
Math/Stats 425, Sec. 1, Fall ’04: Introduction to Probability

Final Exam: Solutions

1. In a game, a contestant is shown two identical envelopes containing money. The
contestant does not know how much money is in either envelope. The contestant can
choose an envelope at random (equally likely), see how much money is in it, and then
either keep this amount or exchange the chosen envelope for the other one, keeping the
money in the second envelope. Now suppose that one envelope has $1000, and the other
has $2000. A strategy to play this game is for the contestant to fix a number x, and if
the first envelope is revealed to have ≤ $x, then one switches; if it has more than $x,
one keeps the first envelope. What is the expected amount of money the contestant gets
following this strategy if x = 500? What is the expected amount won if the strategy is
used with x = 1500? Finally, what is the expected amount won if the strategy is used
with x = 2500?

[25]

• This is a simple expectation calculation. Let Y be the RV “the winnings”. The two
possibilities are according to whether the $1000 envelope or the $2000 envelope is chosen,
and these are equally likely. In the first strategy, x = 500, if one were to draw $ 1000,
one would hold it, and if one drew $2000, one would hold that, too. So, the expectation
under this strategy is E(Y|x = 500) = 1000 · 1

2
+ 2000 · 1

2
= 1500. When x = 1500, if one

drew $1000, one would exchange it for the $2000 envelope, and if one drew $2000, one
keeps it. Therefore, E(Y|x = 1500) = 2000 · 1

2
+ 2000 · 1

2
= 2000. Finally, if one used the

strategy for x = 2500, then if one drew $1000, one would turn it back for the envelope
with $2000, and if one drew $2000, one would exchange it for the envelope with $1000,
so E(Y|x = 2500) = 2000 · 1

2
+ 1000 · 1

2
= 1500 again. In fact,

E(Y|x) =

{
1500, if x < 1000, or x ≥ 2000, and,
2000, if 1000 ≤ x < 2000.

Remark: Since you don’t know beforehand what the amounts in the envelopes will be,
one could randomize one’s choice of the strategy x, i.e., replace x by a non-negative random
variable X so that we could now compute the expected winnings with this strategy as

E(Y) = E(E(Y|X)),

by the conditional expectation formula, and this last is always ≥ 1500, and if P (1000 ≤
X < 2000) > 0, then E(Y) > 1500. It pays to guess!

2. Let Z be the unit normal random variable, i.e., a normal R.V. with mean 0 and
variance 1. Let Y be the random variable Z2. [Y is the χ2 (chi-squared) distribution with
one degree of freedom. The χ2-distributions are very important in statistics.]

(i) What are the possible values of Y?

• Since Z can take on any real value, Y can take on any non-negative real value.

(ii) What is the formula for the probability density function fY(y)?
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• We use the usual technique: fY(y) = d
dy

FY(y), and

FY(y) = P (Y ≤ y) = P (−√y ≤ Z ≤ √
y) =

1√
2π

∫ √
y

−√y

e−
t2

2 dt,

for y ≥ 0. Taking the derivative of this integral with respect to y we get

d

dy
FY(y) =

1√
2π
{ 1

2
√

y
e−y/2 − −1

2
√

y
e−y/2},

where the first term inside the {}’s comes from differentiating the upper end point of the
integral and the second term comes from differentiating the lower endpoint of the integral,
using the fundamental theorem of calculus and the chain rule. Altogether we have

fY(y) =
1√
2πy

e−y/2, for 0 < y.

(iii) Y has the same distribution as one of the Gamma distributions. For which parameters
(s, λ) is the Gamma distribution the same as that of Y?

• The Gamma[λ, s] distrbution has pdf, for 0 ≤ y, given by λe−λs(λy)s−1

Γ(s)
. Comparing the

exponents on the e’s above, we see that −y
2

should match −λy, which gives λ = 1
2
. Now

comparing the exponents on the y’s in both expressions we get y−1/2 = ys−1, which gives
s = 1

2
. All that is left to match is the constant Γ(s), and the law of total probability then

tells us that Γ(1
2
) =

√
π. Note that this last part is not a part of the question: that is,

once you have matched the s and λ, and have only constant factors left to compare, the
law of total probability tells you that they have to match, and it isn’t necessary to show
this to know that the probability density functions are the same.

[30]

3. Suppose X,Y are two jointly distributed RV’s with joint probability density function

fX,Y(x, y) =

{
12xy(1− x) 0 < x < 1, 0 < y < 1,
0 otherwise

(i) Check that fX,Y(x, y) is indeed a probability density function.

• This just means checking two things: first, that fX,Y(x, y) is non-negative for (x, y) in
the square S = {0 < x < 1, 0 < y < 1}, which is obvious, and that

∫
S

fX,Y(x, y) dx dy = 1,
which is true and is an elementary calculus exercise to check.

(ii) What is the probability density function of X? What is the p.d.f. of Y?

