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 The critical layer in pipe flow at high
 Reynolds number

 By D. Viswanath*

 Mathematics Department, University of Michigan, Ann Arbor, MI 48109, USA

 We report the computation of a family of travelling wave solutions of pipe flow up to
 #e=75 000. As in all lower branch solutions, streaks and rolls feature prominently in
 these solutions. For large Re, these solutions develop a critical layer away from the wall.
 Although the solutions are linearly unstable, the two unstable eigenvalues approach 0 as
 i2e- ► oo at rates given by Re~0A1 and i?e~0"87; surprisingly, the solutions become more
 stable as the flow becomes less viscous. The formation of the critical layer and other
 aspects of the Re- » oo limit could be universal to lower branch solutions of shear flows.
 We give implementation details of the GMRES-hookstep and Arnoldi iterations used
 for computing these solutions and their spectra, while pointing out the new aspects of
 our method.

 Keywords: pipe flow; travelling waves; critical layer; GMRES hookstep

 1. Introduction

 In this paper, we look at a lower branch travelling wave solution in the i2e- ► oo
 limit. The travelling wave that we chose to compute has an asymmetric
 arrangement of streaks, with two fast streaks located preferentially on one side
 of the pipe. Schneider et al (2007Ò) found that states with such an asymmetry
 arise in direct numerical simulations of transition to turbulence. Pringle &
 Kerswell (2007) computed such a travelling wave using a bifurcation point of a
 mirror-symmetric family around i?e=1000. Our computations of the same
 travelling wave go up to Re=75 000 and help elucidate aspects of the Re-+ oo
 asymptotic limit.

 The fast streaks near the wall are the most prominent and stable structures in
 lower branch travelling wave solutions of pipe flow (Faisst & Eckhardt 2003;
 Wedin & Kerswell 2004). The fast streaks are regions in a circular section where
 the streamwise velocity significantly exceeds the laminar value. The fast and
 slow streaks can form different patterns. The pattern that characterizes some of
 the computed solutions is an invariance with respect to rotation about the pipe
 axis by 27r/ra, where ra=2, 3, 4, .... The rolls, which correspond to positive
 and negative streamwise vorticity, form complementary patterns. Although the
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 562 D. Viswanath

 Figure 1. (a (Äe=3000)) Contour plot of the z-averaged streamwise velocity with the laminar flow
 subtracted. The contour levels are equispaced in (-0.18, 0.16), with the brighter regions on the left
 of the pipe being the high-speed streaks. (6 (Äe=3000)) The rolls are shown using a quiver plot of
 the ¿-averaged radial and azimuthal velocities. The maximum magnitude of a velocity vector in
 the quiver plot is 0.0065.

 computed solutions use periodic boundary condition in the axial direction and
 very short pipes, they do pick structures that transitional pipe flow tends to
 develop (Hof et al 2004; Willis & Kerswell 2008). The data analysis techniques
 used to extract these patterns are set up to pick patterns with rotational
 symmetry (Eckhardt et al 2007; Schneider et al 2007a; Willis & Kerswell 2008).
 The streak pattern of the asymmetric travelling wave does not have any ra-fold
 rotational symmetry as evident from figure 1.
 Wang et al (2007; also see Waleffe 2003) showed that the Re-+ oo limit of
 a symmetric lower branch solution of plane Couette flow is characterized by a
 number of features. The streaks remain 0(1), but the magnitude of the rolls and
 of the fundamental and higher streamwise modes decrease algebraically with Re.
 The scaling exponents for the rolls and the fundamental streamwise mode of
 the asymmetric travelling wave are -1.08 and -0.97, which may be compared
 with -1 and -0.9 for the symmetric solution of plane Couette flow. Higher
 streamwise modes decrease even faster.

 The most important consequence of these scalings is the development of a
 critical layer away from the circular boundary of the pipe. The theory of Wang
 et al (2007) successfully identifies the critical curve as given by Wo(r, 0) = cz,
 where w0 is the ^-averaged streamwise velocity and cz is the wave speed in the z
 direction. The fundamental component of the radial velocity is concentrated in
 a region around the critical curve and drops off to zero away from that region.
 We find that the size of the region decreases at the rate i?e~0'32 as Re increases,
 which compares well with the rate of Re~1^ derived by Wang et al (2007) using
 formal arguments. The exponents for the rates at which the sizes of the regions
 decrease with Re are different for the fundamental mode of the streamwise

 velocity and the mean streamwise vorticity. These are found to be -0.26 and
 - 0.23 in §4. These exponents present a challenge to asymptotic theory.

 At the end of §4, we suggest that it might be useful to calculate the analogue
 of the critical curve for puffs. Puffs have a well-defined extent and travel down
 the pipe with a well-defined speed. The analogue of the critical curve would be

 Phü. Trans. R. Soc. A (2009)
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 The critical layer in pipe flow 563

 Table 1. The column headings are explained in the text. (The eigenvalues A¿ were not computed at
 Äe=75 000.)

