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Abstract. The restricted three-body problem describes the motion of a massless particle
under the influence of two primaries of masses 1−µ and µ that circle each other with
period equal to 2π . For small µ, a resonant periodic motion of the massless particle in
the rotating frame can be described by relatively prime integers p and q, if its period
around the heavier primary is approximately 2πp/q, and by its approximate eccentricity e.
We give a method for the formal development of the stable and unstable manifolds asso-
ciated with these resonant motions. We prove the validity of this formal development and
the existence of homoclinic points in the resonant region. In the study of the Kirkwood
gaps in the asteroid belt, the separatrices of the averaged equations of the restricted three-body
problem are commonly used to derive analytical approximations to the boundaries of the
resonances. We use the unaveraged equations to find values of asteroid eccentricity below
which these approximations will not hold for the Kirkwood gaps with q/p equal to 2/1,
7/3, 5/2, 3/1, and 4/1. Another application is to the existence of asymmetric librations
in the exterior resonances. We give values of asteroid eccentricity below which asymmet-
ric librations will not exist for the 1/7, 1/6, 1/5, 1/4, 1/3, and 1/2 resonances for any µ

however small. But if the eccentricity exceeds these thresholds, asymmetric librations will
exist for µ small enough in the unaveraged restricted three-body problem.

Key words: asymmetric libration, homoclinic points, Kirkwood gaps, resonance, three-body
problem

1. Introduction

The restricted three-body problem describes the motion of a massless par-
ticle under the influence of two primaries of masses 1 − µ and µ. The
Hamiltonian

H = 1
2
(p2

x+p2
y)+ypx−xpy−

1−µ
(x2+y2)1/2

−µ
(

1
((x−1)2+y2)1/2

−x
)

(1.1)
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gives the equations of motion of the massless particle. In (1.1), it is
assumed that the primary of mass 1−µ is located at (0,0), that the pri-
mary of mass µ is located at (1,0), and that the frame of reference rotates
with the second primary in the anticlockwise sense with period 2π .

In terms of the heliocentric Delaunay variables L, l,G,g, the Hamiltonian
becomes

H =−(1−µ)
2

2L2
−G−µ�′(L,G,l,g)=− 1

2L2
−G−µ�(L,G,l,g)− µ2

2L2
,

(1.2)

where

�′ = 1
(1+ r2−2r cos θ)1/2

− r cos θ
(1.3)

�=�′ −1/L2.

The variables r, θ can be obtained in terms of L, l,G,g using the equations

e= (1−G2/L2)1/2

a=L2/(1−µ)
l=E− e sinE

cos ν= (cosE− e)/(1− e cosE) (1.4)

sin ν= (1− e2)1/2 sinE/(1− e cosE)

θ =g+ν
r=a(1− e cosE).

The Cartesian coordinates x, y in the rotating frame used in (1.1) are given
by x= r cos θ and y= r sin θ . When µ=0, the orbit of the massless particle
in the inertial frame is an ellipse with eccentricity e and semimajor axis a;
l, ν, and E are the mean, true, and eccentric anomalies; g is the argument
of the perihelion in the rotating frame and G denotes angular momentum.
The variables r and θ are the polar coordinates of the massless particle in
the rotating frame. The choice of heliocentric variables in (1.2) is in accord
with conventions used by astronomers.

We use L, l,G,g to investigate motion near resonances as the Hamilton’s
equations of (1.2) take an especially simple form for µ small. If L =
(p/q)1/3, G= (p/q)1/3(1− e2)1/2, 0< e < 1, and µ= 0, the massless parti-
cle moves on an ellipse with period 2πp/q and eccentricity e in the inertial
frame. It is assumed that p and q are relatively prime positive integers. The
motion is periodic in the rotating frame as well with period equal to 2πp.
If l and g are multiples of π and the unperturbed orbit does not collide
with the second primary, these periodic motions in the rotating frame per-
turb to periodic motions for µ>0 and µ small (Barrar, 1965). Given p,q, e
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Figure 1. The l-L plane shown above is the Poincaré section g=0. Periodic points as well
as portions of stable and unstable manifolds are shown schematically for q/p=7/2 and
q/p=3/1.

it might appear that there are four possibilities as l and g can be either 0
or π , but in fact only two of these are distinct. These are the two q/p reso-
nant periodic motions of the restricted three-body problem that correspond
to eccentricity e.

The Hamiltonian H is conserved by the flow, and for a given H and
µ small it is possible to solve (1.2) for G using the implicit function theo-
rem. Thus the Poincaré section g= 0 can be identified with the l-L plane.
Each resonant periodic motion corresponding to p,q, e intersects this
Poincaré section exactly p times. Typically, if one of the resonant periodic
motions is of elliptic type the other is of hyperbolic type (Viswanath, 2005).
In Figure 1, we have shown the periodic points on the L-l section for
q/p= 3/1 and q/p= 7/2 with elliptic points marked as circles and hyper-
bolic points as crosses. The perturbing term � and the O(µ2) term in
(1.2) are unchanged by the transformation L←L, l←−l, G←G, g←−g,
which is symplectic with multiplier −1. This discrete symmetry of the
Hamiltonian (1.2) has the following implication for the return map to the
l-L section: if (l0,L0) maps to (l1,L1) then the return map sends (−l1,L1)

to (−l0,L0).
We obtain a scaled version of the return map near q/p resonance in

Sections 2 and 3. The stable and unstable manifolds of the hyperbolic
points of such a return map nearly coincide and the angle of transversal-
ity can be upper bounded by a quantity that is exponentially small in the
small parameter µ. A discussion of exponential splitting of separatrices can
be found in the work of Gelfreich and Lazutkin (2001), Fontich and Simó
(1990), and Holmes et al. (1988). Instability is often associated with reso-
nance, and it is therefore natural to look for transverse homoclinic points
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near resonances. However, it appears that there has been no construction of
transverse homoclinic points near resonances in either the restricted three-
body problem or in some other version of the planetary problem. The
rescaling of the return map given in Section 3 brings this problem into
sharper focus and it is possible to make an analogy to the discussion of
the standard map given by Gelfreich and Lazutkin (2001).

In Section 4, we describe a procedure for the formal development of the
stable manifold of a resonant periodic solution in powers of µ1/2. This pro-
cedure is specially adapted to the restricted three-body problem. In Section
5, we have included a proof of validity of this formal expansion. We also
prove the existence of homoclinic points. A part of the verification essential
for the proof is carried out in Section 6.