• To find the marginals, we just have to integrate out the y or the x according to the
case. So,

fX(x) =

∫ 1

0

12xy(1− x)dy = 12x(1− x)

∫ 1

0

ydy = 6x(1− x), 0 < x < 1.

and

fY(y) = 12y

∫ 1

0

x(1− x)dx = 2y, 0 < y < 1.
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(iii) What is the conditional p.d.f. fX|Y=y(x)?

• You can do this two ways. The first is to notice that since the p.d.f. above for (X,Y)
factors as a function of x times a function of y, the two RV’s are independent, and hence

fX|Y=y(x) = fX(x).

Of course, you can also just make the calculation directly, too:

fX|Y=y(x) =
fX,Y(x, y)

fY(y)
=

12xy(1− x)

2y
= 6x(1− x) = fX(x).

(iv) Find the probability P (Y < 1
2
|X > 1

2
).

• Again, if you notice independence, we get:

P (Y <
1

2
|X >

1

2
) = P (Y <

1

2
) =

∫ 1
2

0

2y dy =
1

4
.

or you can do it out again:

P (Y <
1

2
|X >

1

2
) =

P (Y < 1
2

and X > 1
2
)

P (X > 1
2
)

=

∫ 1
2

0

∫ 1
1
2

12xy(1− x) dx dy∫ 1
1
2

6x(1− x) dx
=

1
8
1
2

=
1

4
.

[35]

4. Suppose we have two urns labeled A and B. A contains 3 maize marbles and 5 blue
marbles; B contains seven maize marbles and 4 blue. A biased coin is flipped, for which
P (H) = 2

3
. If the coin comes up heads, we draw a marble from urn A, and if it comes up

tails, we draw a marble from urn B. What is the probability of drawing a blue marble?
If you are told that the marble drawn was a yellow one, what is the probability that the
coin came up heads when flipped?

• The first part is computing a probability by conditioning on cases, the cases being
whether the head H was flipped or the tail T . Let b be the event “a blue marble was
drawn”, and m the event “a maize marble was drawn”. You are first asked to find P (b).
This is simply:

P (b) = P (b|H)P (H) + P (b|T )P (T ) =
5

8
· 2

3
+

4

11
· 1

3
=

71

131
.

Next you are asked to find the conditional probability of the coin having come up heads,
if a maize marble was drawn. This is an example of Bayes’s theorem:

P (H|m) =
P (m|H)P (H)

P (m|H)P (H) + P (m|T )P (T )
=

3
8
· 2

3
3
8
· 2

3
+ 7

11
· 1

3

=
33

61
.

[25]

5. (i) In general, if two random variables U1,U2 have the same moment generating
functions, i.e.,

MU1(t) = E(etU1) = E(etU2) = MU2(t),
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then what can you say about the RV’s U1,U2?

• In this case, under technical assumptions which we will ignore here, the two distributions
have to be the same: see the textbook, section 7.1, p. 366, just above example 6e, and
examples 6e through 6h.

Now let X,Y be two independent RV’s both ∼ Exponential[λ]. Recall that these may be
thought of as waiting time distributions.

(ii) Use moment generating functions to show that X + Y ∼ Gamma[2, λ]. What is the
interpretation of this in terms of waiting times?

• Use the principle in part (i):

MX+Y(t) = MX(t) ·MY(t) =
λ

λ− t
· λ

λ− t
= (

λ

λ− t
)2,

where we have used the tables for moment generating functions. Again using the table
for the m.g.f. for the Gamma[s, λ] distribution, we see that the m.g.f. is ( λ

λ−t
)s, and so

we have matched a Gamma distribution with s = 2 and λ as given.

In terms of waiting tiimes, it says that we can interpret Gamma[2,λ] as the waiting
time distribution, waiting for the arrival of first one, then another event according to
independent Exp[λ] distributions.

(iii) If X + Y = T > 0, what are the possible values of X? What is the conditional
distribution for X, given that X + Y = T? Interpret this in terms of waiting times.

• In this conditioned situation, 0 ≤ X ≤ T , since Y ≥ 0. Then the conditional distribution
function is given, for 0 ≤ x ≤ T , by:

fX|X+Y=T (x) =
fX,Y(x, T − x)

fX+Y(T )
=

λ2e−λx · e−λ(T−x)

λe−λT (λT )(2−1)
,

where the last numerator comes from the Gamma[2, λ] distribution. Doing a little algebra
to cancel stuff top and bottom simplifies things to:

fX|X+Y=T (x) =
1

T
, for 0 ≤ x ≤ T,

i.e., X is unformly distributed over the interval [0, T ]. This means , in terms of waiting
times, that if we know the second of these two arrivals occurs at time T , then the first
arrival was a random time anywhere prior to time T , i.e., uniformly distributed on the
interval [0, T ].

