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Abstract. Let Ln be a lower triangular matrix of dimension n each of whose nonzero entries
is an independent N(0, 1) variable, i.e., a random normal variable of mean 0 and variance 1. It is
shown that κn, the 2-norm condition number of Ln, satisfies

n
√

κn → 2 almost surely

as n → ∞. This exponential growth of κn with n is in striking contrast to the linear growth of the
condition numbers of random dense matrices with n that is already known. This phenomenon is
not due to small entries on the diagonal (i.e., small eigenvalues) of Ln. Indeed, it is shown that a
lower triangular matrix of dimension n whose diagonal entries are fixed at 1 with the subdiagonal
entries taken as independent N(0, 1) variables is also exponentially ill conditioned with the 2-norm
condition number κn of such a matrix satisfying

n
√

κn → 1.305683410 . . . almost surely

as n → ∞. A similar pair of results about complex random triangular matrices is established.
The results for real triangular matrices are generalized to triangular matrices with entries from any
symmetric, strictly stable distribution.
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1. Introduction. Random dense matrices are well conditioned. Edelman has
shown that if each of the n2 entries of a matrix of dimension n is an independent
N(0, 1) variable, the probability density function (PDF) of κn/n, where κn is the
2-norm condition number of such a matrix, converges pointwise to the function

2x + 4
x3 exp(−2x−1 − 2x−2)

as n → ∞ [5]. Since the distribution of κn/n is independent of n in the limit n → ∞,
we can say that the condition numbers of random dense matrices grow only linearly
with n. Using this PDF, it can be shown, for example, that E(log(κn)) = log(n) +
1.537 . . . + o(1) [5].

In striking contrast, the condition number of a random lower triangular matrix Ln,
a matrix of dimension n all of whose diagonal and subdiagonal entries are independent
N(0, 1) variables, grows exponentially with n. If κn is the 2-norm condition number
of Ln (defined as ‖Ln‖2‖L−1

n ‖2), we show that

n
√

κn → 2 almost surely

as n → ∞ (Theorem 4.3). Figure 1.1a illustrates this result.
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2
↓

1.305683410...

↓
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FIG. 1.1. Empirical cumulative density functions of n
√

κn, for triangular and unit triangular
matrices, respectively, with n = 25, 50, 100 obtained from 1000 random matrices for each n. The
random entries are N(0, 1) variables. The higher values of n correspond to the steeper curves. In
the limit n → ∞, the cumulative density functions converge to Heaviside step functions with jumps
at the dashed lines.

The matrices that arise in the experiments reported in Figure 1.1 are so ill con-
ditioned that the standard, normwise stable method of finding the condition number
using the SVD [10] fails owing to rounding errors. The method used to generate the
figures finds the inverse of the triangular matrix explicitly using the standard algo-
rithm for triangular inversion, and then computes the norms of the matrix and its
inverse independently. This works because the computation of each column of the
inverse by the standard triangular inversion algorithm is componentwise backward
stable [12].

The exponential growth of κn with n is not due to small entries on the diagonal
since the probability of a diagonal entry being exponentially small is also exponen-
tially small. For a further demonstration that the diagonal entries do not cause the
exponential growth in κn, we consider condition numbers of unit triangular matrices,
i.e., triangular matrices with ones on the diagonal. If κn is the condition number
of a unit lower triangular matrix of dimension n with subdiagonal entries taken as
independent N(0, 1) variables, then

n
√

κn → 1.305683410 . . . almost surely

as n → ∞ (Theorem 5.3). Obviously, in this case the ill conditioning has nothing to
do with the diagonal entries (i.e., the eigenvalues) since they are all equal to 1. The
relationship of the exponential ill conditioning of random unit triangular matrices to
the stability of Gaussian elimination with partial pivoting is discussed in section 7.

We will use Ln to refer to triangular matrices of various kinds — real or complex,
with or without a unit diagonal. But Ln always denotes a lower triangular matrix
of dimension n. If the entries of Ln are random variables, they are assumed to be
independent. Thus, if we merely say that Ln has entries from a certain distribution,
those entries are not only identically distributed but also independent. Of course,
only the nonzero entries of Ln are chosen according to that distribution. The condi-
tion number always refers to the 2-norm condition number. However, all our results
concerning the limits limn→∞ n

√
κn apply to all the Lp norms, 1 ≤ p ≤ ∞, since
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n1/n → 1 as n → ∞ and the Lp norms differ by at most a factor of n. The 2-norm
condition number of Ln, defined as ‖Ln‖2‖L−1

n ‖2, is denoted by κn. The context will
make clear the distribution of the entries of Ln.

The analyses and discussions in this paper are phrased for lower, not upper,
triangular matrices. However, all the theorems are true for upper triangular matrices
as well, as is obvious from the fact that a matrix and its transpose have the same
condition number.

We obtain similar results for triangular matrices with entries chosen from the
complex normal distribution Ñ(0, σ2). By Ñ(0, σ2) we denote the complex normal
distribution of mean 0 and variance σ2 obtained by taking the real and imaginary
parts as independent N(0, σ2/2) variables. Let Ln denote a triangular matrix with
Ñ(0, σ2) entries. Then

n
√

κn → e1/2 almost surely

as n → ∞ (Theorem 7.3). Since e1/2 < 2, triangular matrices with complex normal
entries tend to have smaller condition numbers than triangular matrices with real
normally distributed entries.