Although investigations of the Kirkwood gaps in the asteroid belt have
used physical models that include the secular variation of Jupiter’s elements
and the effect of Saturn, the averaged circular restricted three-body prob-
lem is still used to approximate the boundaries of the resonant regions. The
more complicated models are essential to explain the dynamics within the
resonant regions. An account of these models and their use can be found
in the monograph by Morbidelli (2002). The use of the averaged equa-
tions of the circular restricted problem to sketch the boundaries of reso-
nance can be found in Dermott and Murray (1983), Henrard and Lemaı̂tre
(1983), and Lemaı̂tre (1984). It appears to be known that the boundaries
obtained from the averaged circular restricted problem do not work well
at low eccentricities (Yoshikawa, 1990, and 1991; Morbidelli, 2002). In fact
for the q/p= 2/1 case, the left boundary cannot even be computed near
e= 0 (Morbidelli, 2002). In Section 7, we interpret the calculation of the
boundaries in terms of the unaveraged circular restricted problem. For the
commonly studied Kirkwood gaps, we give values of the eccentricity below
which the approximation of the boundary will not be valid.

Asymmetric librations near exterior resonances with p>q in the aver-
aged circular restricted problem have been investigated by Beaugé (1994)
and more recently by Voyatis et al. (2005). In Section 8, we show the exis-
tence of these librations in the unaveraged circular restricted problem for
q/p equal to 1/2, 1/3, 1/4, 1/5, 1/6, and 1/7. We also give minimum
values of eccentricity for each of these exterior resonances which must be
exceeded for the asymmetric librations to exist.

2. Perturbative Form of the Return Map

Let L range over the interval [(p/q)1/3− δL, (p/q)1/3+ δL] for some δL>0.
We assume p/q �= 1/1. Let e range over the interval [emin, emax] such that
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L2(1− e) > 1+ δ if p > q and such that L2(1+ e) < 1− δ if p < q, for all
allowed values of L and e and some δ > 0. In addition, assume 0< emin

and emax < 1. We take the range of the Hamiltonian H to be the set of
values of −(p/q)−2/3/2− (p/q)1/3(1− e2) for emin � e� emax. Then for any
allowed value of H and L, any real values of the angles l and g measured
modulo 2π , and µ sufficiently small, the implicit function theorem enables
us to solve (1.2) for G uniquely. In fact, G will be an analytic function of
l,L, g,H,µ.

We use either g = 0 or g = π to define the Poincaré section. Since
Hamilton’s equations formed using the Hamiltonian (1.2) imply that
dg/dt=−1+O(µ), the return map is well defined for L and H in the inter-
vals specified by the previous paragraph, any value of l, and µ small. Since
H is conserved by the flow, we may identify the Poincaré section for fixed
H with the l-L plane as in Figure 1. The return map preserves the area ele-
ment dl dL. The return map will be denoted by T1 and T p1 will be denoted
by Tp. In this section, we will obtain the perturbative form of Tp.

The Hamilton’s Equations of (1.2) imply that l̇= 1/L3−µ�L+O(µ2),
ġ=−1−µ�G, and L̇=µ�l. We seek a solution of these equations with the
initial conditions l(0)= l0, L(0)=L0, g(0)= g0, where g0 is either 0 or π ,
and G(0)=G0. It is understood that G must be obtained by solving (1.2).
If the solution is represented as l(t)= la(t)+ lb(t)µ+O(µ2), g(t)= ga(t)+
gb(t)µ+O(µ2), and L(t)=La(t)+Lb(t)µ+O(µ2), then la(t)= l0 + t/L3

0,
ga(t)=g0− t , and La(t)=L0. In addition, lb, gb, and Lb must satisfy

l̇b= (−3/L4
a)Lb−�L, ġb=−�G, L̇b=�l,

where the partial derivatives of � must be evaluated at l= l0+ t/L3
0, g=

g0− t , L=L0, and G=G0. By solving the equations above, we get

l(t)= l0+ t/L3
0+µ

(
−

∫ t

0
�L dt− 3

L4
0

∫ t

0

∫ τ

0
�l dt dτ

)
+O(µ2)

g(t)=g0− t−µ
∫ t

0
�G dt+O(µ2) (2.1)

L(t)=L0+µ
∫ t

0
�l dt+O(µ2),

where the partial derivatives of � must be evaluated at l = l0 + t/L3
0,

g=g0− t , L=L0, and G=G0. The solution given by (2.1) is valid over any
finite interval of time for initial conditions in the domain already indicated
and for µ sufficiently small. In (2.1), as in (2.2) and (3.2) later, t is used as
both the variable and the upper limit of integration.

To approximate Tp, it is necessary to find the time tr at which g(t)=−2πp+
g0. Using the equation for g(t) in (2.1), we get tr=2πp−µ ∫ 2πp

0 �G dt+O(µ2).
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Using (2.1), we may deduce that Tp is given by

l1= l0+2πp/L3
0+µ

(
− 1

L3
0

∫ 2πp

0
�G dt−

∫ 2πp

0
�L dt

− 3

L4
0

∫ 2πp

0

∫ τ

0
�l dt dτ

)
+O(µ2) (2.2)

L1=L0+µ
∫ 2πp

0
�l dt+O(µ2),

where the partial derivatives of � must be evaluated at l= l0+ t/L3
0, g=

g0− t , L=L0, and G=G0. The expression for Tp given by (2.1) is valid
for L∈ [(p/q)1/3−δL, (p/q)1/3+δL], for any real value of the angle l, for H
within a range that ensures avoidance of collision with the second primary
as specified earlier, and for µ sufficiently small. Since this domain of valid-
ity is compact, the O(µ2) terms in (2.3) hold uniformly over the domain.

The lemmas below are related to the first return map T1 and its pth
iterate Tp.

LEMMA 2.1. Assume that (l0,L0) maps to (l1,L1) under T1 (or Tp). Then
(− l1,L1) maps to (− l0,L0) under T1 (or Tp).

Proof. The Hamiltonian (1.2) is unchanged by the transformation
l ← −l, L← L, g ← −g, G← G. Therefore, if l(t), g(t), L(t), G(t) is
a solution of the Hamilton’s equations of (1.2) for 0 � t � t *, then
−l(−t), −g(−t), L(−t), G(−t), where −t * � t � 0, is also a solution. The
lemma follows if it is noted that the Poincaré section is defined using either
g=0 or g=π .

