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Summary. In plane Couette flow, the incompressible fluid between two plane par-
allel walls is driven by the motion of those walls. The laminar solution, in which
the streamwise velocity varies linearly in the wall-normal direction, is known to be
linearly stable at all Reynolds numbers (Re). Yet, in both experiments and compu-
tations, turbulence is observed for Re � 360.

In this article, we show that for certain threshold perturbations of the laminar
flow, the flow approaches either steady or traveling wave solutions. These solutions
exhibit some aspects of turbulence but are not fully turbulent even at Re = 4,000.
However, these solutions are linearly unstable and flows that evolve along their un-
stable directions become fully turbulent. The solution approached by a threshold
perturbation could depend upon the nature of the perturbation. Surprisingly, the
positive eigenvalue that corresponds to one family of solutions decreases in magni-
tude with increasing Re, with the rate of decrease given by Reα with α ≈ −0.46.

1 Introduction

1.1 Transition to Turbulence

The classical problem of transition to turbulence in fluids has not been fully
solved in spite of attempts spread over more than a century. Transition to
turbulence manifests itself in a simple and compelling way in experiments.
For instance, in the pipe flow experiment of Reynolds (see [1]), a dye injected
at the mouth of the pipe extended in “a beautiful straight line through the
tube” at low velocities or low Reynolds numbers (Re). The line would shift
about at higher velocities, and at yet higher velocities the color band would
mix up with the surrounding fluid all at once at some point down the tube.

A wealth of evidence shows that the incompressible Navier–Stokes equa-
tion gives a good description of fluid turbulence. Therefore one ought to be
able to understand the transition to turbulence using solutions of the Navier–
Stokes equation. However, the nature of the solutions of the Navier–Stokes
equation is poorly understood. Thus the problem of transition to turbulence
is fascinating both physically and mathematically.
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The focus of this paper is on plane Couette flow. In plane Couette flow, the
fluid is driven by two plane parallel walls. If the fluid is driven hard enough, the
flow becomes turbulent. Such wall driven turbulence occurs in many practical
situations such as near the surface of moving vehicles and is technologically
important.

The two parallel walls are assumed to be at y = ±1. The walls move in the
x or streamwise direction with velocities equal to ±1. The z direction is called
the spanwise direction. The Reynolds number is a dimensionless constant
obtained as Re = UL/ν, where U is half the difference of the wall velocities,
L is half the separation between the walls, and ν is the viscosity of the fluid.
The velocity of the fluid is denoted by u = (u, v, w), where u, v, w are the
streamwise, wall-normal, and spanwise components.

For the laminar solution, v = w = 0 and u = y. The laminar solution is
linearly stable for all Re. As shown by Kreiss et al. [7], perturbations to the
laminar solution that are bounded in amplitude by O(Re−21/4) decay back
to the laminar solution. However, in experiments and in computations, tur-
bulent spots are observed around Re = 360 [2]. The transition to turbulence
in such experiments must surely be because of the finite amplitude of the dis-
turbances. By a threshold disturbance, we refer to a disturbance that would
lead to transition if it were slightly amplified but which would relaminarize if
slightly attenuated. The concept of the threshold for transition to turbulence
was highlighted by Trefethen and others [16]. The amplitude of the threshold
disturbance depends upon the type of the disturbance. It is believed to scale
with Re at a rate given by Reα for some α <= −1.

Our main purpose is to explain how certain finite amplitude disturbances
of the laminar solution lead to turbulence. The dynamical picture that will
be developed in this paper is illustrated in Fig. 1. Historically, the laminar
solution itself has been the focus of attempts to understand mechanisms for
transition. Our focus however will be on a different solution that is represented
as an empty oval in Fig. 1.
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Fig. 1. Schematic sketch of the dynamical picture of transition to turbulence that
is developed in this paper. The solid oval stands for the laminar solution, and the
empty oval stands for a steady or traveling wave solution
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Solutions that could correspond to the empty oval in Fig. 1 will be called
lower-branch solutions [11, 19]. A solution at a certain value of Re can be
continued by increasing a carefully chosen parameter. When this parameter is
increased, Re first decreases and begins to increase after a bifurcation point
and we end up with an “upper branch solution” at the original value of Re.
The fact that a continuation procedure can lead to an upper-branch solu-
tion appears to have no significance for the dynamics at a fixed value of Re,
however.