Similarly, let Ln denote a unit lower triangular matrix with Ñ(0, 1) subdiagonal
entries. Then

n
√

κn → 1.347395784 . . . almost surely

as n → ∞ (Theorem 7.4). Thus, unit triangular matrices with complex normal entries
tend to have slightly bigger condition numbers than unit triangular matrices with real
normal entries.

Our results are similar in spirit to results obtained by Silverstein for random
dense matrices [16]. Consider a matrix of dimension n× (yn), where y ∈ [0, 1], each of
whose n2y entries is an independent N(0, 1) variable. Denote its largest and smallest
singular values by σmax and σmin, respectively. It is shown in [16] that

σmax√
n

→ 1 +
√

y,
σmin√

n
→ 1 − √

y almost surely

as n → ∞. The complex analogues of these results can be found in [4]. The technique
used in [16] is a beautiful combination of what is now known as the Golub–Kahan
bidiagonalization step in computing the SVD with the Gerschgorin circle theorem
and the Marčenko–Pastur semicircle law. The techniques used in this paper are more
direct.

The exponential growth of κn = ‖Ln‖2‖L−1
n ‖2 is due to the second factor. We

outline the approach for determining the rate of exponential growth of κn by assuming
Ln triangular with N(0, 1) entries. In section 2, we derive the joint probability density
function (JPDF) for the entries in any column of L−1

n (Proposition 2.1). If Tk is the 2-
norm of column n−k+1 of L−1

n , i.e., the column with k nonzero entries, both positive
and negative moments of Tk are explicitly derived in section 3 (Lemma 3.2). These
moments allow us to deduce that n

√
κn converges to 2 almost surely (Theorem 4.3).

A similar approach is used to determine the limit of n
√

κn for Ln unit triangular with
N(0, σ2) entries, triangular with Ñ(0, σ2) entries, and unit triangular with Ñ(0, σ2)
entries (Theorems 5.3, 7.3, and 7.4, respectively).

The same approach is used more generally to determine the limit of n
√

κn as
n → ∞ for Ln with entries drawn from any symmetric, strictly stable distribution
(Theorems 8.4 and 8.6). These theorems are specialized to the Cauchy distribution,
which is symmetric and strictly stable, in Theorems 8.5 and 8.7.
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(a) (b)

FIG. 2.1. Entries of L−1
n on the same solid line in (a) have the same PDF. Sets of entries of

L−1
n in the boxes in (b) have the same JPDF.

2. Inverse of a random triangular matrix. Consider the matrix

Ln =


α11

−α21 α22
...

...
. . .

−αn1 −αn2 . . . αnn

 ,

where each αij is an independent N(0, 1) variable. Then L−1
n is also lower triangular.

Denote the first k entries in the first column of L−1
n by t1, . . . , tk. The ti satisfy the

following relations:

t1 = 1/α11,

t2 = (α21t1)/α22,

t3 = (α31t1 + α32t2)/α33,

...
tk = (αk1t1 + · · · + αk,k−1tk−1)/αkk.(2.1)

This system of equations can be interpreted as a system of random recurrence rela-
tions. The first entry t1 is the reciprocal of an N(0, 1) variable. The kth entry tk
is obtained by summing the previous entries t1, . . . , tk−1 with independent N(0, 1)
variables as coefficients, and dividing that sum by an independent N(0, 1) variable.

Next, consider an arbitrary column of L−1
n and denote the first k entries of that

column from the diagonal downwards by t1, . . . , tk. The entries ti satisfy random
recurrence relations similar in form to (2.1), but the αij are a different block of
entries in Ln for different columns. For example, any diagonal entry of L−1

n is the
reciprocal of an N(0, 1) variable; in particular, the kth diagonal entry is 1/αkk.

These observations about triangular inversion can be represented pictorially.
Every entry of L−1

n at a fixed distance from the diagonal has the same PDF. We
may say that the matrix L−1

n , like Ln, is “statistically Toeplitz.” See Figure 2.1a.
Moreover, if we consider the first k entries of a column of L−1

n from the diagonal
downwards, those k entries will have the same JPDF irrespective of the column. See
Figure 2.1b. The different columns of L−1

n , however, are by no means independent.
The description of triangular inversion above and later arguments are stated in

terms of the columns of L−1
n . However, rows and columns are indistinguishable in this

problem; we could equally well have framed the analysis in terms of rows.
Denote the JPDF of ti, 1 ≤ i ≤ k, by fk = fk(t1, . . . , tk). In the next proposition,

a recursive formula for fk is derived. For simplicity, we introduce the further notation
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Tk =
√

t21 + · · · + t2k. Throughout this section, Ln is the random triangular matrix of
dimension n with N(0, 1) entries.

PROPOSITION 2.1. The JPDF fk = fk(t1, . . . , tk) satisfy the following recurrence:

f1 =
exp(−1/2t21)√

2πt21
,(2.2)

fk =
1
π

Tk−1

T 2
k

fk−1 for k > 1.(2.3)

Proof. The tk are defined by the random recurrence in (2.1).
The expression for f1 is easy to get. If x is an N(0, 1) variable, its PDF is

1√
2π

exp(−x2/2).

The change of variable x = 1/t1 gives (2.2).
To obtain the recursive expression (2.3) for fk, consider the variable τk obtained by

summing the variables t1, . . . , tk−1 as
∑k−1

i=1 αkiti, where αki are independent N(0, 1)
variables. For fixed values of ti, 1 ≤ i ≤ k − 1, the variable τk, being a sum of random
normal variables, is itself a random normal variable of mean 0 and variance T 2

k−1.
Therefore, the JPDF of τk and t1, . . . , tk−1 is given by

1√
2π

exp(−τ2
k/2T 2

k−1)
Tk−1

fk−1.