The lemma below is useful for finding fixed points of Tp.

LEMMA 2.2. Let

φp(l0,L0)=
∫ 2πp

0
�l dt,

where the arguments of �l are evaluated with l = l0 + t/L3
0, g = g0 − t ,

L = L0, and G = G0. Then φp(l0, (p/q)
1/3) = φp(l0 + 2π/p, (p/q)1/3) and

φp(−l0, (p/q)1/3)=−φp(l0, (p/q)1/3).

Proof. If we define φ1(l0,L0)=
∫ 2π

0 �l dt , then (2.2) implies that L1 =
L0 + φ(l0,L0)µ + O(µ2) and that l1 = l0 + 2π/L3

0 + O(µ) under the first
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return map T1. If we apply T1 to (−l1,L1) and use Lemma 2.1 along with
this expansion of T1 in powers of µ, we get

L0=L1+φ1(−l1,L1)µ+O(µ2)

=L0+φ1(l0,L0)µ+φ1(−l0−2π/L3
0,L0)µ+O(µ2).

Since (l1,L1) is obtained from (l0,L0) by a Hamiltonian flow that
depends analytically upon the parameter µ, (l1,L1) must depend analyti-
cally on µ in a neighborhood of µ=0 for given (l0,L0). Since � is analytic
in its arguments, φ(−l1,L1) must also depend analytically on µ for given
(l0,L0). Thus the expression following the second equality sign in the dis-
play above stands for an expansion in powers of µ that converges for µ
small. But the value of that sum must be L0 for all µ sufficiently small.
Therefore the coeffcients for µn for all n� 1 must all be zero. Thus we
may consider the coefficient of µ and conclude that φ1(l0,L0)+ φ1(−l0−
2π/L3

0,L0)=0. If L0= (p/q)1/3, we have

φ1(l0, (p/q)
1/3)+φ1(−l0−2πq/p, (p/q)1/3)=0. (2.3)

From Tp=T p1 , we get

φp(l0,L0)=
p−1∑
j=0

φ1(l0+2jπ/L3
0,L0). (2.4)

Now

φp
(
l0, (p/q)

1/3)=
p−1∑
j=0

φ1
(
l0+2πjq/p, (p/q)1/3

)

=
p−1∑
j=0

φ1
(
l0+2πj/p, (p/q)1/3

)

The first equality above follows from (2.4). By elementary number theory,
no two of the p numbers jq, with 0 � j � p− 1, are congruent to each
other modulo p since p and q are prime to each other. Thus modulo p,
these numbers must give the set of remainders {0,1, · · · , p − 1}. Further
jq≡ j ′ mod p implies φ1(l0+ 2πjq/p, (p/q)1/3)=φ1(l0+ 2πj ′/p, (p/q)1/3)
since the angle l is measured modulo 2π . These observations imply the sec-
ond equality above. Since

p−1∑
j=0

φ1(l0+2πj/p, (p/q)1/3)=
p−1∑
j=0

φ1(l0+2π(j +1)/p, (p/q)1/3).
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by similar reasoning, it follows that φp(l0, (p/q)1/3) has period equal to
2π/p in l0. That the quantity φp(l0, (p/q)1/3) is an odd function of l0 fol-
lows from (2.3).

Lemma 2.2 can also be proved by another method. From its definition
using (1.2), (1.4) and (1.5), � is periodic in l and g with period 2π . Fur-
ther, �(L,G,−l,−g)=�(L,G, l, g). Therefore we may Fourier expand �

as
∑
cmn(L,G) cos(ml + ng), where the sum is over all nonnegative inte-

gers m and n. A detailed discussion of such expansions can be found in
(Morbidelli, 2002). If the Fourier expansion of � is inserted into the defi-
nition of φp(l0,L0) in the statement of Lemma 2.2, we get

φp(l0, (p/q)
1/3)=−2πp2

∞∑
k=1

k ckp,kq
(
(p/q)1/3,

(p/q)1/3(1− e2)1/2
)

sin(kpl0+kqg0).

The properties of φp(l0, (p/q)1/3) asserted in Lemma 2.2 become obvious if
it is noted that g0 is either 0 or π by choice of the Poincaré section.

3. Scaling and Periodic Points of the Return Map

The variable λ defined by L= (p/q)1/3+λ√µ can be used instead of L to
blow up the region of the Poincaré section near p/q resonance. The image
of the point (l0, λ0) in the l-λ plane under the pth return map Tp can be
calculated using (2.2), and it is given by

l1= l0− c1λ0µ
1/2+ (c2λ

2
0+χ(l0))µ+O(µ3/2)

(3.1)
λ1=λ0+φ(l0)µ1/2+λ0ψ(l0)µ+O(µ3/2),

where

c1=6πq4/3p−1/3 and c2=12πq5/3p−2/3

φ(l0)=
∫ 2πp

0
�l dt

(3.2)

ψ(l0)=
∫ 2πp

0
�lL dt+ q

p

∫ 2πp

0
�lG dt− 3q4/3

p4/3

∫ 2πp

0
t�ll dt

χ(l0)=−
∫ 2πp

0
�L dt− q

p

∫ 2πp

0
�G dt− 3q4/3

p4/3

∫ 2πp

0

∫ τ

0
�l dt dτ.

In (3.2), the partial derivatives of � must be evaluated at l= l0+qt/p, g=
g0− t (where g0 is either 0 or π depending upon the choice of the Poincaré
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section), L = (p/q)1/3, and G = (p/q)1/3(1 − e2)1/2. The expression for
Tp given by (3.1) and (3.2) is valid for any real value of l0 and |λ0| �
δL/µ

1/2. The domain of definition can therefore be taken as |λ0|�Cλ with
any positive constant Cλ for sufficiently small µ. To derive the expression
for ψ(l0) given in (2.3), we must use the second line of (2.2) and notice
that the equation L0 = (p/q)1/3 + λ0µ

1/2 and (1.2) imply G0 = (p/q)1/3
(1− e2)1/2+ (q/p)λ0µ

1/2+O(µ). A term equal to 2πq has been dropped
from the first line of (3.2) as l0 and l1 are angles measured modulo 2π .

