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Stable manifolds and the transition
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Lower branch travelling waves and equilibria computed in pipe flow and other shear
flows appear intermediate between turbulent and laminar motions. We take a step
towards connecting these lower branch solutions to transition by deriving a numerical
method for finding certain special disturbances of the laminar flow in a short pipe.
These special disturbances cause the disturbed velocity field to approach the lower
branch solution by evolving along its stable manifold. If the disturbance were slightly
smaller, the flow would relaminarize, and if slightly larger, it would transition to a
turbulent state.

1. Introduction
The connection between the law of resistance to water flowing in a tube and the

sinuous or direct nature of the internal motion of the fluid was established by Reynolds
(1883). In the transitional regime, he observed ‘flashes’ and recorded them in figure 16
of his paper. Later experiments using hot-wire measurements have revealed the
structure of puffs and slugs (Wygnanski & Champagne 1973). Particularly intriguing
are equilibrium puffs that maintain their spatial extent as they travel downstream
with a characteristic speed (Wygnanski, Sokolov & Friedman 1975). Such puffs are
approximately 20 pipe diameters long and are observed for Re (Reynolds number)
somewhat greater than 2000. Further, the structure of the puff is independent of the
disturbance used to create it.

For a range of Re, the flow injected into the pipe assumes the familiar Hagen–
Poiseuille laminar profile downstream. The flow does not have the laminar profile
at the inlet. Therefore it is important to distinguish between disturbances at the
inlet and disturbances to fully developed laminar flow (Willis et al. 2008). The early
experiments used inlet disturbances, but in theoretical investigations such as this one,
it has been common practice to consider disturbances to the laminar flow.

In their experiments to determine the dependence of the threshold for transition
on Re, Darbyshire & Mullin (1995) used a constant mass-flux pipe and introduced
disturbances to the laminar flow at a point sufficiently downstream from the inlet.
They were able to determine thresholds over a range of Re, but figure 11 and other
figures in their paper showed that certain disturbances above the threshold do not
transition, while certain disturbances below the threshold do transition. Hof, Juel &
Mullin (2003) determined that the threshold scaled as Reα with α = −1, when the
laminar flow was disturbed by a single boxcar pulse of fluid injected at six different
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216 D. Viswanath and P. Cvitanović

points. Mellibovsky & Meseguer (2007) have reproduced α = −1 in a numerical study
that added a body force term to the Navier–Stokes equation to model the effect of
the boxcar pulse of fluid. For different disturbances of the laminar flow, Peixinho &
Mullin (2007) found α < −1. In that experiment, the transition is sequential, with
flow visualizations showing the disturbance changing its form as it travels down-
stream before leading to bigger structures. Following O’Sullivan & Breuer (1994),
Peixinho & Mullin (2007) have pointed out that disturbances that lead to α < −1
probably do not significantly distort the mean flow.

With regard to theory, Reynolds’s assertion that ‘there was small chance of
discovering anything new or faulty’ in the Navier–Stokes equation has stood the test
of time. Thanks to numerical computations, we now know that the incompressible
Navier–Stokes equation adequately explains a remarkable wealth of phenomena
related to transitional turbulence and fully developed turbulence. Although the
Navier–Stokes equation can be solved numerically in certain regimes, the nature
of the solutions of that equation has proved difficult to understand.

It is clear, however, that the nature of the solutions is quite different in the turbulent
and transitional regimes. Fully developed turbulence is characterized by rapid decay of
correlations and fine scales. Statistical theories that separate turbulent velocity fields
into means and fluctuations have had significant successes (Narasimha 1989), even
though coherent motions are present in certain regions of fully developed turbulence
(Robinson 1991). In contrast, the transition problem seems to be fundamentally
dynamical in nature.

Following the experiments of Darbyshire & Mullin (1995), Schmiegel & Eckhardt
(1997) and Faisst & Eckhardt (2004) argued that there is no sharp boundary between
initial conditions that trigger turbulence and those that do not and demonstrated
computationally that the stability border for plane Couette flow is a fractal. One of
their suggestions, namely that a chaotic saddle could be present for transitional Re,
illustrates the dynamical nature of the transition problem.

More recently, Faisst & Eckhardt (2003) and Wedin & Kerswell (2004) computed
a number of travelling-wave solutions of pipe flow. Their work was preceded by
computations of somewhat similar solutions of channel flows by Nagata (1990) and
Waleffe (1998). Hof et al. (2004) found streak patterns in puffs and slugs that appeared
close to those of some pipe-flow travelling waves. The travelling waves were computed
in short pipes, typically only a few pipe diameters long, while puffs are as long as 20
pipe diameters. Therefore the following question may be asked: do the experimentally
observed structures correspond to the computed travelling waves?