By (2.1), the variable tk can be obtained as τk/α, where α is an independent N(0, 1)
variable. The JPDF of α, τk, and t1, . . . , tk−1 is given by

1√
2π

exp(−α2/2)
1√
2π

exp(−τ2
k/2T 2

k−1)
Tk−1

fk−1.

Changing the variable τk to tk = τk/α and integrating out α, we obtain

fk =
1
π

Tk−1

T 2
k−1 + t2k

fk−1 =
1
π

Tk−1

T 2
k

fk−1,

i.e., fk is given by (2.3).
Note that the form of the recurrence for fk in Proposition 2.1 mirrors the random

recurrence (2.1) for obtaining tk from the previous entries t1, . . . , tk−1. In the following
corollary, an explicit expression for fk in terms of the ti is stated.

COROLLARY 2.2. For k > 1, the JPDF fk = fk(t1, . . . , tk) is given by

fk =
1

πk−1
√

2π

1
(t21 + · · · + t2k)

1√
t21 + · · · + t2k−1

· · · 1√
t21 + t22

exp(−1/2t21)
|t1|

.

3. Moments of Tk . In this section and the next, Ln continues to represent a
triangular matrix of dimension n with N(0, 1) entries. As we remarked earlier, the
exponential growth of κn = ‖Ln‖2‖L−1

n ‖2 is due to the second factor ‖L−1
n ‖2. Since

the 2-norm of column i+1 of L−1
n has the same distribution as Tn−i, we derive formulas

for various moments of Tk with the intention of understanding the exponential growth
of ‖L−1

n ‖2 with n.
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In the lemma below, we consider the expected value E(T ξ
k ) for both positive and

negative values of ξ. By our notation, T1 = |t1|. The notation dΩk = dtk . . . dt1 is
used to reduce clutter in the proof. As usual, Rk denotes the real Euclidean space of
dimension k.

The next lemma is stated as a recurrence to reflect the structure of its proof.
Lemma 3.2 contains the same information in a simpler form.

LEMMA 3.1. For any real ξ < 1, E(T ξ
k ) is given by the following recurrence:

E(T ξ
1 ) =

1√
2π

∫ ∞

−∞

exp(−1/2x2)
|x|2−ξ

dx,(3.1)

E(T ξ
k ) =

E(T ξ
k−1)
π

∫ ∞

−∞

dx

(1 + x2)1−ξ/2 for k > 1.(3.2)

For ξ ≥ 1 and k ≥ 1, E(T ξ
k ) is infinite.

Proof. To obtain (3.1), use T1 = |t1| and the PDF of t1 given by (2.2). It is easily
seen that the integral is convergent if and only if ξ < 1.

Next, assume k > 1. By definition,

E(T ξ
k ) =

∫
Rk

T ξ
k fkdΩk.

Using the recursive equation (2.3) for fk, and writing Tk in terms of tk and Tk−1, we
get

E(T ξ
k ) =

1
π

∫
Rk

Tk−1

T 2−ξ
k

fk−1dΩk

=
1
π

∫
Rk−1

∫ ∞

−∞

dtk
(t2k + T 2

k−1)1−ξ/2 Tk−1fk−1dΩk−1.(3.3)

By the substitution tk = xTk−1, the inner integral with respect to dtk can be reduced
to

T ξ−1
k−1

∫ ∞

−∞

dx

(1 + x2)1−ξ/2 .

Inserting this in the multiple integral (3.3) gives the recursive equation (3.2) for E(T ξ
k ).

It is easily seen that the integral in (3.2) is convergent if and only if ξ < 1.
Define γξ by

γξ =
1
π

∫ +∞

−∞

dx

(1 + x2)1−ξ/2 .(3.4)

Beginning with the substitution x = tan θ in (3.4), it can be shown that γξ =
π−1B((1 − ξ)/2, 1/2), where B is the beta function. The relevant expression for
the beta function B(x, y) is (6.2.1) in [1]. Also, if x is chosen from the standard
Cauchy distribution, then γξ = E((1 + x2)ξ/2). We do not need γξ in terms of the
beta function, however; the integral expression (3.4) is more suitable for our purposes.
Lemma 3.1 can be restated in a more convenient form using γξ as follows.

LEMMA 3.2. For ξ < 1, E(T ξ
k ) = Cξγ

k
ξ for a finite positive constant Cξ. Also,

γ0 = 1, γξ < 1 for ξ < 0, and γξ > 1 for ξ > 0.
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Proof. The expression for E(T ξ
k ) is a restatement of Lemma 3.1. By elementary

integration, γ0 = 1, and by the form of the integral in (3.4), γξ < 1 for ξ < 0 and
γξ > 1 for ξ > 0.

Lemma 3.2 implies that the positive moments of Tk grow exponentially with k
while the negative moments decrease exponentially with k.

Obtaining bounds for P (Tk > Mk) and P (Tk < mk) is now a simple matter.
LEMMA 3.3. For k ≥ 1, ξ > 0, and m > 0,

P (Tk < mk) < C−ξ(m/γ
−1/ξ
−ξ )ξk.

Proof. Since ξ > 0, P (Tk < mk) = P (T−ξ
k > m−ξk). Use Lemma 3.2 with ξ = −ξ

to obtain an expression for E(T−ξ
k ) and apply Markov’s inequality [2].