The function φ(l0) equals φp(l0,L0) defined by Lemma 2.1 when L0=
(p/q)1/3. By Lemma 2.1, φ(l0) is an odd function with period equal to
2π/p. Therefore, φ(0)=0 and φ(π/p)=0. We make the following assump-
tion about φ(l0):

Assumption A: For l0 ∈ [0,2π/p), the only points where φ(l0)=0 are l0=0
and l0=π/p. At these points, the derivative φ′(l0) is nonzero.

We turn to the verification of this assumption in Section 6. An exam-
ple of a function which is odd with period 2π/p and which satisfies the
assumption above is sin(pl0). In fact, it will be shown later that φ(l0) is
proportional to sin(pl0)e|p−q| for small e.

The assumption about φ(l0) can be put to use to find fixed points of Tp
in the l-λ plane. We can use (3.1) and write

(l1− l0)/µ1/2=−c1λ0+ (c2λ
2
0+χ(l0))µ1/2+O(µ)

(3.3)
(λ1−λ0)/µ

1/2=φ(l0)+λ0ψ(l0)µ
1/2+O(µ).

When µ = 0, the right hand sides of the two equations in (3.3) are both
zero if λ0 = 0 and if l0 is an integral multiple of π/p. The implicit func-
tion theorem, along with the assumption about φ(l0) stated above, allows
us to infer that the right hand sides in (3.3) are 0 for µ sufficiently small,

l0= jπ/p+O(µ), and λ0=
(
χ(jπ/p)/c1

)
µ1/2+O(µ), (3.4)

where j is an integer. Thus the points given by (3.4) are fixed points of
Tp for µ sufficiently small. Since each application of the first return map
T1 increments l0 by 2πq/p +O(µ), where q and p are relatively prime,
we may group the fixed points given by (3.4) into two sets, the first with
j = 0,2, . . . ,2(p− 1) and the second with j = 1,3, . . . ,2(p− 1)+ 1. Then
any fixed point in the first set moves to all other points in that set upon
successive applications of T1 and returns to itself after the pth application;
and likewise with the second set. The assumption about φ(l0) implies that
if one set of periodic points is elliptic then the other set is hyperbolic as
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will become clear shortly. A discussion of the existence of these periodic
points is given by Meyer and Hall (1992).

If Assumption A about φ(l) fails to hold, points l0 with φ(l0)= 0 and
φ′(l0) �= 0 will still correspond to periodic points of (3.1) for µ sufficiently
small. If l0 �=0 and l0 �=π , the corresponding periodic points can be the cen-
ters of asymmetric librations as described in the last section.

4. Formal Expansion of the Stable Manifold

The expression for the map Tp given by (3.1) and (3.2) can be rewritten
by shifting the center of the l-λ plane to (l*, λ*), where (l*, λ*) is the fixed
point of Tp given by (3.4), with j being some integer. The map Tp applied
to the l-λ plane centered at such a fixed point takes the form

l1= l0− c1λ0µ
1/2+ (c2λ

2
0+χ(l0))µ+ r(l0, λ0,

√
µ)µ3/2

(4.1)
λ1=λ0+�(l0)µ1/2+λ0�(l0)µ+ s(l0, λ0,

√
µ)µ3/2,

where

χ(l0)=χ(l0+ jπ/p)−χ(jπ/p), �(l0)=φ(l0+ jπ/p),
(4.2)

�(l0)=ψ(l0+ jπ/p).
The derivations of (2.2) and (3.1) imply that the remainder terms r and s

in (4.1) are analytic in l0, λ0, and
√
µ for any real l0, λ0 with |λ0|�Cλ, and√

µ sufficiently small in magnitude. Besides, r(0,0,
√
µ)= s(0,0,√µ)=0

because (0,0) is a fixed point of (4.1).
The Jacobian dTp of (4.1) at the origin is given by

dTp=
(

1 −c1µ
1/2

�′(0)µ1/2 1

)
+

(
χ ′(0)

�(0)

)
µ+O(µ3/2). (4.3)

For µ> 0 and µ small, the fixed point is hyperbolic if �′(0)< 0 and elliptic if
�′(0)>0. From (4.2), it follows that�′(0)=φ′(jπ/p). The assumption of Sec-
tion 3 implies thatφ′(0) andφ′(π/p) are of opposite signs. Thus if the set of fixed
points given by (3.4) is of hyperbolic or elliptic type for even j , the set of fixed
points given by odd j must be of the opposite type. We shall assume that the fixed
point used to shift the coordinate system and obtain (4.1) to be of hyperbolic
type, which means �′(0) < 0. Let α= 4

√−�′(0)/c1. Then a calculation using
(4.3) shows that the eigenvalues 1−α2c1µ

1/2+ (
(χ ′(0)+�(0))/2)

µ+O(µ3/2)

and 1+α2c1µ
1/2+ (

(χ ′(0)+�(0))/2)
µ+O(µ3/2) of dTp correspond to eigen-

vectors of slopes
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α2+ χ
′(0)−�(0)

2c1
µ1/2+O(µ) and −α2+ χ

′(0)−�(0)
2c1

µ1/2+O(µ),
(4.4)

respectively. The slope of the stable manifold of the fixed point of the map
(4.2) at the origin must be given by the first of the two expressions in (4.4).
When we derive an approximation to that stable manifold, (4.4) will serve
to check the correctness of that approximation.

To find the stable manifold of this fixed point, we rewrite (4.2) in the
following form:

λ0µ
1/2=− l1− l0

c1
+ c2λ

2
0+χ(l0)
c1

µ+· · ·
(4.5)

λ2
1=λ2

0+2λ0�(l0)µ
1/2+ (�(l0)2+2λ2

0�(l0))µ+· · ·
Let (l0, λ0) be a point on the stable manifold. Its iterates (l1, λ1), (l2, λ2),
and so on are also on the stable manifold. In addition, ln→0 and λn→0
as n→∞. Using (4.5), we may write

λ2
n=λ2

0+2
(
λ0�(l0)+λ1�(l1)+···+λn−1�(ln−1)

)
µ1/2+O(µ)

=λ2
0−

2
c1

(
(l1−l0)�(l0)+(l2−l1)�(l1)+···+(ln−ln−1)�(ln−1)

)+O(µ).
Note that

(lj+1− lj )�(lj )=
∫ lj+1

lj

�(l) dl− (lj+1− lj )2
2

�′(lj )+· · ·
(4.6)

=
∫ lj+1

lj

�(l) dl+O(µ).