The correlation functions, such as those of Schneider, Eckhardt & Vollmer (2007a),
used to detect streak patterns in experimental or numerical flow fields look for m-fold
rotational symmetry with respect to the pipe axis. Using such a correlation function,
figure 5 of Schneider et al. (2007a) illustrates a transition from a four-streak state
to a six-streak state within a spatial range of a single pipe radius. Willis & Kerswell
(2008) found structures with m = 3 and m = 4 within streamwise distances of about
2 pipe diameter preceding the trailing edge of the puff and 5 pipe diameters following
the trailing edge. Figure 5 of their paper gives some evidence that parts of the puff on
either side of its trailing edge (but not at the trailing edge itself) visit travelling-wave
solutions with m = 3 and m = 4. It could be significant that figures 7 and 23 of
Wedin & Kerswell (2004) (which use different units) imply that some of the m = 3
and m = 4 travelling waves have wave speeds relatively close to that of the puff.
Willis & Kerswell (2008) also found that the qualitative comparisons of Hof et al.
(2004) which used slug cross-sections had significant problems. Instead of the trailing
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Stable manifolds and the transition to turbulence in pipe flow 217

edge of the puff, Eckhardt & Schneider (2008) used the centre of turbulence energy
to fix a position within a moving puff. Their centre of turbulence energy is more
precisely defined, and it moves with the puff in a quite regular manner. They found
the axial correlation lengths around that centre to be quite short. While the question
raised in the previous paragraph cannot be answered conclusively at the moment,
these arguments suggest that short-pipe computations are of some relevance.

Another point to be mentioned is that puffs, in which streak patterns resembling
those of some travelling waves have been detected, are observed experimentally only
for Re < 2800. The transition experiments that measure thresholds (Hof et al. 2003;
Peixinho & Mullin 2007) reach Re as high as 20 000. Thus the relevance of puffs
to transition may seem limited. However, there is a possibility that puffs exist as
solutions of the Navier–Stokes equation beyond the Re at which they are observed
in experiments (Willis & Kerswell 2009).

Most of the lower branch solutions of pipe flow and the channel flows seem to be on
the laminar–turbulent boundary (Itano & Toh 2001; Kawahara 2005; Kerswell 2005;
Kerswell & Tutty 2007; Wang, Gibson & Waleffe 2007; Duguet, Willis & Kerswell
2008; Gibson, Halcrow & Cvitanović 2008; Schneider et al. 2008; Viswanath 2008b),
which means that for some tiny disturbances of the lower branch solution, the
disturbed state evolves and becomes laminar uneventfully. For other disturbances,
the disturbed stated evolves and becomes turbulent or undergoes a turbulent episode
before it becomes laminar.

In this paper, we investigate if there are small disturbances of the laminar solution,
for which the disturbed state evolves and hits a given lower branch solution.
By small, we mean firstly that the magnitude of the disturbance should decrease
algebraically with Re and secondly that the disturbance should not change the mean
flow significantly. The existence of such a disturbance would establish that the flow
can transition from laminar to turbulentce by passing through the vicinity of the
given lower branch travelling wave.

In fact, Kreiss, Lundbladh & Henningson (1994) found such disturbances when
computing thresholds without fully realizing that they were hitting a lower branch
equilibrium solution of plane Couette flow. But the situation they tackled is an
especially simple one because the lower branch solution has a single unstable direction
(Toh & Itano 2003; Wang et al. 2007; Schneider et al. 2008; Viswanath 2008b). We
consider the asymmetric travelling wave computed by Pringle & Kerswell (2007). That
travelling wave has two unstable directions both of which lie in a symmetric subspace,
and thus it serves to illustrate that the method used for computing thresholds cannot
be used to hit travelling waves that have more than one unstable direction.

The asymmetric travelling wave of Pringle & Kerswell (2007), which has two fast
streaks located near one side of the pipe, is shown in figure 1. The preferential location
of the streaks towards one side is also found in edge states that occur in transition
computations (Schneider, Eckhardt & Yorke 2007b). Table 1 gives basic data for that
travelling wave at four different Re. That data will be useful for judging the closeness
of approaches to the travelling wave. The choice of units, the significance of I and
D in table 1 and the meaning of the streamwise modes with n = 0, ±1, ±2, ±3 are
explained in § 2. More extensive data for the asymmetric travelling wave can be found
elsewhere (Viswanath 2008a).