LEMMA 3.4. For k ≥ 1, 0 < ξ < 1, and M > 0,

P (Tk > Mk) < Cξ(γ
1/ξ
ξ /M)ξk.

Proof. As in Lemma 3.3, ξ > 0 implies that P (Tk > Mk) = P (T ξ
k > Mξk). Again,

the proof can be completed by obtaining an expression for E(T ξ
k ) using Lemma 3.2

followed by an application of Markov’s inequality.

4. Exponential growth of κn . We are now prepared to derive the first main
result of the paper, namely, n

√
κn → 2 almost surely as n → ∞ for triangular matrices

Ln with N(0, 1) entries. In what follows, a.s. means almost surely as n → ∞. The
definition of almost sure convergence for a sequence of random variables can be found
in most textbooks on probability; for example, see [2]. Roughly, it means that the
convergence holds for a set of sequences of measure 1.

LEMMA 4.1. ‖Ln‖1/n
2 → 1 almost surely as n → ∞.

Proof. The proof is easy. We provide only an outline. The Frobenius norm of Ln,
‖Ln‖2

F , is a sum of n(n + 1)/2 independent χ2 variables of mean 1. By an argument
exactly analogous to the proof of the strong law of large numbers with finite fourth
moment assumption [2, p. 80],

‖Ln‖2
F

n(n + 1)/2
→ 1 a.s.

The proof can be completed using the inequalities n−1/2‖Ln‖F ≤ ‖Ln‖2 ≤ ‖Ln‖F .
Note that the suggested proof relies on the existence of the fourth moment of the χ2

variables.
The proof of Lemma 4.2 uses the first Borel–Cantelli lemma in a way that is

typical of several proofs in probability. We use lim infn→∞ xn and lim supn→∞ xn for
limn→∞ infk≥n xk and limn→∞ supk≥n xk in the following lemma and later.

LEMMA 4.2. As n → ∞, for any 0 < ξ < 1,

γ
−1/ξ
−ξ ≤ lim inf

n→∞
n
√

κn ≤ lim sup
n→∞

n
√

κn ≤ γ
1/ξ
ξ almost surely.

Proof. By Lemma 4.1, it suffices to show that

γ
−1/ξ
−ξ ≤ lim inf

n→∞
n

√
‖L−1

n ‖2 ≤ lim sup
n→∞

n

√
‖L−1

n ‖2 ≤ γ
1/ξ
ξ a.s.

We consider the lower bound first. The 2-norm of the first column of L−1
n , which has

the same distribution as Tn, is less than or equal to ‖L−1
n ‖2. Therefore, for 0 < ε < 1,

P

(
n

√
‖L−1

n ‖2 < γ
−1/ξ
−ξ − ε

)
≤ P (Tn < (γ−1/ξ

−ξ − ε)n).
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Using Lemma 3.3 with k = n and m = γ
−1/ξ
−ξ − ε, we get

P

(
n

√
‖L−1

n ‖2 < γ
−1/ξ
−ξ − ε

)
< C−ξ

(
γ

−1/ξ
−ξ − ε

γ
−1/ξ
−ξ

)ξn

= C−ξp
ξn
ε ,

where pε = γ
1/ξ
−ξ (γ−1/ξ

−ξ − ε) < 1. Since |pε| < 1,
∑∞

n=1 pξn
ε is finite. The first Borel–

Cantelli lemma [2] can be applied to obtain

P

(
n

√
‖L−1

n ‖2 < γ
−1/ξ
−ξ − ε infinitely often as n → ∞

)
= 0.

Taking the union of the sets in the above equation over all rational ε in (0, 1) and
considering the complement of that union, we obtain

P

(
lim inf
n→∞

n

√
‖L−1

n ‖2 ≥ γ
−1/ξ
−ξ as n → ∞

)
= 1.

In other words, γ
−1/ξ
−ξ ≤ lim infn→∞

n

√
‖L−1

n ‖2 a.s.
The upper bound can be established similarly. At least one of the columns of L−1

n

must have 2-norm greater than or equal to n−1/2‖L−1
n ‖2. Since the 2-norm of column

k + 1 has the same distribution as Tn−k,

P

(
n

√
‖L−1

n ‖2 > γ
1/ξ
ξ + ε

)
≤

n∑
k=1

P (Tk > n−1/2(γ1/ξ
ξ + ε)n).

Bounding each term in the summation using Lemma 3.4 gives

P

(
n

√
‖L−1

n ‖2 > γ
1/ξ
ξ + ε

)
< Cξn

ξ/2
n∑

k=1

(
γk

ξ

(γ1/ξ
ξ + ε)ξn

)
.

Since γξ > 1 by Lemma 3.2, the largest term in the summand occurs when k = n.
Therefore,

P

(
n

√
‖L−1

n ‖2 > γ
1/ξ
ξ + ε

)
< Cξn

1+ξ/2

(
γ

1/ξ
ξ

γ
1/ξ
ξ + ε

)ξn

.

From this point, the proof can be completed in the same manner as the proof of the
lower bound.

THEOREM 4.3. For random triangular matrices with N(0, 1) entries, as n → ∞,

n
√

κn → 2 almost surely.

Proof. By an inequality sometimes called Lyapunov’s [13, p. 144], [2],

γ
1/β
β < γ1/α

α

for any real β < α. Thus, the bounding intervals [γ−1/ξ
−ξ , γ

1/ξ
ξ ] in Lemma 4.2 shrink

as ξ decreases from 1 to 0. A classical theorem [13, p. 139] says that these intervals
actually shrink to the following point:
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lim
ξ→0

γ
1/ξ
ξ = lim

ξ→0

(
1
π

∫ ∞

−∞

1
(1 + x2)1−ξ/2 dx

)1/ξ

= exp
(

1
2π

∫ ∞

−∞

log(1 + x2)
1 + x2 dx

)
.