Using (4.6) and noting that lj+1− lj is O(µ1/2), we have

λ2
n=λ2

0−
2
c1

∫ ln

l0

�(l)dl+O(µ1/2).

Taking the limit n→∞, we find that formally the stable manifold is given
by λ=u(l)+O(µ1/2), where

u(l)2=− 2
c1

∫ l

0
�(l) dl. (4.7)

The positive root must be used if l >0 and the negative root if l <0. It can
be verified that this expression for u(l) agrees with (4.4) for the slope at the
origin. Figure 2 plots u(l) and U(l)=u(l)2.
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 π/p

.004

−2Φ(l)/c1

U(l)

u(l)

Figure 2. In the figure above, u(l) has been scaled down by 0.1 to make it fit. The plots
correspond to the case q/p=3/1, e=0.1.

To find the next term in the expansion of the stable manifold, we use
(4.5) to get

λ2
n=λ2

0+2µ1/2
n−1∑
j=0

λj�(lj )+µ
n−1∑
j=0

�(lj )
2+2λ2

j�(lj )+· · · (4.8)

and use (4.5) and (4.6) to get

λj�(lj )µ
1/2=− 1

c1
(lj+1− lj )�(lj )+

c2λ
2
j +χ(lj )
c1

�(lj )µ+· · ·

=− 1
c1

∫ lj+1

lj

�(l) dl+ 1
c1

(
c2

1λ
2
j�
′(lj )/2+ (c2λ

2
j

+χ(lj ))�(lj )
)
µ+· · · (4.9)

Using (4.8) and (4.9) and by turning a sum into an integral as before, we
get the expansion λ=u(l)+v(l)µ1/2+O(µ) for the stable manifold, where

v(l)=− 1
c1u(l)

∫ l

0

c1u(l)�
′(l)

2
+c2u(l)

2+χ(l)
u(l)

�(l)+ �(l)
2

2u(l)
+u(l)�(l) dl.

(4.10)

This formula for v(l) agrees with (4.4) with regard to the slope at the
origin. This procedure can be repeated to calculate more terms in the
expansion of the stable manifold.
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5. Homoclinic Points Near Resonances

Assume that the stable manifold of the origin under the map (4.1) is the
graph of the function λ=M0(l). Then M0(l) must satisfy a functional equa-
tion of the form

λ0+�(l0)µ1/2+· · ·=M0(l0− c1λ0µ
1/2+· · · ).

Assume that M0(l)=u(l)+ v(l)µ1/2+w(l)µ, where u(l) and v(l) are given
by (4.7) and (4.10), respectively. Then w(l) must satisfy the functional
equation

(1+ c1u
′(l0)µ1/2)w(l0)=w(l1)+ s2(l0,√µw(l0),√µ)µ1/2, (5.1)

where s2 is analytic in its arguments for 0 � l0 � 3π/2p,
√
µw real and

bounded by a large constant, and
∣∣√µ∣∣�√µ0 for some µ0>0. In addition,

s2(0,0,
√
µ)=0. In Lemma 5.1 below, we prove that (5.1) has a unique C1

solution w(l), with 0� l�3π/2p, for 0<µ�µ0 and some µ0>0. We also
prove that |w(l)| and

∣∣w′(l)∣∣ are bounded by constants which are indepen-
dent of µ but which may depend upon µ0. Therefore, the stable manifold
of (4.1) is the graph of λ= u(l)+ v(l)µ1/2 +w(l)µ for 0 � l � 3π/2p and
0<µ�µ0, where u(l) and v(l) are defined by (4.7) and (4.10).

As discussed by Zehnder (1973), the functional equation (5.1) for w is
obviously a contraction for 0 � l�π/p− ε, ε > 0. But the construction of
homoclinic points requires the existence of w to be proved over a larger
interval as in the lemma below. The proof of the lemma uses a technique
found in Zehnder (1973). Another approach can be due to (Gelfreich and
Lazutkin, 2001).

LEMMA 5.1. For some µ0>0 and any µ∈ (0,µ0], there exists a unique C1

function w(l) such that (5.1) is satisfied for 0 � l0 � 3π/2p, with |w(l)| and∣∣w′(l)∣∣ bounded by constants for 0� l�3π/2p. The constants are independent
of µ but may depend upon µ0.

Proof. We will look for a continuous solution of (5.1) that satisfies
w(0)= 0, |exp(−Kl)w(l)|�C*, and Lip(exp(−Kl)w(l))�L*, where Lip(·)
is the Lipschitz constant. The choice of the positive constants K, C*, and
L* will be made later in the proof.

The function r(l, λ,
√
µ) from the first line of (4.1) and the func-

tion s2(l,
√
µw,
√
µ) from (5.1) determine the initial choice of µ0. Let

w*=µw and consider r*(l,w*,
√
µ) = r(l, u(l) + √µv(l) + w*,

√
µ). The

constant µ0>0 is chosen so that r*(l,w*,
√
µ) is analytic in its argu-

ments over the compact domain D where 0 � l � 3π/2p, w* is real and
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∣∣w*
∣∣ �C, and

∣∣√µ∣∣ �
∣∣√µ0

∣∣. By taking µ0 small enough, we can assume
C to be as large as we please. It is enough to assume C to be twice the
height of u(l) depicted in Figure 2, for example. Now let w*=√µw and
assume the choice of µ0 to be such that s2(l,w*,

√
µ) is also analytic in

its arguments in the compact domain D. We note r*(0,0,
√
µ)= s2(0,0,√

µ)=0.
The proof, which is organized into a number of steps, introduces many

constants. The constants that depend on the domain D will be denoted by
subscripting D. The constants that do not depend upon the domain D will
be denoted by subscripting C. The constants that depend upon D are typ-
ically upper bounds for the magnitudes of derivatives of r* and s2 over the
domain D. The constant µ0 may be made smaller by some of the steps in
the proof. But the bounds obtained using the domain D as specified above
will of course apply even if µ0 is made smaller. All constants introduced in
the proof are strictly positive.