Now, I will accept an argument like the above, but strictly speaking, you should make a
change of variables first. I will show you the argument in detail, and point out why you
get the right answer either way in this case (something = 1, so you can’t see the possible
difference).

Let us change (random) variables from X,Y, to X,S = X + Y. At the level of possible
values, this amounts to (x, s) = g(x, y) = (x, x + y) = (g1(x, y), g2(x, y)). The change of
variables formula gives us

fX,S(x, s) = fX,Y(g−1(x, s)) · | det(Dg(g−1(x, s))|,
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where

Dg(x, y) =

 ∂g1

∂x
∂g1

∂y

∂g2

∂x
∂g2

∂y

 =

 1 0

1 1

 ,

and so, det(Dg(g−1(x, s)) = 1, and

fX,S(x, s) = fX,Y(x, s− x) = λe−λ xλe−λ(s−x) = λ2e−λs, 0 ≤ x ≤ s.

We also have
fS(s) = λe−λs(λs)2−1 = λ2se−λs.

Now,

fX|X+Y=T (x) = fX|S=T (x) =
fX,S(x, T )

fS(T )
=

λ2e−λT

λ2Te−λT
=

1

T
, 0 ≤ x ≤ T,

as found above.

[30]

6. A certain component is necessary for the operation of a computer server system and
must be replaced immediately upon failure for the server to continue operating. The
lifetime of such a component is a random variable X with mean lifetime 100 hours and
standard deviation 30 hours. Estimate the number of such components which must be
in stock in order to be 95% sure that the system can run continuously for the next 2000
hours? (We ignore any other possible failure for the server!)

• Let us denote Xi a sequence of i.i.d.’s, all with the same distribution as X, and let SN =
X1 + . . . + XN be the total time one can run the server if one has N copies of the critical
component. The question asks you to estimate an N for which P (SN ≥ 2000) ≥ 0.95.
We can use the Central Limit Theorem to do this. Let’s check the expectation of SN :

E(SN) = NE(X1) = 100N.

To estimate this, we are thinking of N so large that 2000 is an outlier on the short side,
so we are probably looking for an N significantly > 20. In terms of the CLT, we want:

0.95 ≤ P (SN ≥ 2000) = P (
SN − 100N

30
√

N
≥ 2000− 100N

30
√

N
) ≈ P (Z ≤ 100N − 2000

30
√

N
),

and since the cumulative distribution function FZ(z) = Φ(z), we have to choose N at
least large enough to make 100N−2000

30
√

N
≥ 1.645, since Φ(1.645) = 0.95. That is, we want to

guarantee that
100N − 1.645 · 30

√
N − 2000 ≥ 0.

Now replacing
√

N by t ( and N by t2), we want to guarantee that

100t2 − 1.645 · 30t− 2000 ≥ 0.

Now you can either do the next step by trial and error or a calculator, or just say what
should happen at this point. I would try to solve these equations for the first value of
t > 0 where the parabola crosses the x-axis, that is, solve

100t2 − 1.645 · 30t− 2000 = 0.

The positive root is t = 4.726, or N ≥ 22.332. So, according to this estimate, we have
to have at least 23 components to get the components working at least 2000 hours, with
probability ≥ 95%.
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7. Ten champions are competing in a team hot dog eating contest, representing the US,
Japan, Mexico and Italy. Of the ten, 4 are from the US, 2 are from Japan, 1 is from
Mexico and 3 are from Italy. The outcome of the contest is compiled only according to
the national team, but not noting the individual competitors’ names. How many possible
results are there for this competition? How many possible results are there which have
two Italians in the top three, and the third Italian among the last three?

• This is a combinatorics problem. The answer for how many lists there are is just
a multinomial coefficient. More explicitly, the results are lists of contestants ordered
according to how many hot dogs they ate. This gives us 10! possible lists, if we remember
the names of the contestants. We are told to forget that, so we have to divide 10! for
overcounting. Thus, we have to divide by 4! for the US contestants, and 2! for Japanese
contestants, etc. The final answer is

N =
10!

4! · 2! · 1! · 3!
=

(
10

4, 2, 1, 3

)
.

Now if we also have to account for the conditions described in the second part involving
the Italian team, we distinguish them at first. We have to choose two of the first three
slots for them (which is

(
3
2

)
= 3 possibilities and independently choose

(
3
1

)
= 3 possible

slots for the Italian in the last three in the list. For each such way of laying out the three
Italian positions, there are 7 remaining slots. So we can make 3 · 3 · 7! lists which consist
of individual USers, Japanese and Mexican, and three Italian slots. We have to correct
for the fact that the US, Japan and Mexico are still individual names, meaning we have
to divide as before by 4! · 2! · 1!, i.e.,

N = 3 · 3 ·
(

7

4, 2, 1

)
=

3 · 3 · 7!

4! · 2! · 1!
= 945.

[30]
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