To find a small disturbance of the laminar solution that evolves into a given lower
branch state, it is necessary to consider a linear superposition of disturbances whose
dimension equals that of the unstable manifold of the lower branch state. That
requirement follows from a consideration of the co-dimension of the stable manifold

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

09
00

60
41

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

ni
v 

of
 M

ic
hi

ga
n 

La
w

 L
ib

ra
ry

, o
n 

08
 M

ar
 2

01
9 

at
 1

8:
14

:2
8,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://doi.org/10.1017/S0022112009006041
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


218 D. Viswanath and P. Cvitanović

Re = 2000 Re = 4000

Figure 1. Contour plots of z-averaged streamwise velocity with the laminar flow subtracted.
Rolls are superposed. The contour levels are equispaced in the intervals [−0.195, 0.170] and
[−0.191, 0.148], with the lighter regions being faster. The maximum magnitude of the vectors
in superposed quiver plots are 0.0075 and 0.0038, respectively.

Re I = D ke ked ke0 ke1 ke2 ke3

2000 1.0881 0.9783 0.013 0.9778 4.4 × 10−4 2.3 × 10−5 2.2 × 10−7

2500 1.0802 0.9790 0.012 0.9788 2.8 × 10−4 1.2 × 10−5 1.0 × 10−7

3000 1.0755 0.9794 0.012 0.9792 1.9 × 10−4 7.6 × 10−6 5.9 × 10−8

4000 1.0705 0.9796 0.012 0.9795 1.1 × 10−4 3.8 × 10−6 2.8 × 10−8

Table 1. The kinetic energy of the travelling wave and the kinetic energy with laminar flow
subtracted are denoted by ke and ked , respectively. The last four columns give the kinetic
energy in modes with n = 0, ±1, ±2, ±3.

of the lower branch state. In addition, the disturbances that are linearly combined
must be chosen carefully.

To hit the asymmetric travelling wave, we consider three different disturbances of
the laminar solution. The first disturbance is obtained by extracting the rolls, which
are formed by averaging the travelling wave in the streamwise direction and retaining
only the radial and azimuthal components of the velocity field. The choice of rolls is
related to the so-called lift-up mechanism (Landahl 1980). The two other disturbances
are the two unstable eigenvectors of the travelling wave. If one of the eigenvectors
is added to the travelling wave, it has the effect of either reinforcing or weakening
the fast streaks. The other eigenvector seems to alter the location of the fast streaks.
It must be remembered, however, that the disturbances are added to the laminar
solution and not to the travelling wave.

In § 4, we show that disturbances of the laminar flow obtained by varying any two of
these three disturbances evolve and hit the travelling wave. The choice of the unstable
eigenvectors might seem puzzling, as our intention is to hit the travelling wave and
not to move away from it. The reason that choice works is partially explained in §§ 3
and 4. Section 4 also shows that the magnitudes of the disturbances needed to hit the
asymmetric travelling wave diminish algebraically with Re.
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Stable manifolds and the transition to turbulence in pipe flow 219

All our computations use a pipe that is π pipe diameters long, and the travelling
waves are computed with 85 715 active degrees of freedom. The computations of
relative periodic solutions (or modulated travelling waves) in plane Couette flow
use triple the number of degrees of freedom (Viswanath 2007), although those
computations are roughly 5 to 10 times as expensive with the same number of
degrees of freedom. The computation of travelling waves is an insignificant part of
the total computational expense, however, as will become clear in § 4. We need to use
a short pipe to keep the total computational expense manageable.

The pipe we use is too short to capture transitional structures such as puffs. To
add to the earlier discussion of the relevance of short-pipe computations of travelling
waves, we mention the work of Mellibovsky & Meseguer (2006) which seems to
suggest that transition scenarios can be independent of pipe length. The logic which
is used to find disturbances of the laminar solution that hit the asymmetric travelling
wave makes fairly intricate use of the dynamical properties of the travelling wave.
More work is needed to determine if the same logic is applicable to transition in pipes
of more realistic length.