The exact value of the limit can be evaluated to 2 using the substitution x = tan θ
followed by complex integration [3, p. 121]. Thus, n

√
κn → 2 a.s.

Theorem 4.3 holds in exactly the same form if the nonzero entries of Ln are inde-
pendent N(0, σ2) variables rather than N(0, 1) variables, since the condition number
is invariant under scaling.

Our approach to Theorem 4.3 began by showing that E(T ξ
k ) = Cξγ

k
ξ for both

positive and negative ξ. Once these expressions for the moments of Tk were obtained,
our arguments did not depend on how the recurrence was computed. The following
note summarizes the asymptotic information about a recurrence that can be obtained
from a knowledge of its moments.

Note. Let t1, t2, . . . be a sequence of random variables. If E(|tn|ξ) grows exponen-
tially with n at the rate νn

ξ for ξ > 0, then lim supn→∞
n
√

|tn| ≤ ν
1/ξ
ξ almost surely.

Similarly, if E(|tn|ξ) decreases exponentially with n at the rate νn
ξ as n → ∞ for

ξ < 0, then ν
1/ξ
ξ ≤ lim infn→∞

n
√

|tn| almost surely. Thus, knowledge of any positive
moment of tn yields an upper bound on n

√
|tn| as n → ∞, while knowledge of any

negative moment yields a lower bound.

5. Unit triangular matrices. So far, we have considered triangular matrices
whose nonzero entries are independent, real N(0, 1) variables. In this section and
in section 7, we establish the exponential growth of the condition number for other
kinds of random triangular matrices with normally distributed entries. The key steps
in the sequence of lemmas leading to the analogues of Theorem 4.3 are stated but not
proved. The same techniques used in sections 2, 3, and 4 work here, too.

Let Ln be a unit lower triangular matrix of dimension n with N(0, σ2) subdiagonal
entries. Let s1, . . . , sk be the first k entries from the diagonal downwards of any column
of L−1

n . The entries si satisfy the recurrence

s1 = 1,

s2 = α21s1,

s3 = α31s1 + α32s2,

...
sk = αk1s1 + · · · + αk,k−1sk−1,(5.1)

where αij , i > j, are N(0, σ2) variables. The notation Sk =
√

s2
1 + s2

2 + · · · + s2
k is

used below.
PROPOSITION 5.1. The JPDF of s1, . . . , sk, gk(s1, . . . , sk), is given by the recur-

rence

g2 =
1√
2πσ

exp(−s2
2/2σ2),

gk =
1√
2πσ

exp(−s2
k/2σ2S2

k−1)
Sk−1

gk−1 for k > 2,

and the fact that s1 = 1 identically.
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LEMMA 5.2. For any real ξ, E(Sξ
k) = λk−1

ξ , where

λξ =
1√
2πσ

∫ ∞

−∞
(1 + x2)ξ/2 exp(−x2/2σ2)dx.

The note at the end of section 4 provides part of the link from Lemma 5.2 to the
following theorem about κn.

THEOREM 5.3. For random unit triangular matrices with N(0, σ2) entries, as
n → ∞,

n
√

κn → exp
(

1
2
√

2πσ

∫ ∞

−∞
log(1 + x2)e−x2/2σ2

dx

)
almost surely.

If this limit is denoted by C(σ), then

C(σ) − 1 ∼ σ2/2 as σ → 0,

C(σ) ∼ Kσ as σ → ∞,

where K =
√

exp(−γ)/2 = 0.5298 . . . , with γ being the Euler constant.
Proof. The constant K is given by

K = exp

(√
2
π

∫ ∞

0
log x exp(−x2/2)dx

)
.

To evaluate K, we used integral 4.333 of [8].
In contrast to the situation in Theorem 4.3, the constant that n

√
κn converges to

in Theorem 5.3 depends on σ. This is because changing σ scales only the subdiagonal
entries of the unit triangular matrix Ln while leaving the diagonal entries fixed at
one. For σ = 1, the case discussed in the Introduction, numerical integration shows
the constant to be 1.305683410 . . . .

6. A comment on the stability of Gaussian elimination. The conditioning
of random unit triangular matrices has a connection with the phenomenon of numer-
ical stability of Gaussian elimination. We pause briefly to explain this connection.

For decades, the standard algorithm for solving general systems of linear equa-
tions Ax = b has been Gaussian elimination (with “partial” or row pivoting). This
algorithm generates an “LU factorization” PA = LU , where P is a permutation ma-
trix, L is unit lower triangular with subdiagonal entries less than or equal to one in
absolute value, and U is upper triangular.

In the mid-1940s it was predicted by Hotelling [14] and Goldstine and von Neu-
mann [9] that rounding errors must accumulate exponentially in elimination algo-
rithms of this kind, causing instability for all but small dimensions. In the 1950s,
Wilkinson developed a beautiful theory based on backward error analysis that, while
it explained a great deal about Gaussian elimination, confirmed that for certain ma-
trices, exponential instability does indeed occur [19]. He showed that amplification
of rounding errors by factors on the order of ‖L−1‖ may take place, and that for
certain matrices, ‖L−1‖ is of order 2n. Thus, for certain matrices, rounding errors are
amplified by O(2n), causing a catastrophic loss of n bits of precision.