 Re L M N T cz I = D KE ^ A2

 1500 81 18 16 10 0.7339 1.1051 0.9772 0.0463 0.0149

 10 000 101 24 16 10 0.8236 1.0657 0.9781 0.0189 0.0022

 75 000 151 24 4 15 0.8715 1.0460 0.9829

 a surface, embedded inside the puff, on all points of which the streamwise
 velocity equals the speed of the puff. Such a surface could be helpful in
 elucidating the structure of the puff.
 The Newton equations for solving a nonlinear system can sometimes be solved

 efficiently in a Krylov subspace (Brown & Saad 1990; Sanchez et al 2004). We
 point out two new aspects of the extensions to the Newton-Krylov procedure
 introduced by Viswanath (2007). The first novelty is the formulation of the
 Newton equations. In the case of pipe flow, the formulation allows for translation
 of the velocity field along the pipe axis or rotation around the pipe axis. The
 second novelty is the GMRES-hookstep combination explained in §5.
 For large i?e, the lower branch asymmetric travelling wave looks very different

 from both the laminar solution of pipe flow and the sort of turbulence that is
 typically observed at such fie. Unlike the laminar solution, the travelling wave
 develops streaks, for instance. Unlike fully developed turbulence, there is no
 rapid decay of correlations. The form of the asymmetric travelling wave is nearly
 independent of the z direction at high Re. Thus, one may ask if the lower branch
 solutions are relevant for high Re turbulence and if they can be realized in the
 laboratory. The answer to the first question is probably no. The second question
 is a difficult challenge to experiment. That the computations are restricted to
 small pipes is less of an issue for high Re owing to the scaling of the streamwise
 modes mentioned above and discussed in §3.

 2. Preliminary data

 The asymmetric travelling waves were computed at a number of values of Re in
 the range 1500 <Re< 75 000. Some basic data are summarized in table 1. The
 choice of units and boundary conditions follows that of Faisst & Eckhardt (2004).
 The pipe radius is chosen as the unit of length. The unit of velocity is equal to the
 centreline velocity of the Hagen-Poiseuille laminar flow. The Reynolds number is
 based on the pipe radius, centreline velocity of the Hagen-Poiseuille laminar flow
 and the kinematic viscosity. The boundary condition is no slip at the pipe wall
 and periodic in the axial direction. The mass flux of the flow, which is fixed at
 0.5, drives the flow. The pipe length or period is 2irA. We took ^4 = 1/1.44, but
 this choice has no special significance in the Re - ► oo limit.

 The quantities L, M, N listed in table 1 parametrize the spatial grid used to
 represent the velocity field. The spatial coordinate system r, 0, z was cylindrical,
 with u, v, w being the three components of velocity, respectively. The three

 Phil Trans. R. Soc. A (2009)
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 564 D. Viswanath

 components of vorticity are denoted as Ç, 77 and Ç. The radial component of the
 velocity field u is represented as

 u{r,d,z) = ^2 un,m(r)exp(im0)exp(inz/A), (2.1)
 -M<m<M

 -N<n<N

 with the discretization using 2M and 2N Fourier points along 6 and 2,
 respectively. The coefficients ûn?m(r) are even in r for m odd, and odd for m
 even. Each ûnm is represented using its values at the Chebyshev points
 r=cos(7ti/L), 0<i<(L-l)/2. Note that L is always odd. The vorticity compo-
 nent f has an analogous representation. As the velocity field has zero divergence,
 the entire velocity field can be recovered using u, Ç, v and w, where v(r) and w(r)
 are averages of v and w with respect to both 6 and & After setting the modes with
 |m| = Mor|n| = ATtozero,weareleftwith(L--2) + ((2^--l)(2M-l)-l)(L--3)/2
 independent degrees of freedom.

 In terms of the modes, the boundary conditions become ûn,m(l) = f n,m(l) = 0
 and ((dûnm(l))/dr) = 0. The constant mass flux condition implies a pressure
 gradient along z that can change from instant to instant for an evolving flow.

 The wave speed of the travelling wave is given by cz. To find each travelling
 wave, one solves for a velocity field Uq such that u(r, 0, z> t) = uo(ri 0, z- czt)
 is a solution of the Navier-Stokes equation. The artificial parameter T,
 which occurs in table 1, arises in the solution procedure and its meaning is
 explained in §5.

 The rate of energy dissipation per unit mass is given by 2D/Re, where D is the
 integral of

 over the volume of the pipe. The rate of energy input per unit mass is given by
 21/ Re, where

 with p being pressure and with the integral being over the volume of the pipe.
 The friction coefficient (Wedin & Kerswell 2004) is the same as /, but with a
 different normalization. D and / are normalized to be 1 for the laminar flow.

 From table 1, we see that D=Ifor all the travelling waves in agreement with
 energy conservation. Kinetic energy, denoted KE in table 1, is also normalized to
 evaluate to 1 for laminar flow.