1. For 0� l0 �3π/2p, by (4.1) l1 as a function of l0 is given by

l1= l0− c1λ0µ
1/2+ (c2λ

2
0+χ(l0))µ+ r(l0, λ0,

√
µ)µ3/2, (5.2)

where λ0= u(l0)+ v(l0)µ1/2+w(l0)µ. It is possible to think of (5.2) as
defining l1 in terms of l0 and w. By the assumption about φ(l) in Sec-
tion 3 and (4.7), it follows that u′(0) > 0 and that u(l) > 0 for 0< l �
3π/2p. As u(0) = 0, there must be a constant C1 such that c1u(l) �
C1l for 0 � l� 3π/2p. Both the µ and µ3/2 terms in (5.2) vanish when
l0 = 0 and w = 0. Further, |w(l0)|� Lip(w)l0. Thus the magnitudes of
the two terms can be upper bounded by

(
C2 + C3 Lip(w)µ

)
l0µ and(

D1+D2 Lip(w)µ)l0µ3/2, respectively. Therefore, we may assert l1 �
(
1−

(C1/2)µ1/2
)
l0 for 0� l�3π/2p and 0�µ�µ0, with µ0 made smaller if

necessary.
2. Let l*1 be obtained using (5.2) with l0 replaced by l*0 but with the same
w. Assume 0 � l0, l

*
0 � 3π/2p and let C4 =Lip(c1u(l)). Then, as in the

previous step, it follows that
∣∣l1− l*1∣∣� (

1+ 2C4µ
1/2

) ∣∣l0− l*0∣∣ for 0 �µ�
µ0 and µ0 sufficiently small.
An additional fact about

∣∣l1− l*1∣∣ will be needed. Assume 0 � l0, l
*
0 �

π/2p. By the mean value theorem, c1(u(l0) − u(l*0)) = c1u
′(l̄)(l0 − l*0),

and by the assumption about φ(l) in Section 3 and (4.6), u′(l) � C5

for 0 � l � π/2p. Therefore,
∣∣l1− l*1∣∣ �

(
1− (C5/2)µ1/2

) ∣∣l0− l*0∣∣ or sim-
ply

∣∣l1− l*1∣∣� ∣∣l0− l*0∣∣ in this situation, for 0�µ�µ0 and µ0 sufficiently
small.

3. From (5.1), we may obtain the following iteration:
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exp(−Kl0)wn+1(l0)=Fwn(l0) exp(−Kl1)wn(l1)

+exp(−Kl0)s2(l0,√µwn(l0),√µ)
1+ c1u′(l0)µ1/2

µ1/2, (5.3)

where l1 is obtained from l0 using (5.2) but with w replaced by wn,
where wn belongs to the class of functions for w specified at the begin-
ning of this proof, and where the contraction factor Fwn is given by

Fwn(l0)=
exp(K(l1− l0))
1+ c1u′(l0)µ1/2

.

The constant K will be chosen so as to make Fwn a sufficiently strong
contraction.
First consider 0� l0 �π/2p. Let the minimum value of c1u

′(l0) for l0 in
this range be C6. Since l1− l0 �−C1l0µ

1/2/2 by the first step, it follows
that Fwn(l0)�

(
1− (C6/2)µ1/2

)
for 0� l0 �π/2p, 0�µ�µ0, and µ0 suffi-

ciently small.
Next consider π/2p� l0 �3π/2p. Let the minimum value of c1u

′(l) for
l0 in this range be −C7. Then

Fwn(l0)�
exp(−KC1πµ

1/2/4p)
1−C7µ1/2

.

Choose K so that KC1π/4p�5C4+2C7 and conclude that Fwn(l0)� (1−
4C4µ

1/2) for π/2p� l0 �3π/2p, 0�µ�µ0, and µ0 sufficiently small.
4. By assumption, |exp(−Kl)wn(l)|�C* for 0� l�3π/2p. Using (5.3), we

may upper bound |exp(−Kl)wn+1(l)| by (1−C8µ
1/2)C*+D3µ

1/2, where
C8 =min(C6/2,4C4) and D3 is an upper bound of the coefficient of
µ1/2 in the last term of (5.3). By choosing C* �D3/C8, we assert that
|exp(−Kl)wn+1(l)| is also upper bounded by C*.

5. By assumption, Lip
(
exp(−Kl)wn(l)

)
�L*. Let

Q= exp(−Kl0)wn+1(l0)− exp(−Kl*0)wn+1(l
*
0),

where 0� l*0 � l0 �3π/2p. We will upper bound |Q|.
Using (5.3), both the terms of Q can be replaced by expressions
in terms of wn. The resulting expression for Q equals A1B1 − A2B2

— where A1 = Fwn(l0), B1 = exp(−kl1)wn(l1), A2 = Fwn(l*0), and B2 =
exp(−kl*1)wn(l*1) — plus another term which equals the difference of two
quantities times µ1/2. This other term will be denoted by Qrµ

1/2.
To bound |Q|, first consider the case l0 �π/2p. We write
|A1B1−A2B2|� |A1| |B1−B2| + |B2| |A1−A2|. By the third step and the
assumption about l0, |A1|�

(
1− 4C4µ

1/2
)
, and |B1−B2|�L∗

∣∣l1− l*1∣∣ �
L*

(
1+2C4µ

1/2
) ∣∣l0− l*0∣∣, where the last inequality follows from the second
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step above. Therefore, |A1(B1−B2)|�
(
1−C4µ

1/2
)
L*

∣∣l0− l*0∣∣. A simple
estimate shows that Lip(Fwn(l))�C9µ

1/2 for sufficiently small µ0. There-
fore, |B2(A1−A2)|�C*C9µ

1/2
∣∣l0− l*0∣∣. To upper bound Qr , note that the

coefficient of µ1/2 in (5.3) has a Lipschitz constant with respect to l0 that
can be bounded as D4+D5 Lip(wn)µ1/2 or D4+D5L

*µ1/2. Therefore

|Q|�
((

1−C4µ
1/2)L*+C*C9µ

1/2+D4µ
1/2+D5L

*µ
) ∣∣l0− l*0∣∣ .

If L* �2(C*C9+D4)/C4, then |Q|�L*
∣∣l0− l*0∣∣ for 0�µ�µ0 and µ0 suffi-

ciently small.
Consider the case 0 � l*0 � l0 �π/2p. In this case, the argument is iden-
tical to that given in the previous paragraph, except that the bound
on |A1| must be replaced by

(
1− (C6/2)µ1/2

)
form the third step, and

|B1−B2|� L*
∣∣l1− l*1∣∣ � L*

∣∣l0− l*0∣∣ from the additional fact in the sec-
ond step. In this case, if L* � 4(C*C9 +D4)/C6, then |Q|� L*

∣∣l0− l*0∣∣
for 0 � µ � µ0 and µ0 sufficiently small. The choice L* = 2(C*C9 +
D4)max(1/C4,2/C6) implies Lip

(
exp(−Kl)wn+1(l)

)
�L*.

