}

else

{

print “$varl is less than 100\n”;

}

exit;

Comparisons that are Allowed

- In perl you can compare numbers and strings within conditionals

- The comparison operators are slightly different for each one

- The most common comparison operators for strings:

syntax | meaning example
1t |Less than “dog” 1t “cat”
gt Greater than “dog” gt “cat”
le |Less than or equal to “dog” le “cat”
ge Greater than or equal to | “dog” ge “cat”
eq |Equalto “cat” eq “cat”
ne |Notequal to “cat” eq “Cat”

False! d > ¢

True!d >c¢

False! d > ¢

True!d >c¢

True! c=c

False! ¢c # C

- The most common comparison operators for numbers:

syntax | meaning example
< Less than 120 < 10
> Greater than 120 > 10
<= Less than or equal to 120 <= 10
>= Greater than or equal to 120 >= 10
== Equal to 120 == 10
= Not equal to 120 !=10

Note: These numerical comparison operators work on numbers!
They don’t apply to numerical characters as strings!

ex: 345>062 < This is true
“345” gt “62” € This is false!

elsif statments

-This type of conditional is a different rendition of the if-else
statement
-1f ‘conditional 1’ 1s not true, then
Syntax: check to see 1f ‘conditional 2’ 1s
true, else check the next
conditional, etc...

if (conditional 1)

(conditional 2)

. .code. .

}

elsif (conditional 3)

{

. .code. .

}

else

{
}

. .code. .

Example of if 1oops in Action

#!'/usr/bin/perl -w

Svarl = 11;
Svar2 = 7;
Svar3 = 4; ()utput?

if ($varl > $var2) 11 is greater than 7

{
print “$varl is greater than $var2\n”;

}
elsif ($varl == $var3)

{
print “$varl is equal to $var3\n”;

}
else

{
print “$varl is not equal to $var2 or $var3\n”;
print “$varl is also less than the other variables\n”;

}

exit;

Is everyone still with me?

E H
HI, THIS £l 1™ DOING A STORY ;| THEN HE PROMISED NOT
IS DILBERT. . 2l ABOUT HOW DUMB. .. : TO PRINT THE AMUSING
HL, I™MA T MEAN DYNAMIC eI NICKMNAME I HAVE FOR
BUSINESS E e | OUR CEO.
2| YOUR NEWLJ PRODUCT |:
REPORTER | £l | fE 15
FOR THE ' < | YOU ARE
WALL £ : | /50 DYNAMIC.
sTIMES |8 5
N POST |& : (-
| GAZETTE. |2 : 7 —
L_ %% L :
- f ; = f

2 2002 Unied Featrn Syndicaba, inc

http://www.dilbert.com/comics/dilbert/archive/dilbert-20030716.html

Logical Operators

-For programming, you need a way to evaluate whether or not
something 1s true or false (1 or 0)

- The logical operators work for both strings and numbers.
Consider flipping a fair coin ONCE.
Let H = The coin comes up ‘Heads’

Let T = The coin comes up ‘Tails’

Syntax Meaning Example Value (1 or 0)
| | logical ‘or’ HI||T
&& logical ‘and’ He&eT B
! logical ‘not’ '(H) && T]

while loop

Syntax:

while (conditional)

{
..code block..

}

#!'/usr/bin/perl -w
Svarl = 0;

while($wvarl < 5)
{

print “\$varl is now $varl\n”;

Svarl++;
}

exit;

- while the ‘conditional’ is true, the
body of the while loop will execute

Output?

$varl is now O
$varl is now 1

$varl is now 2

$varl is now 3

$varl is now 4

do-while loop

Syntax: -the body of the do-while
do loop will execute ONCE, then
{ check the conditional and
. .code block.. repeat if necessary
}while (conditional) ;

- * Note the semicolon!

(7

#!/usr/bin/perl -w Output’

vvarl = 0; $varl is now O

do :

{ $varl is now 1
print “\$varl is now $varl\n”; $varl is now 2
Svarl++; :

}while($varl < 5)@ $varl is now 3

exit: $varl is now 4

for loop

Syntax:
for (statement; conditional test; iteration statement)

{
..code block..

-the for-loop 1s used primarily for iterating over a fixed interval
-the starting point is specified by ‘statement’

-the ‘conditional test’ checks to see if the ‘statement’ 1s still true
-the ‘iteration statement’ specifies how to change the ‘statement’

-so long as the ‘conditional test’ is true, the code block will be
executed.

#!/usr/bin/perl -w

Svarl = 0;
for ($varl=0; S$varl < 10; Svarl++)
{

print "\$varl now has the value: $varl\n";

}

exit;

$varl now has the value:
OUtPUt? $varl now has the value:
$varl now has the value:
$varl now has the value:
$varl now has the value:
$varl now has the value:
$varl now has the value:
$varl now has the value:
$varl now has the value:

O 0 N Lt W N~ O

$varl now has the value:

foreach loop

Syntax:
foreach $variable (a range)

{
..code block..
}

-$variable doesn’t have to be declared prior to the foreach loop

- the range has to have some finite size (the size of an array, the
number of entries in a hash, the length of a string, a range of numbers,

etc..)

Ex:

foreach $v (2..10) $v will take on the values 2,3,4,5...10

@aryl = (2,4, 9, 3);
foreach $v (@ary1) $v will take on the values 2, 4, 9, 3

Sample Program from Yesterday:

#!'/usr/bin/perl -w

smyHash = (
name => "Damian",
dept => "“Basket Weaving”,
zipCode => 48108
) ;

Example use of values
keyword with hash

print "Contents of hash: \n";

foreach $v (values %$hashl)

{
}

exit;

print "\$v now contains: $v\n";

Output?
Contents of hash:

Sv now contains: Damian

Sv now contains: Basket Weaving

Sv now contains: 48108

Final Notes on Loops

1. The ‘next’ command:
Syntax: next;

- When present within a loop, this command cause the program to skip to
the next iteration.

#!/usr/bin/perl -w
@aryl = (2, 4, 1, 0.5, -28.4, -3, 100.4, 88.5);

for ($i=0; $i<scalar(Qaryl); S$i++)
{ 9
if((Saryl[$i] > 0)) Output:
{
if($ary1[$i] > 4)

{
next; ## skip numbers greater than 4

}

else

{
print "\Saryl[$i] is: S$aryl[$i]\n";

}

} ## end of outer if statement
} ## end of for loop

exit;