 The Navier-Stokes equation for pipe flow, with periodic boundary along z,
 is unchanged by the shift-reflect transformation. The shift-reflect transformation
 reflects the velocity field about the plane 0 = 0 or 0 = tt, and shifts it along z
 by half a pipe length. All the asymmetric travelling waves have only two
 unstable eigenvalues in the shift-reflection symmetric subspace. Those are
 given as Ai and X2 in table 1. Section 6 has a discussion of the spectrum of the
 travelling waves.

 Phil. Trans. R. Soc. A (2009)
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 Figure 2. (a) The magnitude of a mode is measured using the square root of the KE. The index n is
 used to pick modes from Fourier expansions of the form (2.1). Black line, roll; dashed line, n=l;
 dot dashed, n=2; dotted line, n=3. (6) The dependence of wavespeed on Re.

 3. Scaling of modal kinetic energies

 Figure 2a shows the variation of the KE in various modes as a function of Re. To
 find the KE for the n=l streamwise mode, we form Fourier expansions of type
 (2.1) for v and w as well. The volume integral for KE is computed by setting all
 modes with n^= ±1 equal to zero. The kinetic energies of the other streamwise
 modes are computed in a similar manner.
 The KE of the rolls is obtained using n=0 mode only, but the w component is
 set to zero. Retaining only the n=0 modes is equivalent to averaging the velocity
 field with respect to z. The ^-averaged w corresponds to streaks.
 As evident from figure 2 a, the magnitudes of the modes decrease with Re
 algebraically and are proportional to Ree for high Re and a suitable exponent e.
 The exponents for the rolls, n=l, n=2 and n=3 obtained using Äe>8000 were
 - 1.08, -0.97, -1.35 and -1.92, respectively. For comparison, the exponents
 for rolls and the n=l mode are -1 and -0.9 for the symmetric lower branch
 solution of plane Couette flow (Wang et al. 2007).
 Figure 3b shows that the wavespeed cz increases with Re. An application of
 Wynn's p-algorithm ( Wynn 1956) shows the limit of cz as Äe- ► oo to be 0.88.
 The speed of the asymmetric travelling wave is nearly twice the speed of puffs in
 transitional pipe flow. In our units, the speed of the puff is approximately 0.45
 around Äe=2000 (Peixinho & Mullin 2006).
 From figure 3, we conclude that the streaks converge as Äe- ► oo and that the
 plots in that figure are a good approximation to the limit. Those plots differ quite
 a bit from the plot at Äe=3000 in figure 2, with the position of the two high-
 speed streaks being much more to the left of the pipe at Ae=3000.

 4. The critical layer

 The Fourier expansion of u (2.1) can be rewritten as

 u = tio(r,0) + u1(r,6)exp(iz/A) + u*l(rid)exp(-iz/A) +••-,

 Phil Trans. R. Soc. A (2009)
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 566 D. Viswanath

 Figure 3. The plots of streaks are the same as in figure 1. The contours in (a (Ae=45 000)) and (6
 (Äe=75 000)) are equispaced in (-0.11, 0.15) and (-0.11, 0.15), respectively.

 Figure 4. All plots at Äe=75 000. (a) The thick black curve is the critical curve ujb(r, B) = cz. The
 four values for contouring 'ux' were equispaced between 0 and max|t¿i|. (6) The maximum of |t¿i| is
 taken over curves all points of which are at the distance d from the critical curve. The distance d,
 which is the x-axis of the plot, is negative inside the critical curve and positive outside, (c) Contour
 plots of 2-averaged streamwise vorticity Co- The solid and dashed lines correspond to positive and
 negative Coi respectively.

 where the asterisk denotes complex conjugation. Similar expansions can be
 formed for v, w and the vorticity components. To illustrate the critical layer, we
 will begin by looking at 'ui'.
 Wang et al (2007) derived the equation wo(r, 6) = cz for the critical curve. The
 critical curve is shown as a thick black curve in figure 4 a. It is closer to the centre
 of the pipe than to the pipe wall. The contour lines of | Ui' are all nestled around
 the critical curve. In particular, the contour lines occur as two groups near the
 indentation at the left of the critical curve. This compares well with fig. 3 of
 Wang et al (2007). Figure 46 shows that |^i| takes its maximum value on or very
 close to the critical curve and falls off rapidly away from the critical curve. The
 first two plots of figure 4 give a good idea of how 'ui' varies inside the unit circle.
 The critical region is a band around the critical curve where most of the variation
 of |i¿i| and certain other quantities is concentrated. The band need not be of
 uniform width.