Despite these facts, the experience of 50 years of computing has established that
from a practical point of view, Hotelling and von Neumann were wrong: Gaussian
elimination is overwhelmingly stable. In fact, it is not clear that a single matrix
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problem has ever led to an instability in this algorithm, except for the ones produced
by numerical analysts with that end in mind, although Foster [7] and Wright [20]
have devised problems leading to instability that plausibly “might have arisen” in
applications. The reason appears to be statistical: the matrices A for which ‖L−1‖
is large occupy an exponentially small proportion of the space of all matrices, so
small that such matrices “never” arise in practice. Experimental evidence of this
phenomenon is presented in [18].

This raises the question, why are matrices A for which ‖L−1‖ is large so rare? It
is here that the behavior of random unit triangular matrices is relevant. A natural
hypothesis would be that the matrices L generated by Gaussian elimination are, to a
reasonable approximation, random unit triangular matrices with off-diagonal entries
of a size dependent on the dimension n. If such matrices could be shown to be
almost always well conditioned, then the stability of Gaussian elimination would be
explained.

We have just shown, however, that unit triangular matrices are exponentially ill
conditioned. Thus, this attempted explanation of the stability of Gaussian elimination
fails, and indeed, the same argument suggests that Gaussian elimination should be
unstable in practice as well as in the worst case. The resolution of this apparent
paradox is that the matrices L produced by Gaussian elimination are far from random.
The signs of the entries of these matrices are correlated in special ways that have the
effect of keeping ‖L−1‖ almost always very small. For example, it is reported in [18]
that a certain random matrix A with n = 256 led to ‖L−1‖ = 33.2, whereas if L̃ was
taken to be the same matrix but with the signs of its subdiagonal entries randomized,
the result became ‖L̃−1‖ = 2.7 × 108. In fact, even unpivoted Gaussian elimination
does not produce triangular matrices as severely ill conditioned as random triangular
matrices [22].

From a comparison of Theorem 5.3 with half a century of the history of Gaussian
elimination, then one may conclude that unit triangular factors of random dense
matrices are very different from random unit triangular matrices. An explanation of
this difference is offered in [17] along the following lines. If A is random, then its
successive column spaces are randomly oriented in n-space in the sense that the first
column of A is oriented in a random direction, the span of the first two columns is a
random two-dimensional space, and so on. Since the span of the first k columns of L
is the same as the span of the first k columns of PA, where P is the row permutation
matrix produced by partial pivoting, the same holds approximately for the successive
column spaces of L. That condition, in turn, implies that large values ‖L−1‖ can arise
only exponentially rarely.

7. Complex matrices. We now consider matrices with complex entries. Let Ln

be a lower triangular matrix with Ñ(0, 1) entries. The complex distribution Ñ(0, 1)
was defined in the Introduction. Let t1, . . . , tk denote the first k entries from the
diagonal downwards of any column of L−1

n . The quantities tk satisfy (2.1), but the
αij are now independent Ñ(0, 1) variables. Let rk = |tk|2, and denote r1 + · · · + rk

by Rk.
PROPOSITION 7.1. The JPDF of r1, . . . , rk, hk(r1, . . . , rk), is given by the recur-

rence

h1 =
exp(−1/r1)

r2
1

,(7.1)
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hk =
Rk−1

R2
k

hk−1 for k > 1,(7.2)

for ri ≥ 0, 1 ≤ i ≤ k.
Proof. We sketch only the details that do not arise in the proof of Proposition

2.1. If x and y are independent N(0, σ2) variables, x =
√

r cos(θ) and y =
√

r sin(θ),
then r and θ are independent. Moreover, the distribution of r is exponential with the
PDF

(1/2σ2) exp(−r/2σ2)(7.3)

for r > 0.
Consider the sum τk = αk1t1 + · · · + αk,k−1tk−1 with αki taken as independent

Ñ(0, 1) variables. For fixed t1, . . . , tk−1, Re(τk) and Im(τk) are independent. To see
their independence, we write out the equations for Re(τk) and Im(τk) as follows:

Re(τk) =
k−1∑
i=1

Re(αki)Re(ti) − Im(αki)Im(ti),

Im(τk) =
k−1∑
i=1

Re(αki)Im(ti) + Im(αki)Re(ti).

The linear combinations of Re(αki) and Im(αki) in these two equations can be realized
by taking inner products with the two vectors

v = [Re(t1), . . . ,Re(tk−1),−Im(t1), . . . ,−Im(tk−1)],

w = [Im(t1), . . . , Im(tk−1),+Re(t1), . . . ,+Re(tk−1)].

The independence of Re(τk) and Im(τk) is a consequence of the orthogonality of v and
w, i.e., (v, w) = vw′ = 0, and the invariance of the JPDF of independent, identically
distributed normal variables under orthogonal transformation [15].

Thus, for fixed t1, . . . , tk−1, the real and imaginary parts of τk are independent
normal variables of mean 0 and variance Rk−1/2. By (7.3), the PDFs of x = |τk|2
and y = |αkk|2 are given by

1
Rk−1

exp(−x/Rk−1), exp(−y)

for positive x, y. The expression (7.2) for hk can now be obtained using rk =
|τk|2/|αkk|2.

LEMMA 7.2. For any ξ < 1, E(Rξ
k) = Cµk−1

ξ , where

C =
∫ ∞

0

exp(−1/r1)

r2−ξ
1

dr1, µξ =
∫ ∞

0

dx

(1 + x)2−ξ
.