6. If wn(0)= 0, then wn+1(0)= 0 since s2(0,0,
√
µ)= 0. This observation

together with the choice of C* and L* in the fourth and fifth steps
implies that wn+1 belongs to the same class of functions as wn. The
third step with some other estimates given above implies that the map
wn→ wn+1 given by (5.3) is a contraction for 0 < µ � µ0. We con-
clude that there is a unique continuous solution w of (5.1) such that
|exp(−Kl)w(l)|�C* and Lip

(
exp(−Kl)w(l))�L* for 0� l�3π/2p.

7. If w(l) is continuously differentiable its derivative can be easily bounded
in terms of K, C*, and L*. To complete the proof, it suffices to show
that w(l) is continuously differentiable. The standard stable manifold
theorem states that w(l) will be analytic in l in a neighborhood of l=0.
The stable manifold over the interval 0� l�3π/2p can be obtained by
repeated applying T −1

p to a local segment. Therefore w(l) must be con-
tinuously differentiable.

If φ(l0) defined by (3.2) satisfies the assumption in Section 3, the fixed
points of the map Tp given by (3.4) are hyperbolic for j even or for j odd.
One of these hyperbolic points was shifted to the origin in (4.1), and we
proved that the stable manifold of the origin is given by the graph of λ=
u(l)+v(l)µ1/2+O(µ) for 0� l�3π/2p. In the L-l plane, the stable mani-
fold is the graph of

L=
(p
q

)1/3
+ χ(jπ/p)

c1
µ+u(l− jπ/p)µ1/2+v(l− jπ/p)µ+O(µ3/2)

(5.4)
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for 0 � l− jπ/p+O(µ)� 3π/2p, where χ is given by (3.1), u is given by
(4.7), and v is given by (4.10).

The choice of the Poincaré section as either g=0 or g=π is yet to be
made. To facilitate the construction of homoclinic points, it is also useful
to pick j in (3.4) carefully. There are four cases.

• If p is odd, then g= 0 is chosen as the Poincaré section. If φ′(0) > 0,
then j =−1.
• If p is odd and φ′(0)<0, then j = (p−1).
• If p is even, first try g = 0 as the Poincaré section. If φ′(0) > 0, then
j =−1.
• If p is even and φ′(0)<0 with g=0 as the Poincaré section, choose the

Poincaré section g=π and j =−1.

THEOREM 5.2. Let p and q be relatively prime positive integers and let
p/q �=1/1. Assume that e lies in the interval [emin, emax] defined at the begin-
ning of Section 2. Let φ(l0) be defined by (3.2) with L = (p/q)1/3 and
G = (p/q)1/3(1 − e2). Assume that φ(l0) satisfies Assumption A of Sec-
tion 3, namely, for l0 ∈ [0,2π/p), φ(l0)= 0 only if l0 = 0 or l0 = π/p and
φ′(l0) �= 0 at those two points. Identify the Poincaré section for the flow of
the Hamiltonian (1.2) of the restricted three-body problem with a region of
the L-l plane by using H =−(p/q)−2/3/2− (p/q)1/3(1− e2) and by choos-
ing g = 0 or g = π as indicated above. Then the pth return map Tp given
by (2.2) has a homoclinic point on this Poincaré section at (lh,Lh), where
Lh= (p/q)1/3+u(π/p)µ1/2+O(µ) and lh= 0 or lh=π , for 0<µ�µ0 and
µ0 sufficiently small.

Proof. We give a proof for the second case listed above. The other cases
are treated similarly. In this case, p is odd, the Poincaré section is g= 0,
and j = (p− 1). By Lemma 5.1 the representation of the stable manifold
given by (5.4) is valid for 0� l− (p−1)π/p+O(µ)�3π/2p, and therefore
the stable manifold crosses the line l=π . By Lemma 2.1, this stable man-
ifold can be reflected about the line l=π to obtain an unstable manifold.
Thus we find a homoclinic point with l=π .

The homoclinic point constructed in Theorem 5.2 can be mapped using
the first return map T1 to obtain a ring of p homoclinic points with Lh>

(p/q)1/3. In Section 4, we constructed the stable manifold of the fixed point
of (4.2) at the origin over 0 � l0 � 3π/2p. A similar construction applies
over the interval −3π/2p� l0 � 0. That construction can be used to find
a ring of p homoclinic points with Lh<(p/q)

1/3.
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6. Verification of the Condition on φ(l0)

Equations (1.3) and (1.4) define � as a function of L, l,G,g. If the angles
l and g are replaced by −l and −g, � is unchanged. Therefore, � can be
Fourier expanded as

�=
∑
m,n

cmn cos(ml+ng), (6.1)

where m can be any non-negative integer and n can be any integer. The
coefficients cmn are functions of L and G. We use L= (p/q)1/3 and G=
(p/q)1/3(1− e2)1/2. The Fourier expansion is valid if 1+ r2− 2r cos(θ)> 0
and is therefore valid if e is sufficiently small for p/q �=1/1. The coefficients
cmn can be expanded as power series in e, and it is possible to determine
the precise radius of convergence of these series. For our purposes, it suf-
fices to note that all these series converge in some neighborhood of e= 0.
If � is differentiated with respect to L or G the condition e>0 has to be
imposed. However, the partial derivatives of � with respect to l and g and
� itself are analytic in a neighborhood of e=0.

LEMMA 6.1. If the Fourier coefficients cmn of (6.1) are expanded in powers
of e, the lowest power of e with a possibly nonzero coefficient is e|m−n|.

Proof. The quantity � can be expanded as
∑∞

m=0 cm(r) cos(mθ). First
consider e= 0. Then r = (p/q)1/3 and θ = ν+ g= l+ g. Therefore the only
nonzero terms in the expansion (6.1) occur when m= n. If e �= 0, then r

depends upon l and ν is no longer equal to l. This lemma follows when
the dependence of r and ν on l is taken into account. The way to do this
can be found on pages 44 and 170 of (Plummer, 1918) or on page 35 of
(Morbidelli, 2002).