 Figure 4c shows contour plots of £o- The regions where £o is positive or
 negative agree very well with the position of the rolls. Counter-rotating vortices

 Phü. Trans. R. Soc. A (2009)
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 Figure 5. (a-c) The plots correspond to 'ui', 'wi' and Ço> respectively. The plots show that the
 width of the critical layer decreases with Re at different rates for 'ui', 'wi' and Co-

 are a well-known feature of lower branch solutions and of small perturbations of
 the laminar flow that trigger turbulence. Like rolls and streamwise modes, the
 scaling of whose magnitudes with Re is shown in figure 2, the magnitude of Co
 also decreases with Re.

 From figure 4 c, it is evident that most of the variation of 'ui' is in a region
 around the critical curve. Similar plots can be produced for 'tui' or Co- In such
 plots the peaks become notably sharper as Re increases.

 The purpose of figure 5 is to estimate the rate at which the contour curves,
 such as those in figure 4a,c, approach the critical curve as i?e- > oo. For each
 value of Re, a specific contour curve is picked. For 'ui', |wi| and Co? the chosen
 contour curve is for half their maximums. We pick the point on the
 contour curve that is farthest from the critical curve and plot its distance
 against Re. Such plots are a good way to measure the thickness of the critical
 region. They follow the convention in which the width of a Gaussian density
 function is measured at half its maximum.

 Fits using fie> 8000 show that the thickness scales as fie"032, fie"0'26 and
 Re~0'23 for |^i|, 'wi' and Co? respectively. The exponents do not change
 appreciably if fits are made by dropping the data points with smaller Re.

 Perhaps the main achievement of Wang et al. (2007) is to give a formula for
 the critical curve. In the context of pipe flow, the critical curve is the set of all
 points (r, 6) such that wo(r, 6) = cz. We have used that formula throughout this
 section. Their calculations apply directly to 'ui' and |^i|, and predict that the
 contour curves of those quantities will approach the critical curve at a rate given
 by Re~1^. The exponent that we found for 'ui', which came in at -0.32, is in
 excellent agreement with that prediction. The exponents for 1^1 and Co indicate
 that the contour curves of those quantities concentrate more slowly on the
 critical curve than those of 'u''. A more refined theory is probably needed to
 explain those exponents.

 The thickness of the critical layer is highly unlikely to be uniform around the
 critical curve. The manner in which the thickness varies along the critical curve
 appears worthy of investigation. It appears that the variation of the thickness
 could be related to the structure of the rolls. Even at low Re, such as Re= 1500,
 contour plots still show that structures tend to develop around the critical curve.
 This motivates a suggestion that will end this section.

 Phil. Trans. R. Soc. A (2009)
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 568 D. Viswanath

 Puffs are structures observed in transitional pipe flow that have a well-defined
 extent. They travel down the pipe with a well-defined speed. It could be
 interesting to calculate the surface formed by all points of the puff whose
 streamwise velocity equals the speed at which the puff moves down the pipe.
 Such a surface would be the analogue of the critical curve for a lower branch
 travelling wave.

 5. Implementation of GMRES-hookstep and Arnoldi iterations

 In §2, we pointed out that the velocity field for pipe flow with suitable boundary
 conditions can be recovered from v, w, u and '. If we pack the information in
 those variables into a single column vector x with real components, it is possible
 to recover the entire velocity field given x. X(t; x) is the column vector that
 results from allowing the flow to evolve for time t To compute X(t; x), a velocity
 field is constructed starting from x and then allowed to evolve for time t using a
 direct numerical simulation code. X(t; x) is constructed from the final velocity
 field. We have generally used Runge-Kutta methods with constant step sizes
 (except for the last step) to compute X(t; x). The reason is that the discretized
 flow is then a dynamical system that is smooth and close to the Navier-Stokes
 flow. Adaptive time stepping strategies introduce non-smoothness and imply
 that the discretized flow is no longer a dynamical system.

 The methods for computing travelling waves and other solutions that will be
 described depend upon the shear flow mainly in the computation of X(t; x). The
 other dependence is in the definition of the translation operators. Given the
 Fourier representation (2.1) of w(r, 0, z), the representation after a translation
 along the axis and a rotation about the axis is given by

 u(r, d + se,z + sz) = ^ unm(r)exp(im5(?)exp(in^/^l)exp(imö + inz/Ä).
 -M<m<M

 -N<n<N

 (5.1)
 We use linear operators defined by

 Txu(r,e,z)= ^2 irnûnim(r)exp(imd)exp(inz/A),
 -M<m<M

 -N<n<N

 | (5.2)
 -M<m<M

 -N<n<N ,

 to effect the translation and the rotation in (5.1). In particular,

 u(r, d + s6ìz + sz) = exp(seT1)exp(szT2)u(r, 0, z).

 The definition of the linear operators 7{ depends upon the shear flow. The
 definition of the linear operators for plane Couette flow is identical to that for
 pipe Poiseuille flow (Viswanath 2007). The operators T{ can be made to act on a
 vector x that encodes a velocity field in an obvious way, by making them act
 on each component of the velocity field. Then exp(^T1)exp(^T2)a: encodes

 Phil. Trans. R. Soc. A (2009)
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 The critical layer in pipe flow 569

 a translated and rotated velocity field. Expressing the translation and rotation of
 a velocity field using T¿ makes it possible to differentiate with respect to Sß and sz
 while deriving the Newton equations.