Depending upon the type of disturbance, the lower-branch solution could
either be a steady solution or a traveling wave. Those solutions are not laminar
in nature. Neither are they fully turbulent even at high Re. Unlike the lami-
nar solution, these solutions are linearly unstable. The lower-branch solutions
remain at an O(1) distance from the laminar solution, while the threshold
amplitudes decrease with Re as indicated already. Therefore the threshold
disturbances are too tiny to perturb the laminar solution directly onto a
lower-branch solution. We will show, however, that some threshold distur-
bances perturb the laminar solution to a point on the stable manifold of a
lower-branch solution (point P in Fig. 1). A slightly larger disturbance brings
the flow close to the lower-branch solution, after which the flow follows a
branch of its unstable manifold and becomes fully turbulent.

For certain types of disturbances, the perturbed laminar solution does not
approach a lower branch solution. Thus the dynamical picture of Fig. 1 is not
valid for those disturbances. Instead it flows towards an edge state [15]. We
give a brief discussion of the nature of the edge states in Sect. 4.

1.2 Connections to Earlier Research

The dynamical picture presented in Fig. 1 is related directly and indirectly to
much earlier research. Basic results from hydrodynamic stability show that
some eigenmodes that correspond to the least stable eigenvalue of the lin-
earization around the laminar solution do not depend upon the spanwise or
z direction. This may lead one to expect that disturbances that trigger tran-
sition to turbulence are 2-dimensional. That expectation is not correct, how-
ever. As shown by Orszag and Kells [13], spanwise variation is an essential
feature of disturbances that trigger transition to turbulence. Accordingly, all
the disturbances considered in this paper are 3-dimensional.

Kreiss et al. [7] and Lundbladh et al. [9] investigated disturbances that are
non-normal pseudomodes of the linearization of the laminar solution. Since
the laminar solution is linearly stable, a slight perturbation along an eigen-
mode will simply decay back to the laminar solution at a predictable rate.
The pseudomodes are chosen to maximize transient growth of the solution of
the linearized equation, which is a consequence of the non-normality of the
linearization. Such disturbances lead to transition with quite small amplitudes
and will be considered again in this paper. It must be noted, however, that
any consideration based on the linearization alone can only be valid in a small
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Fig. 2. The plot above shows the secondary instability in a transition computation
at Re = 2,000

region around the laminar solution. The dynamics of transition to turbulence,
as sketched in Fig. 1, involves an approach towards a lower-branch solution
that lies at an O(1) distance from the laminar solution. It is therefore neces-
sary to work with the fully nonlinear Navier–Stokes equation to explicate the
dynamics of transition to turbulence.

Figure 2 shows the variation of the disturbance energy with time for a
disturbance that leads to transition. We observe that the disturbance energy
increases smoothly initially and is then followed by a spike. The spike is in
turn followed by turbulence. The spike corresponds to a secondary instability,
as noted by Kreiss et al. [7]. In fact, the so-called secondary instability is just
the linear instability of a lower-branch solution as will become clear.

Partly motivated by the secondary instability, there was a search for non-
linear steady solutions related to transition as reviewed in [3]. Early success in
this effort was due to Nagata [11, 12] who computed steady solutions of plane
Couette flow in the interval 125 ≤ Re ≤ 300. Waleffe [18, 19, 20] introduced a
more flexible method for computing such solutions, and like Nagata, argued
that such solutions could be related to transition to turbulence. The numer-
ical method we use was introduced in [17]. It uses a combination of Krylov
space methods and the locally optimally constrained hook step to achieve far
better resolution as shown by [4, 17] and this paper.