By (3.2), φ(l0)=
∫ 2πp

0 �l dt , where �l must be evaluated at l= l0+qt/p,
g=g0− t , L= (p/q)1/3, and G= (p/q)1/3(1−e2)1/2; g0=0 or g0=π depend-
ing upon the choice of the Poincaré section. Using (6.1), we get

φ(l0)=−2πp2
∞∑
m=1

mcmp,mq sin(kpl0+kqg0).

Let cp,q = c*(p, q)e|p−q| +O(e|p−q|+1). Then by Lemma 6.1, φ(l0)=±2πp2

c*(p, q) sin(pl0)e|p−q| + · · · . Thus the assumption about φ(l0) in Section 3
and in Theorem 5.2 will be verified for e > 0 and e small if we can show
that c*(p, q) �= 0. An expression for c*(p, q) can be obtained from the dis-
cussion of the quantity
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C(e,p, q)=−6πq4/3

p1/3

∫ 2πp

0
�ll dt

given in (Viswanath, 2005). If p<q, for example,

c*(p, q)=−(−1)q−pq2/3

6.2q−pπp8/3

(q−p∑
k=0

(
D+q
k

)
pq−p−k

(q−p−k)!
)
(αbq(α))

evaluated at α= (p/q)1/3; above D stands for the differential operator α d
dα

and bn(α) are defined by the expansion

(1+α2−2α cos θ)= 1
2

∞∑
n=−∞

bn(α) exp(inθ).

The bn(α) are hypergeometric functions whose series converge for |α|< 1.
The value of c*(p, q) can be obtained using the expression given above or
by other means.

In Figure 3, we have plotted φ(l) with q/p=3/1. From that figure, it is
clear that the assumption about φ(l0) is valid for even large values of e.

0

−2

−3

 

0

1

2

3

2π

−1

Figure 3. Plots of φ(l) against l with q/p=3/1 and with e ranging from 0.1 to 0.8.
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7. Resonance Boundaries

Discussion of the averaged circular restricted problem and its use in sketch-
ing the boundaries of q/p Kirkwood gaps in the a-e plane can be found in
(Dermott and Murray, 1983; Henrard and Lemaı̂tre, 1983; Lemaı̂tre, 1984;
Yoshikawa, 1990 and 1991; Morbidelli, 2002). The basic procedure is to aver-
age the Hamiltonian (1.2) by retaining only the terms in the Fourier expan-
sion (6.1) of � with ml+ng= k(pl− qg) for some integer k. These are the
resonant terms. In some instances such as in (Yoshikawa, 1990 and 1991),
certain additional terms are added to model the effect of the eccentricity of
Jupiter and the secular variation of its elements.

This averaged Hamiltonian has 1 degree of freedom. Its fixed points
and separatrices are used to approximate the boundaries of resonance. For
small values of the asteroid eccentricity e, some of the nonresonant terms
dropped during averaging have larger coefficients than any of the terms
retained during averaging. To some extent the influence of the nonresonant
terms is captured by the formal change of variables used to average the
Hamiltonian, but this change of variables is often not taken into account.
Even if it is, the averaging will not be valid at small values of e.

The return map (3.1) corresponds to the unaveraged circular restricted
problem. Only the resonant terms of � contribute to φ(l) defined by
(3.2), but the nonresonant terms contribute to both ψ(l) and χ(l). As e
approaches 0, the magnitude of φ(l) becomes much smaller than that of
the other two functions in (3.2). Thus for fixed µ and small e the periodic
points (3.4) will not exist.

These periodic points, when they exist, correspond to the fixed points
of the averaged Hamiltonian. The separatrices of the averaged Hamiltonian
correspond to the stable manifolds discussed in Sections 4 and 5. If for cer-
tain values of µ, e,p, q the unaveraged circular restricted problem does not
have the periodic points given by (3.4), the fixed points and separatrices
of the averaged Hamiltonian must be treated as artifacts of the averaging
procedure.

In Table I, we have given the minimum values of e required for the peri-
odic points (3.4) to exist for some of the commonly studied resonances

TABLE I

This table gives the values of e for certain q/p below which the peri-
odic points of Section 3 fail to exist for µ=10−3. Boundaries of res-
onance obtained using the averaged circular restricted problem will
not be valid below these values.

q/p 3/2 2/1 7/3 5/2 3/1 4/1
e 0.10 0.13 0.08 0.08 0.07 0.09
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in the asteroid belt. The value of µ used is close to that of Jupiter. The
boundaries of resonance obtained by averaging can be valid only above
these values of the asteroid eccentricity.

8. Asymmetric Librations

If the assumption about φ(l) in Section 3 holds, the circular restricted
problem has two resonant periodic solutions for µ small. One of these is
of elliptic type and therefore there will be solutions that librate around the
periodic points that correspond to it in the Poincaré section given by the
l-L plane. These are symmetric librations.

As shown in Figure 4, the assumption about φ(l) in Section 3 can fail
for some exterior resonances as e increases. In both the plots shown in
that figure, the periodic point with l ≈ π/p is initially of elliptic type as
the slope of φ(l) is positive, and when e increases, it undergoes a pitch-
fork bifurcation and becomes a point of hyperbolic type. Elliptic points
appear on the Poincaré section at values of l that are not O(µ) close to
any integral multiple of π/p. The librations around these points are termed
asymmetric.

A study of asymmetric librations in the exterior resonances using aver-
aged equations can be found in (Beaugé, 1994). In Table II, we have listed
values of e above which asymmetric librations occur in the unaveraged
equations for some exterior resonances. If the averaged equations imply the
existence of asymmetric librations below these values of e, those must be
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Figure 4. The two figures show plots of φ(l) vs. l for l ∈ [0,2π/p) for q/p= 1/3 and
q/p=1/7, respectively. The values of e are 0.08, 0.12 and 0.16 in the left plot, and 0.30,
0.36 and 0.40 in the right plot.



234 D. VISWANATH

TABLE II

This table gives the values of e above which asymmetric librations exist in
the unaveraged circular restricted problem for certain exterior resonances.

q/p 1/7 1/6 1/5 1/4 1/3 1/2
e 0.365900 0.320133 0.265532 0.199749 0.121094 0.036083

considered artifacts of averaging. However, if e exceeds these values, asym-
metric librations will be found for µ small enough.
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