 Given the ability to compute X(ar, t) and the linear operators of (5.2), the
 numerical methods described in this section need to know nothing more about
 the shear flow. Determining the exact dimension of the vector x can be a little
 tricky because one needs to eliminate Fourier coefficients that are conjugates of
 certain others and so on (Viswanath 2007). It is unlikely that one may leave out
 some essential components as this error will become manifest when trying to
 construct the velocity field from x. It is more likely that x may end up having
 duplicates. In principle, that would make some of the matrices that occur later
 singular. In practice, the effect of having duplicates in x is probably to introduce
 some error without being disastrous.

 A big part of the numerical method for computing travelling waves, relative
 periodic orbits and other solutions that will now be described, are the well-known
 GMRES and Arnoldi iterations. Trefethen & Bau (1997) give a lucid account of
 these methods and more importantly their convergence properties. Pointers to
 the original literature can be found in the end notes of their book or in many
 other well-known textbooks of numerical linear algebra.

 (a) GMRES-hookstep iteration

 A relative periodic orbit is a solution of the Navier-Stokes equation where the
 initial velocity field evolves for time T, which is the period, to reach a certain
 final state. In the case of pipe flow, it must be possible to translate the final
 velocity field along the axis and then rotate it to get back the initial velocity. If Xq
 encodes the initial velocity field,

 exp(-5ör1)exp(-5,T2)X(T; x0) = x0, (5.3)

 where Sß and sz are shifts in the azimuthal and streamwise directions,
 respectively. To find a relative periodic orbit, one must solve for Xq, s#, sz and
 the period T such that the nonlinear equation (5.3) is satisfied.

 A relative periodic orbit is the most general object that our method can find.
 Periodic orbits are a special case where Sß=sz=0. Travelling waves are a special
 case where T is fixed to be a small but not too small number. A travelling wave
 will satisfy (5.3) for any T>0 and suitably chosen se, sz. In general, the solution
 of (5.3) could be a relative periodic orbit that is not a travelling wave. Tis chosen
 small enough to make it likely that the solution of (5.3) is a travelling wave,
 although it is not important to have a small T if we already know that the initial
 guess for x0 is near a travelling wave. An equilibrium or steady solution is also a
 special case of a relative periodic orbit. The reason for treating travelling waves
 as special cases of relative periodic orbits is explained at the end of this section.

 Suppose íOí sx, $z, T is an initial guess to a solution of (5.3) and that

 j/o = exp(-^T1)exp(-^r2)X(r; x0). (5.4)

 Phil Trans. R. Soc. A (2009)
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 570 D. Viswanath

 Linearizing one gets the following Newton equations (Viswanath 2007):

 ^xp(-5,T0exp(-s,T2)^^-J -Tiyo -T2y0 f(yo)' ox0 I òx ' /xo-yo'

 transposeíTx^o) 0 0 0 ôse O

 ôsz 0
 transpose(T2¿o) 0 0 0

 'ôTj V 0 /
 ' transpose(/(í0)) 0 0 0 /

 (5.5)

 In the above system, / is the identity matrix whose dimension equals that
 of x0; and f(x) is such that dx/dt=f(x) is the spatially discretized Navier-
 Stokes equation written in terms of the vector x that encodes the discretized
 velocity field. The code for evaluating f(x) can be extracted from a direct
 numerical simulation code with a little work. One can also approximate f(x) as
 (X(/i, x) - x)/h, where h is small. We have not tried approximating f(x) using
 differences, but it is probably fine to do so. The last three rows of the linear
 system (5.5) correspond to phase conditions (Viswanath 2007).

 To find a relative periodic orbit, one step of the Newton iteration would be to
 solve (5.5) for the <5s and add those corrections to the initial guess. To find a
 travelling wave, (5.5) must be modified by dropping the last row and the last
 column because Tis fixed. If the travelling wave has the shift-reflect symmetry, as
 the travelling wave family studied in this paper does, then 5^=0, because rotation
 around the pipe axis breaks that symmetry. In such a case, we must drop the first
 and the third of the last three columns, and likewise with the rows. To find an
 equilibrium solution, we must drop the last three columns and rows. All the
 special cases of a relative periodic orbit mentioned above can be dealt with in this
 manner. In each case, we denote the resulting linear system as A A = b.

 To solve such a linear system using a Krylov subspace method like GMRES, it
 is not necessary to invert A nor is it even necessary to form A explicitly. It is
 enough if A can be applied to vectors. The only difficulty in applying A to a
 vector arises in calculating

 expt-^TOexpt-s^) ^ c,
 where c is a column vector of the same dimension as x0. That quantity can be
 calculated using differences as

 exp(-seT1)exp(-szT2)X(T; x0 + ec) - y0

 where e is chosen such that ||6c|| «lO~7||io||- The choice of the norm will be
 discussed shortly. Even when x0 is nearly equal to j/o> which is defined by (5.4), it
 is important not to substitute xQ for j/0 in (5.6).