The constant µξ in Lemma 7.2 can be reduced to (1−ξ)−1 for ξ < 1. However, as
with γξ in section 3, the integral expression for µξ is more suitable for our purposes.
As before, the note at the end of section 4 is an essential part of the link from the
previous lemma to the following theorem about κn.
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THEOREM 7.3. For random triangular matrices with complex Ñ(0, 1) entries, as
n → ∞,

n
√

κn → exp
(

1
2

∫ ∞

0

log(1 + x)
(1 + x)2

dx

)
= e1/2 almost surely.

Theorem 7.3 holds unchanged if the entries are Ñ(0, σ2) variables. As with The-
orem 4.3, this is because the condition number is invariant under scaling.

Now, let Ln be a unit lower triangular matrix of dimension n with Ñ(0, σ2)
subdiagonal entries. We state only the final theorem about κn.

THEOREM 7.4. For random unit triangular matrices with complex Ñ(0, σ2) en-
tries, as n → ∞,

n
√

κn → exp
(

1
4

∫ ∞

0
log(1 + σ2x/2)e−x/2dx

)
= exp(− exp(σ−2)Ei(−σ−2)/2) almost surely,

where Ei is the exponential integral. If this limit is denoted by C(σ), then

C(σ) − 1 ∼ σ2/2 as σ → 0,

C(σ) ∼ Kσ as σ → ∞,

where K = exp(−γ/2) = 0.7493 . . . , with γ being the Euler constant.
Proof. To obtain K, we evaluated

K = exp
(

1
4

∫ ∞

0
log(x/2) exp(−x/2)dx

)
using the Laplace transform of log(x) given by integral 4.331.1 of [8]. The explicit
formula involving Ei(σ−2) was obtained using integral 4.337.2 of [8].

For σ2 = 1, n
√

κn converges to 1.347395784 . . . .

8. Matrices with entries from stable distributions. The techniques used
to deduce Theorem 4.3 require that we first derive the joint density function of the tk,
defined by recurrence (2.1), as was done in Proposition 2.1. That proposition made
use of the fact that when the αki are independent and normally distributed, and the
ti are fixed, the sum

k−1∑
i=1

αkiti

is also normally distributed. This property of the normal distribution holds for any
stable distribution.

A distribution is said to be stable if for Xi chosen independently from that dis-
tribution,

n∑
i=1

Xi

has the same distribution as cnX + dn, where X has the same distribution as Xi and
cn > 0 and dn are constants [6, p. 170]. If dn = 0, the distribution is said to be
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strictly stable. As usual, the distribution is symmetric if X has the same distribution
as −X. A symmetric, strictly stable distribution has exponent a if cn = n1/a. A
standard result of probability theory says that any stable distribution has an exponent
0 < a ≤ 2. The normal distribution is stable with exponent a = 2 [6].

The techniques used for triangular matrices with normal entries work more gen-
erally when the entries are drawn from a symmetric, strictly stable distribution. Let
Ln be a unit lower triangular matrix with entries chosen from a symmetric, strictly
stable distribution. Denote the PDF of that stable distribution by φ(x). The recur-
rence for the entries si of the inverse L−1

n is again given by (5.1), but αki, k > i, are
now independent random variables with the density function φ(x).

Our program for deriving the constants that n
√

κn converge to as n → ∞ began
with Lemma 4.1 in all the previous examples. One of referees pointed out to us that a
new proof is needed for that lemma in the present context since a stable distribution
of index a < 2 does not have the ath or higher moments.

LEMMA 8.1. For a < 2, ‖Ln‖1/n
2 → 1 almost surely as n → ∞.

Proof. Define ‖Ln‖α = (
∑

i,j |lij |α)1/α for some 0 < α < a/4. Then the inequality

n(1/2−2/α)‖Ln‖α ≤ ‖Ln‖2 ≤ n‖Ln‖α

and the existence of the fourth moment of |lij |α make possible a proof analogous to
what was outlined for Lemma 4.1.

The proposition, the lemma, and the theorem below are analogues of Proposi-
tion 5.1, Lemma 5.2, and Theorem 5.3, respectively. If the exponent of the stable
distribution is a, denote (|s1|a + · · · + |sk|a)1/a by Sk.

PROPOSITION 8.2. If φ(x) is the density function of a symmetric, strictly stable
distribution with exponent a, the JPDF of s1, . . . , sk, gk(s1, . . . , sk), is given by the
recurrence

g2 = φ(s2),

gk =
φ(sk/Sk−1)

Sk−1
gk−1 for k > 2,

and the fact that s1 = 1 identically.
Proof. The proof is very similar to the proof of Proposition 2.1. We note that

if αki, k > i, are independent random variables with the PDF φ(x), and the si are
fixed, then the sum

αk1s1 + · · · + αk,k−1sk−1

has the PDF φ(x/Sk−1)/Sk−1 [6, p. 171].
LEMMA 8.3. For any real ξ, E(Sξ

k) = λk−1
ξ , where

λξ =
∫ +∞

−∞
(1 + |x|a)ξ/aφ(x)dx,

with λξ = ∞ for ξ ≥ a.
THEOREM 8.4. For random unit triangular matrices with entries from a symmet-

ric, strictly stable distribution with density function φ(x) and exponent a, as n → ∞,

n
√

κn → exp
(

1
a

∫ ∞

−∞
log(1 + |x|a)φ(x)dx

)
almost surely.
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Theorem 5.3 is a special case of Theorem 8.4 when φ(x) is the density function
for the symmetric, strictly stable distribution N(0, σ2). Another notable symmetric,
strictly stable distribution is the Cauchy distribution with the density function

φ(x) =
1
π

1
1 + x2 .