The computations in [7, 9] imply that threshold amplitudes scale as Reα

for α < −1. The value of α appears to depend upon the type of perturba-
tion. Our focus is not on determining the scaling of the threshold amplitudes.
Nevertheless, we will discuss numerical difficulties that beset determination
of threshold amplitudes.



The Dynamics of Transition to Turbulence in Plane Couette Flow 113

Measuring threshold amplitudes poses experimental challenges as well and
it is not always clear from experiments if the thresholds have a simple power
scaling with Re. One difficulty is that the turbulent states can be short lived.
Schmiegel and Eckhardt [14] have connected the lifetime of turbulence to the
possibility that turbulent dynamics in the transition regime is characterized
by a chaotic repeller and not a chaotic attractor.

1.3 Connections to Recent Research

Wang et al. [21] have taken steps towards an asymptotic theory of the lower
branch solutions and carried their computation beyond Re = 50, 000. They
connect the asymptotics to scalings of the threshold for transition to turbu-
lence. The lower branch states occur as solutions to equations that use periodic
boundary conditions. Because such boundary conditions cannot be realized in
laboratory setups, the solutions are best thought of as waves. Thus it is per-
tinent to consider their stability with respect to subharmonic disturbances as
in [21]. That paper also suggests that lower branch solutions might be of use
for control. A somewhat different suggestion related to control can be found
in [5].

Not all disturbances follow the dynamical picture of Fig. 1 as already noted.
For the third type of disturbance considered in Sect. 4, the laminar solution
perturbed by the threshold disturbance evolves towards a state that looks
almost like an invariant object of the underlying differential equation. Those
objects have been termed edge states by Schnieder et al. [15]. Lagha et al. [8]
make the important point that the dynamical picture of Fig. 1 can be valid
for typical disturbances only if the lower-branch solution has a single unstable
eigenvalue.

Near the threshold for the third type of disturbance, it appears as if the
disturbed state evolves and approaches a traveling wave. Indeed, a crude or
under-resolved computation could easily mistake that appearance for a true
solution. When we attempted to refine that near-solution using the numerical
method reviewed in Sect. 3, the numerical method converged to a traveling
wave solution. However, that traveling wave has two unstable eigenvalues and
the flow near the threshold does not come as close to that traveling wave as
the dynamical picture of Fig. 1 would require.

Visualizing the dynamics in state space is fundamental to the approach to
transition to turbulence sketched in this paper and in the articles discussed
above. Yet there has so far been no way to obtain revealing visualizations
of state space dynamics. Gibson et al. [4] have recently produced revealing
visualizations of the state space of turbulent flows. For instance, one of their
figures shows a messy-looking turbulent trajectory cleanly trapped by the
unstable manifolds of certain equilibrium solutions.

Section 2 reviews some basic aspects of plane Couette flow. The numerical
method used to flesh out the dynamical picture of Fig. 1 is given in Sect. 3. In
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Sect. 4, we consider three different types of disturbances. The lower-branch so-
lutions (empty oval of Fig. 1) that correspond to the first two types are steady
solutions. For a given Re, the solutions that correspond to these two types are
identical modulo certain symmetries of plane Couette flow. In Sect. 5, we con-
sider some qualitative aspects of the solutions reported in Sect. 4. A surprising
finding is that these these solutions are less unstable for larger Re. The top
eigenvalue of these solutions is real and positive. For one family of solutions,
the top eigenvalue appears to decrease at the rate Reα for α ≈ −0.46.

In the concluding Sect. 6, we give additional context for this paper from
two points of view. The first point of view is mainly computational and has
to do with reduced dimension methods. In this paper, we have taken care to
use adequate spatial resolution to ensure that the computed solutions are true
solutions of the Navier–Stokes equation. We recognize, however, that resolving
all scales may prove computationally infeasible in some practical situations.
We argue that transition to turbulence computations can be useful in gaging
the possibilities and limitations of methods that do not resolve all scales.
Secondly, we briefly discuss the connection of transition computations with
transition experiments.