 The GMRES iteration for solving AA = b finds an orthonormal matrix Qk at
 the &th stage such that AQk= Qk^1Hh^.lk (Trefethen & Bau 1997). In
 implementing this step, it may be best to use the square root of the KE of the

 Phil Trans. R. Soc. A (2009)
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 The critical layer in pipe flow 571

 vector field that x encodes as the norm over x. At the fcth stage GMRES would
 solve the least-squares problem minJlAfc+i ky - ||6||ei||, where y^Rk and e' is the
 k+ 1 dimensional vector with a 1 at the top followed by Os. The approximation
 to A at that stage would be Ak= Qky. We do not attempt to solve the Newton
 equation this way, however. The Newton equation is useful only if the solution A
 is tiny enough that the linearization that led to the Newton equation is valid.
 That is often not the case because the initial guesses are typically not so
 accurate. A well-known solution is to minimize ||j4J¿ - 6|| subject to the
 constraint || J|| <<5, where ô has to be chosen small enough that the linearization
 within that radius is valid (Dennis & Schnabel 1996). The resulting step is called
 the hookstep (Dennis & Schnabel 1996).

 We approximate the hookstep using GMRES as follows. To find Aòyk that
 approximates the true hookstep A ¿we solve the minimization problem

 núnllflib+^y-llftllcxll, (5.7)

 subject to the constraint ||j/||<ô. That minimization can be solved using the
 singular value decomposition (Dennis & Schnabel 1996; Golub & van Loan
 1996). Let jHjfc+1^= UDV' be a reduced singular value decomposition (V7 is
 the transpose of the real unitary matrix V). Let p= (pl5 ...,^)'= ''b'' I]1 1'. If the
 diagonal entries of the diagonal matrix D are d¿, q= (gl5 ..., qk)' is found using
 Qi = Pid>i/{li+ df), 1 < ¿< A:, where either /¿>0 is such that ||</|| = <5 or /¿=0 if
 that allows ||ç||<ô. Finding ¡x is an easy one-dimensional root-finding problem.
 The solution of (5.7) is y= Vq and the GMRES hookstep is Aô)k= Qky.

 To complete the description of the GMRES-hookstep method, we have to
 describe the choice of fc, or the stopping criterion for finding a Aôfk that
 approximates Aô, and also describe how ô is updated every time a new Newton
 system (5.5) is formed. There is a natural stopping criterion for GMRES without
 the constraint ''y'' <<5. That is because the relative residual error at the end of k
 iterations can be easily found as rk = ''AAk - b''/''b''. For GMRES hookstep, we
 have no practical way of knowing how close ||J4J^ - ft|| is to ||j4J¿ - 6||. Thus,
 there is no way to assess the quality of Aòjk. The stopping criterion in our
 implementation is to pick a k that is large enough to ensure rk<0.01. In other
 words, we stop when the GMRES iterate Ak is an acceptable substitute for the
 true solution of AA~b believing then that the Krylov subspace matrix Qk
 has enough column vectors to ensure that A¿)k is an acceptable substitute for A¿.
 There is no theoretical support for this stopping criterion, but it works very
 well in practice.

 The choice of ô follows standard trust-region prescriptions (Dennis & Schnabel
 1996). The choice for ô for the very first GMRES-hookstep iteration can be
 anything that looks reasonable. To assess the quality of a <5, we take ||b|| = ''x0- yo''
 as the error in the initial guess. Once Aô}k is computed, we update to
 xx - xo + Aôik(l : dim), where dim is the dimension of x0 and the subscripting
 of As,k follows Matlab notation. The quantities s#, sz and T are also updated,
 if applicable. The linearization used to find Aôfk predicts that the reduction in
 error in going from x0 to xx should be about ||6|| - ''AAôik - b''. If the prediction
 is very good ô can be increased, and if it is bad ô must be decreased and a
 new GMRES hookstep must be computed. This completes the description of
 the GMRES-hookstep method for solving (5.3), each iteration of which begins
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 with a guess x0 for Xq and for the shifts and the period, forms the Newton system
 (5.5), uses that Newton system to find Aô)ki checks if ô is acceptably small and
 then uses Aòfk to form a better guess. The iterations can be stopped if the error as
 measured by ||^0 - y0 ''/'' y0 || is less than the relative error due to spatial
 discretization of the velocity field.
 It is surprising that the method for computing A$ }k is a new contribution