The exponent a for the Cauchy distribution is 1 [6]. Using Theorem 8.4 we obtain
the following.

THEOREM 8.5. For random unit triangular matrices with entries from the stan-
dard Cauchy distribution, as n → ∞,

n
√

κn → exp
(

1
π

∫ +∞

−∞

log(1 + |x|)
1 + x2 dx

)
almost surely.

Numerical integration shows the constant to be 2.533737279 . . . .
A similar generalization can be made for triangular matrices without a unit diag-

onal. However, the analogue of Theorem 8.4 for such matrices involves not φ(x) but
the density function ψ(x) of the quotient x = y/z obtained by taking y, z as indepen-
dent variables with the PDF φ. The distribution ψ can be difficult to compute and
work with. We state only the final theorem about κn for triangular matrices with
entries drawn from a symmetric strictly stable distribution.

THEOREM 8.6. For random triangular matrices with entries from a symmetric,
strictly stable distribution with density function φ(x) and exponent a, as n → ∞,

n
√

κn → exp
(

1
a

∫ ∞

−∞
log(1 + |x|a)ψ(x)dx

)
almost surely,

where ψ(x) is the density function of the quotient of two independent variables with
the density function φ(x).

Theorem 4.3 is a special case of Theorem 8.6 when φ(x) is the density function of
the distribution N(0, σ2). The ψ(x) corresponding to N(0, σ2) is the standard Cauchy
distribution. To apply Theorem 8.6 for the Cauchy distribution, we note that

ψ(x) =
2
π2

log |x|
x2 − 1

is the density function of the quotient if the numerator and the denominator are
independent Cauchy variables [11]. Therefore, Theorem 8.6 implies the following.

THEOREM 8.7. For random triangular matrices with entries from the standard
Cauchy distribution, as n → ∞,

n
√

κn → exp
(

2
π2

∫ ∞

−∞
log(1 + |x|) log |x|

x2 − 1
dx

)
almost surely.

The constant of convergence in Theorem 8.7 is 3.063094192 . . . .

9. Summary. Below is a summary of the exponential growth factors limn→∞ n
√

κn

that we have established for triangular matrices with normal entries:
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Real triangular 2 Theorem 4.3

Real unit triangu-
lar, σ2 = 1 1.305683410 . . . Theorem 5.3

Complex triangular e1/2 = 1.647 . . . Theorem 7.3

Complex unit trian-
gular, σ2 = 1 1.347395784 . . . Theorem 7.4

The theorems about unit triangular matrices with normally distributed, real or com-
plex entries apply for any variance σ2, not just σ2 = 1. Constants of convergence
for any symmetric, strictly stable distribution were derived in Theorems 8.4 and 8.6.
Those two theorems were specialized to the Cauchy distribution in Theorems 8.5 and
8.7.

Similar results seem to hold more generally, i.e., even when the entries of the
random triangular matrix are not from a stable distribution. Moreover, the complete
knowledge of moments achieved in Lemma 3.2 and its analogues might be enough to
prove stronger limit theorems than Theorem 4.3 and its analogues. We will present
limit theorems and results about other kinds of random triangular matrices in a later
publication. We will also discuss the connection between random recurrences and
products of random matrices, and the pseudospectra of infinite random triangular
matrices.

For the random recurrences we have considered here, every new term is a random
sum of all the previous terms in the sequence. The exponential increase of successive
terms with probability 1 holds even for some random recurrences that generate a new
term as a random sum of a fixed number of previous terms. For example, if we define
random Fibonacci sequences by t1 = t2 = 1, and for n > 2, tn = ±tn−1 ± tn−2,
where each ± sign is independent and either + or − with probability 1/2, then
n
√

|tn| → 1.13198824 . . . almost surely [21]. Thus, the condition number increases
exponentially even for some random triangular matrices that are banded.

We close with two figures that illustrate the first main result of this paper, namely,
for random triangular matrices with N(0, 1) entries, n

√
κn → 2 almost surely as n → ∞

(Theorem 4.3). Figure 9.1 plots the results of a single run of the random recurrence
(2.1) to 100, 000 steps, confirming the constant 2 to about two digits. The expense
involved in implementing the full recurrence (2.1) for so many steps would be pro-
hibitive. However, since tk grows at the rate 2k, we need include only a fixed number of
terms in (2.1) to compute tk to machine precision. For the figure, we used 200 terms,
although half as many would have been sufficient. Careful scaling was necessary to
avoid overflow while computing this figure.

Figure 9.2 plots the condition number of a single random triangular matrix for
each dimension from 1 to 200. The exponential trend at the rate 2n is clear, but as
in Figure 1.1, the convergence as n → ∞ is slow.
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FIG. 9.1. Illustration of Theorem 4.3. After 100, 000 steps of the random recurrence (2.1),
n
√

|tn| has settled to within 1% of its limiting value 2. The implementation is explained in the text.

κn

0 20 40 60 80 100 120 140 160 180 200
10

-10

10
0

10
10

10
20

10
30

10
40

10
50

10
60

10
70

n

FIG. 9.2. Another illustration of Theorem 4.3. Each cross is obtained by computing the condi-
tion number κn for one random triangular matrix of dimension n with N(0, 1) entries. The solid
line represents 2n.
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