2 Some Aspects of Plane Couette Flow

The Navier–Stokes equation ∂u/∂t + (u.∇)u = −(1/ρ)∇p + (1/Re)�u de-
scribes the motion of incompressible fluids. The velocity field u satisfies the
incompressible constraint ∇.u = 0. For plane Couette flow the boundary
conditions are u = (±1, 0, 0) at the walls, which are at y = ±1. To render
the computational domain finite, we impose periodic boundary conditions in
the x and z directions, with periods 2πΛx and 2πΛz, respectively. To enable
comparison with [9], we use Λx = 1.0 and Λz = 0.5 throughout this paper.

Certain basic quantities are useful for forming a general idea of the nature
of a velocity field of plane Couette flow. The first of these is the rate of energy
dissipation per unit volume for plane Couette flow, which is given by

D =
1

8π2ΛxΛz

∫ 2πΛz

0

∫ +1

−1

∫ 2πΛx

0

|∇u|2 + |∇v|2 + |∇w|2 dx dy dz. (1)

The rate of energy input per unit volume is given by

I =
1

8π2ΛxΛz

∫ 2πΛx

0

∫ 2πΛz

0

∂u

∂y

∣∣∣
y=1

+
∂u

∂y

∣∣∣
y=−1

dx dz. (2)

For the laminar solution (u, v, w) = (y, 0, 0), both D and I are normalized
to evaluate to 1. Expressions such as (1) and (2) are derived using formal
manipulations. The derivations would be mathematically valid if the velocity
field u were assumed to be sufficiently smooth. Although such smoothness
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properties of solutions of the Navier–Stokes are yet to be proved, numerical
solutions possess the requisite smoothness. Even solutions in the turbulent
regime appear to be real analytic in the time and space variables, which is
why spectral methods have been so successful in turbulence computations.

In the long run, on physical grounds, we expect the time averages of D
and I to be equal because the energy dissipated through viscosity must be
input at the walls. For steady solutions and traveling waves, the values of D
and I must be equal.

Another useful quantity is the disturbance energy. The disturbance energy
of (u, v, w) is obtained by integrating (u−y)2+v2+w2 over the computational
box. This quantity has already been used in Fig. 2. The disturbance energy is
a measure of the distance from the laminar solution.

Two discrete symmetries of the Navier–Stokes equation for plane Couette
flow will enter the discussion later. The shift-reflection transformation of the
velocity field is given by

S1u =

⎛⎝ u
v
−w

⎞⎠(x + πΛx, y,−z

)
, (3)

and the shift-rotation transformation of the velocity field is given by

S2u =

⎛⎝−u
−v
w

⎞⎠(−x + πΛx,−y, z + πΛz

)
. (4)

Plane Couette flow is unchanged under both these transformations. Thus if
a single velocity field along a trajectory of plane Couette flow satisfies either
symmetry, all points along the trajectory must have the same symmetry. How-
ever, velocity fields that lie on the stable and unstable manifolds of symmetric
periodic or relative periodic solutions need not be symmetric.

3 Numerical Method

The Navier–Stokes equation in the standard form given in Sect. 2 cannot be
viewed as a dynamical system because the velocity field u must satisfy the in-
compressibility condition and because there is no equation for evolving the
pressure p. It can be recast as a dynamical system, however, by using the y
components of u and ∇×u, which is the vorticity field. If the resulting system
is discretized in space using M + 1 Chebyshev points in the y direction, and
2L and 2N Fourier points in the x and z directions, respectively, the number
of degrees of freedom of the spatially discretized system is given by

2(M − 1) + (2M − 4)((2N − 1)(2L − 1) − 1) (1)
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Fig. 3. The plot above shows the variation of D defined by (1) for a disturbance
slightly above the threshold and for a disturbance slightly below the threshold

as shown in [17]. We do not use a truncation strategy to discard modes and
we employ dealiasing in the directions parallel to the wall.