 considering it is quite a natural thing to do. In an early paper on the use of Krylov
 subspaces for globally convergent modifications of Newton's method, Brown &
 Saad (1990) formulated a minimization problem ((4.2) of their paper) and called
 it the model trust-region problem. The solution to that problem is theoretically
 equivalent to Aô}k. The equivalence is similar to that between GMRES and
 ORTHODIR, which pre-dated GMRES, with our formulation being more
 direct. We have described a practical method for finding Aôjk with a criterion
 for choosing k. We were not able to find implementations of GMRES hookstep
 in the literature, although one may exist that we were not able to track down.
 Like the work of Brown & Saad (1990) much of the later literature deals with
 the dog-leg and other strategies; for instance see Luksan & Vlcek (1997). The
 dog-leg is an approximation to the hookstep that is made up of only the gradient
 direction and the Newton step (Dennis &; Schnabel 1996). It is preferred over the
 hookstep mainly because its computation does not require the singular value
 decomposition. Since the hookstep moves away from the Newton step smoothly,
 one may suggest that the Krylov subspace approximates the hookstep better
 than the gradient. The dog-leg is also much more complicated to implement
 within a Krylov subspace than the computation of Aô)k described here. Having to
 compute the singular value decomposition is not a problem because the way the
 Newton system (5.5) is set up means that k is small (being approx. 150 at most
 but more typically approx. 50). Since the dog-leg is only an approximation to the
 hookstep, and is in fact harder to implement within a Krylov subspace, we see no
 reason to prefer it over the GMRES-hookstep method.

 (b) Arnoldi iteration

 Ignoring spatial discretization errors, the eigenvalues /i¿ of the matrix

 expi-seTJexpi-s^) ^^ (5.8)
 are the eigenvalues of the corresponding relative periodic or periodic solution. If
 Xq encodes the velocity field of a travelling wave or a relative periodic solution,
 then iJLi=exp(XiT) where A¿ are the eigenvalues of the travelling wave or the
 equilibrium solution.
 The matrix (5.8) will be dense and large, but it can be applied to vectors as in
 (5.6). The Arnoldi iteration forms Qh Qk+1 and ff*+i,* like GMRES, with the
 one difference being that the starting vector 6 is arbitrary. We usually take x0 as
 the starting vector but either rotate and translate it or add some noise to ensure
 that it does not have the shift-reflect symmetry. In the case of both pipe and
 channel flows, the laminar solution must be subtracted from x0 to get the right
 boundary conditions. If Hk is the matrix obtained by dropping the last row of
 Hk+iik, and Hky=/j,y, then ¡x is an approximation for an eigenvalue of (5.8) with
 Qky being an approximation for the corresponding eigenvector.
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 Figure 6. (a (Äe=1500), b (Äe=15 000)) Plots of /i=exp(AT), where A is an eigenvalue of the
 asymmetric travelling wave and Tis listed in table 1. The markers are filled in if the corresponding
 eigenvectors lie in the shift-reflection invariant subspace. (c (Re= 1500)) Plot of the eigenvalues of
 the asymmetric travelling wave.
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 Figure 7. (o (Re= 10 000), b (Re= 15 000)) Plots of eigenvalues of the asymmetric travelling wave,
 (c) Scaling of the two unstable eigenvalues in the shift-reflection invariant subspace as Re- > <».

 The approximations ¡x and y must be checked for correctness. If [i is real, one
 only has to apply the matrix (5.8) with Q^y and verify if the resulting vector has
 the right amplitude and direction; if ß is complex one has to apply the matrix to
 the real part of Q'¿y. In figures 6 and 7, we accept an eigenvalue if the result of
 applying the matrix has an error in direction that is less than 1 degree and the
 error in amplitude is less than 1 per cent. Most eigenvalues and eigenvectors are
 much more accurate than that, and it is reasonable to expect the eigenvalues to
 be more accurate than the eigenvectors.

 If Xq is the initial velocity field of a travelling wave, its wave speeds are given
 by C0=(s0 + 27rp)/T and cz=(sz+27rAq)/Ti where p and q are integers. The
 values of p and q are found by advancing the initial velocity field by an amount of
 time that is not too large, and then translating and rotating the final velocity
 field to see which values of p, q imply the best match to the initial velocity field.
 In the case of the asymmetric travelling wave, ^ = 5^=0 owing to symmetry and
 care is needed for determining cz at high Re because there is very little energy in
 the streamwise modes with n^O.

 In the case of travelling waves, there is a delicate numerical point that arises in
 passing from a complex eigenvalue /x of (5.8) to an eigenvalue A = log(/i)/Tof the
 travelling wave. Figure 6c shows the As that correspond to the /is in figure 6a.
 The imaginary part of the complex log is not unique, and to determine it for
 the As one has to in effect determine the rate of rotation of the real part of the
 eigenvector in the space spanned by the real and imaginary parts. If the column
 c is the real part of the eigenvector, the matrix-vector product
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 for t not too large will give the correct rate of rotation. To find that matrix-
 vector product, we can again use differences as in (5.6) but there are
 two mathematically equivalent ways to do so. The first way is to use the
 quotient difference

