
Iterating in Perl: Loops

- Computers are great for doing repetitive tasks.

- All programming languages come with some way of iterating
over some interval.

- These methods of iteration are called ‘loops’.

- Perl comes with a variety of loops, we will cover 4 of them:

1. if statement and if-else statement

2. while loop and do-while loop

3. for loop

4. foreach loop

if statement

#!/usr/bin/perl -w

$var1 = 1333;

if($var1 > 10)

{

 print “$var1 is greater than 10\n”;

}

exit;

Syntax:
if(conditional)
{
 …some code…
}

- if the conditional is ‘true’ then the
body of the statement (what’s in
between the curly braces) is
executed.

Output?

1333 is greater than 10

if-else statement

Syntax:
if(conditional)
{
 …some code…
}
else
{
 …some different code…
}

-if the conditional is ‘true’ then execute
the code within the first pair of curly
braces.

- otherwise (else) execute the code in
the next set of curly braces

#!/usr/bin/perl -w

$var1 = 13;

if($var1 > 100)
{
 print “$var1 is greater than 100\n”;
}
else
{
 print “$var1 is less than 100\n”;
}
exit;

Output?

13 is less than 100

Comparisons that are Allowed

- In perl you can compare numbers and strings within conditionals

- The comparison operators are slightly different for each one

“cat” eq “Cat”Not equal tone
“cat” eq “cat”Equal toeq

“dog” lt “cat”Less thanlt
“dog” gt “cat”Greater thangt
“dog” le “cat”Less than or equal tole
“dog” ge “cat”Greater than or equal toge

examplemeaningsyntax
False! d > c

True! d > c

False! d > c

True! d > c

True! c = c

False! c ≠ C

- The most common comparison operators for strings:

120 != 10Not equal to!=
120 == 10Equal to==

120 < 10Less than<
120 > 10Greater than>
120 <= 10Less than or equal to<=
120 >= 10Greater than or equal to>=

examplemeaningsyntax

- The most common comparison operators for numbers:

Note: These numerical comparison operators work on numbers!
They don’t apply to numerical characters as strings!

ex: 345 > 62 fl This is true

 “345” gt “62” fl This is false!

elsif statments

-This type of conditional is a different rendition of the if-else
statement

Syntax:
if(conditional 1)
{
 ..code..
}
elsif(conditional 2)
{
 ..code..
}
elsif(conditional 3)
{
 ..code..
}
else
{
 ..code..
}

-if ‘conditional 1’ is not true, then
check to see if ‘conditional 2’ is
true, else check the next
conditional, etc…

Example of if loops in Action
#!/usr/bin/perl -w

$var1 = 11;
$var2 = 7;
$var3 = 4;

if($var1 > $var2)
{
 print “$var1 is greater than $var2\n”;
}

elsif($var1 == $var3)
{
 print “$var1 is equal to $var3\n”;
}

else
{
 print “$var1 is not equal to $var2 or $var3\n”;
 print “$var1 is also less than the other variables\n”;
}

exit;

Output?
11 is greater than 7

http://www.dilbert.com/comics/dilbert/archive/dilbert-20030716.html

Is everyone still with me?

Logical Operators

-For programming, you need a way to evaluate whether or not
something is true or false (1 or 0)

- The logical operators work for both strings and numbers.

!(H) && Tlogical ‘not’!

H && Tlogical ‘and’&&

H || Tlogical ‘or’||

Value (1 or 0)ExampleMeaningSyntax

Consider flipping a fair coin ONCE.

Let H = The coin comes up ‘Heads’

Let T = The coin comes up ‘Tails’

True! (1)
False! (0)
True! (1)

while loop

Syntax:

while(conditional)
{
 ..code block..
}

- while the ‘conditional’ is true, the
body of the while loop will execute

#!/usr/bin/perl –w

$var1 = 0;

while($var1 < 5)
{

 print “\$var1 is now $var1\n”;
 $var1++;
}

exit;

$var1 is now 0

$var1 is now 1

$var1 is now 2

$var1 is now 3

$var1 is now 4

Output?

do-while loop

Syntax:

do
{
 ..code block..
}while(conditional);

-the body of the do-while
loop will execute ONCE, then
check the conditional and
repeat if necessary

- * Note the semicolon!

#!/usr/bin/perl –w

$var1 = 0;

do
{

 print “\$var1 is now $var1\n”;
 $var1++;
}while($var1 < 5);

exit;

$var1 is now 0

$var1 is now 1

$var1 is now 2

$var1 is now 3

$var1 is now 4

Output?

for loop

Syntax:
for(statement; conditional test; iteration statement)

{

 ..code block..

}

-the for-loop is used primarily for iterating over a fixed interval
-the starting point is specified by ‘statement’
-the ‘conditional test’ checks to see if the ‘statement’ is still true
-the ‘iteration statement’ specifies how to change the ‘statement’
-so long as the ‘conditional test’ is true, the code block will be
executed.

#!/usr/bin/perl -w

$var1 = 0;
for($var1=0; $var1 < 10; $var1++)
{
 print "\$var1 now has the value: $var1\n";
}
exit;

$var1 now has the value: 0
$var1 now has the value: 1
$var1 now has the value: 2
$var1 now has the value: 3
$var1 now has the value: 4
$var1 now has the value: 5
$var1 now has the value: 6
$var1 now has the value: 7
$var1 now has the value: 8
$var1 now has the value: 9

Output?

foreach loop
Syntax:
foreach $variable (a range)
{
 ..code block..
}

-$variable doesn’t have to be declared prior to the foreach loop

- the range has to have some finite size (the size of an array, the
number of entries in a hash, the length of a string, a range of numbers,
etc..)

Ex:

$v will take on the values 2, 4, 9, 3
@ary1 = (2, 4, 9, 3);
foreach $v (@ary1)

$v will take on the values 2,3,4,5…10foreach $v (2..10)

Sample Program from Yesterday:

#!/usr/bin/perl -w

%myHash = (
 name => "Damian",
 dept => “Basket Weaving”,
 zipCode => 48108
);

print "Contents of hash: \n";
foreach $v (values %hash1)
{
 print "\$v now contains: $v\n";
}
exit; Output?

Contents of hash:

$v now contains: Damian

$v now contains: Basket Weaving

$v now contains: 48108

Example use of values
keyword with hash

Final Notes on Loops
1. The ‘next’ command:

Syntax: next;
- When present within a loop, this command cause the program to skip to
the next iteration.

#!/usr/bin/perl -w

@ary1 = (2, 4, 1, 0.5, -28.4, -3, 100.4, 88.5);

for($i=0; $i<scalar(@ary1); $i++)
{
 if(($ary1[$i] > 0))
 {
 if($ary1[$i] > 4)
 {
 next; ## skip numbers greater than 4
 }
 else
 {
 print "\$ary1[$i] is: $ary1[$i]\n";
 }
 } ## end of outer if statement
} ## end of for loop

exit;

$ary1[0] is: 2

$ary1[1] is: 4

$ary1[2] is: 1

$ary1[3] is: 0.5

Output?