Given a form of the disturbance P , the threshold for transition is obtained
by integrating the disturbed velocity (y, 0, 0)+ εP in time for different ε [7]. If
ε is greater than the threshold value, the flow will spike and become turbulent
as evident from Figs. 2 and 3. If ε is below the threshold value, the flow will
relaminarize. As indicated by Figs. 2 and 3, we may graph either disturbance
energy or D to examine a value of ε. We may also graph I, which is defined
by (2), against time.

The accurate determination of thresholds is beset by numerical difficul-
ties. To begin with, suppose that we are able to integrate the Navier–Stokes
equation for plane Couette flow exactly. Then as implied by the dynamical
picture in Fig. 1, a disturbance of the laminar solution that is on the threshold
will fall into a lower-branch solution, and it will take infinite time to do so.
However, computations for determining the threshold, such as that shown in
Fig. 2, can only be over a finite interval of time. Thus the finiteness of the
time of integration is a source of error in determining thresholds. Two other
sources of error are spatial discretization and time discretization.

An accurate determination of the threshold will need to estimate and bal-
ance these three sources of error carefully. In our computations, we determine
the thresholds with only about two digits of accuracy. That modest level of
accuracy is sufficient for our purposes. In Tables 1 and 3, the thresholds are
reported using disturbance energy per unit volume.

Once the threshold has been determined, we need to compute a steady
solution or a traveling wave to complete the dynamical picture of Fig. 1. The
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Table 1. Data for disturbances of the form (1) with unsymmetric noise and for
steady solutions that correspond to the empty oval in Fig. 1

Label Re D/I λmax Reτ T Threshold

B1 500 1.3920 0.04326 53 150 2.46e − 4
B2 1,000 1.3486 0.03294 73 300 5.73e − 5
B3 2, 000 1.3285 0.02413 103 500 1.36e − 5
B4 4,000 1.3210 0.01732 145 1, 000 3.30e − 6

The steady solutions are labeled B1 through B4. D and I, which are defined by
(1) and (2), correspond to those steady solutions. The next two columns give the
eigenvalue with the maximum real part and the frictional Reynolds number for those
solutions. T is the time interval used to determine the threshold disturbance and
the threshold is reported using disturbance energy per unit volume

initial guess for that lower-branch solution is produced by perturbing the lam-
inar solution by adding the numerically determined threshold disturbance and
integrating the perturbed point over the time interval used for determining
the threshold (this time interval is 500 in Fig. 2 and 300 in Fig. 3).

That initial guess is fed into the method described in [17] to find a lower-
branch solution with good numerical accuracy. That method finds solutions
by solving Newton’s equations, but the equations are set up and solved in a
non-standard way. Suppose that the spatially discretized equation for plane
Couette flow is written as ẋ = f(x), where the dimension of x is given by
(1). To find a steady solution, for instance, it is natural to solve f(x) = 0
after supplementing that equation by some conditions that correspond to the
symmetries (3) and (4). However that is not the way we proceed. We solve for
a fixed point of the time t map x(t;x0), for a fixed value of t, after accounting
for the symmetries. The Newton equations are solved using GMRES. The
method does not always compute the full Newton step, however. Instead, the
method finds the ideal trust region step within a Krylov subspace as described
in [17].

This method can easily handle more than 105 degrees of freedom, and thus
makes it possible to carry out calculations with good spatial resolution. The
reason for setting up the Newton equations in the peculiar way described in
the previous paragraph has to do with the convergence properties of GMRES.
The matrix that arises in solving the Newton equations approximately has the
form I −∂x(t;x0)/∂x0, where I is the identity. Because of viscous damping of
high wavenumbers, many of the eigenvalues of that matrix will be close to 1,
thus facilitating convergence of GMRES. We may expect the convergence to
deteriorate as Re increases, because viscous damping of high wavenumbers is
no longer so pronounced, and that is indeed the case. Nevertheless, we were
able to go up to Re = 4,000, and we believe that even higher values of Re can
be reached.