 exp(cetT1)exp(cztT2)X(t; x0 + ec) - y0

 where yo = exp(c$tTi + c2íT2)X(¿;xo) is determined using the same direct
 numerical simulation code and the same time step used to compute X(t; x0 + ec),
 and the second way is to use

 exp(cetT1)exp(cztT2)X{t; x0 + ec) - xQ

 We must use (5.9), although (5.10) involves less work. The numerical errors in
 using the quotient difference (5.10) will be intolerably high.
 The eigenvalues in figure 6a, b are mostly inside the unit circle and stable. Most
 of the eigenvalues of the matrix (5.8) are stable owing to the dissipation term in
 the Navier-Stokes equation. For a demonstration of the effect of the dissipation
 term, note that the stable eigenvalues for /2e=15OO are closer to the circle than
 those of Re= 15 000, even though the computation at Re= 15 000 uses a larger T
 (see table 1) which brings the stable eigenvalues closer to the centre.
 Setting up the eigenvalue problem for travelling waves using direct numerical
 simulation and the matrix (5.8) may seem contrived owing to the need to choose
 an artificial parameter T and the need to use direct numerical simulation.
 Contrived it may be, but the contrivance does serve a purpose. Without it we
 will have a spectrum that will look like the one in figure 6 c, but with a lot of
 eigenvalues with very large and negative real parts not shown there. For a matrix
 with such a spectrum, the Arnoldi iteration will not work well because it will be
 forced to chase the eigenvalues with large and negative real parts. With matrix
 (5.8), those eigenvalues move very close to 0, and the extremal part of the
 spectrum that is approximated well is also the interesting part of the spectrum
 for stability considerations.

 6. Spectrum of lower branch travelling waves as 12e- ► oo

 The Arnoldi iterations for travelling waves at various Re were carried out using
 k= 150. For Re= 1500, 122 out of 150 eigenvalues of Hk turned out to be correct.
 For Re= 15 000 as well, 122 out of the 150 eigenvalues were correct, but the time
 of integration was higher with T= 15.

 At i?e=1500, the asymmetric travelling wave has two real unstable
 eigenvalues, whose eigenvectors are invariant under shift reflection. Those two
 eigenvalues persist as i2e- ► » . Surprisingly, those two eigenvalues approach 0 as
 Re- >oo. Figure 76 shows that the rate of decrease of those eigenvalues is
 algebraic. The most unstable eigenvalue approaches 0 at the rate Re~0A1. The
 other eigenvalue approaches 0 at the faster rate Re~0'87. For the symmetric
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 The critical layer in pipe flow 575

 lower branch solution of plane Couette flow, there is just one unstable eigenvalue
 and that decreases at the rate Re~0A6 or Re"048 (Wang et al 2007; Viswanath
 2008). Figure 7a, b shows that the spectrum as a whole approaches the imaginary
 axis as Re increases.

 In addition to the two real unstable eigenvalues with eigenvectors in the
 symmetric subspace, there is an unstable complex pair at Re= 1500 which can be
 seen in figure 6a. That pair moves inside the circle as Re increases. At fie =3000
 and 5000, there is a third real and weakly unstable eigenvalue. For Re > 8000,
 there seem to be only two unstable eigenvalues, and both of those have
 eigenvectors that are invariant under shift reflection.

 7. Conclusion

 We have demonstrated the existence of a critical layer in the Re-><x> limit for a
 family of lower branch travelling waves. The theory of Wang et al (2007) gives
 the right formula for the critical curve. The scaling of the size of the critical
 region for |t¿i| is in excellent agreement with their theory. Further development
 of the asymptotic theory appears necessary to explain the scaling of the size of
 the critical regions for 'wi' and Co- Comparison with a family of lower branch
 equilibrium solutions of plane Couette flow suggests that the formation of the
 critical layer and many of its properties could be universal to all lower branch
 solutions of shear flows as Re - ► oo .

 Certain parts of puffs, which are structures observed in transitional pipe
 flow, are characterized by streaks and rolls (Hof et al 2004; Willis & Kerswell
 2008). We have suggested that the critical surface of a puff could be helpful in
 visualizing its structure. In particular, the arrangement of rolls and streaks could
 be correlated with the shape of the critical surface.

 In §5, we have given a detailed account of the GMRES-hookstep iteration for
 computing relative periodic solutions, travelling waves, periodic solutions
 and equilibria for shear flows. Our account emphasizes the implementation
 aspects of GMRES-hookstep and of the Arnoldi iteration, which is used for
 finding eigenvalues. Together with the derivation of the Newton equations
 (Viswanath 2007), this account is sufficiently detailed to enable implementation
 of these iterations.

 The author thanks the mathematics department of the Indian Institute of Science, Bangalore, for
 its hospitality and support. The author thanks F. Waleffe and J. F. Gibson for their helpful
 discussions, and W. R. Morrow for catching a bad typo. This work was partially supported by NSF
 grants DMS-0407110 and DMS-0715510.
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