2. Preliminaries
The code for direct numerical simulation of pipe flow uses cylindrical coordinates

with u, v and w being the components of the velocity in the radial (r), polar (θ)
and axial (z) directions, respectively. The boundary conditions are no-slip at the walls
and periodic in the z direction with constant mass flux. The length of the periodic
domain in the z direction is denoted by 2πΛ. We use Λ = 1 throughout. The units for
distance and velocity are chosen so that the pipe radius is 1, and the Hagen–Poiseuille
profile is given by w = 1 − r2. The Reynolds number, Re, is based on the pipe radius,
centreline velocity of the Hagen–Poiseuille flow and kinematic viscosity ν. The unit of
mass is chosen so that the density of the fluid is 1. The units and boundary conditions
follow those of Faisst & Eckhardt (2004).

Let w̄(r) denote the mean velocity in the axial direction and v̄(r) the mean velocity

in the polar direction. The mass flux per unit area is given by 2
∫ 1

0
rw̄(r) dr and is

equal to 1/2 for all velocity fields that obey the boundary condition. The pressure
gradient necessary to maintain constant mass flux varies from instant to instant. For
the Hagen–Poiseuille flow, it is −4/Re.

The spatial discretization is spectral. The radial component of the velocity u is
represented as

u(r, θ, z) =

n=N∑
n=−N

m=M∑
m=−M

ûn,m(r) exp(imθ) exp(inz/Λ). (2.1)

For the velocity field to be regular at r = 0, the coefficients ûn,m(r) must be even
functions of r for odd m and odd functions of r for even m. Thus the functions
can be reconstructed by storing their values at r = cos(iπ/L), i = 0, 1, . . . , (L − 1)/2.
We assume L odd so that there is no point at r = 0 (Trefethen 2000). The radial
component of vorticity is denoted by ξ . It is represented in the same way u is
represented. The other quantities used to represent the velocity field are v̄(r), which
is an odd function of r , and w̄(r), which is an even function of r . The velocity field is
constructed using u, ξ, v̄, w̄ and the divergence-free condition. The advection term is
dealiased using the Orszag 3/2 rule. All the computations use (N, M, L) = (16, 18, 81).
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220 D. Viswanath and P. Cvitanović

The rate of energy dissipation per unit mass is given by 2D/Re, where D is the
integral of

1

4π2Λ

(
1

r2

(
u2 + v2 − 2

∂u

∂θ
v +2u

∂v

∂θ

)
+

∑
U=u,v,w

(
∂U

∂r

)2

+

(
∂U

∂z

)2

+
1

r2

(
∂U

∂θ

)2)
(2.2)

over the volume of the pipe. In its more familiar form, D is the integral of the sum
of the norms of gradients of the three components of the velocity field (Wedin &
Kerswell 2004). The term under the summation in (2.2) gives |∇U |2 for a scalar
field U (r, θ, z). The terms outside the summation in (2.2) arise as cross-terms when
that operator is applied to u cos θ − v sin θ and u sin θ + v cos θ . The explicit form of
(2.2) displays the 1/r2 singularities that are hidden in vector notation. Because those
singularities cancel at r = 0, the numerical evaluation of D in a spectral code is a
delicate matter. The rate of energy input per unit mass is given by 2I/Re, where

I = − Re

4π2Λ

∫
∇·(pu), (2.3)

with p being pressure and with the integral being over the volume of the pipe. For
the Hagen–Poiseuille laminar flow, both D and I evaluate to 1.

Figure 1 shows the asymmetric travelling-wave solution first computed by Pringle &
Kerswell (2007). To compute that travelling wave, we added rolls which approximate
the pattern in figure 1 to the laminar solution and evolved the velocity field to allow
the streaks to develop. The resulting velocity field was used as the initial guess for the
generalized minimal residual–hookstep (GMRES-hookstep) method, which converged
without a hitch. The number of active degrees of freedom in the representation of a
velocity field is (L−2)+((2N −1)(2M −1)−1)(L−3)/2. The method uses translation
operators to handle the invariance of the pipe-flow equation with respect to shifts
along z and rotations along θ . These operators are given by

T1u(r, θ, z) =
∑
m,n

imûn,m(r) exp(imθ) exp(inz/Λ)

T2u(r, θ, z) =
∑
m,n

(in/Λ)ûn,m(r) exp(imθ) exp(inz/Λ), (2.4)

where the indices m, n correspond to the representation (2.1). A detailed description
of the GMRES-hookstep method can be found elsewhere (Viswanath 2007, 2008a).

The equations of pipe flow are unchanged by the shift–reflect symmetry:

u(r, θ, z) → u(r, −θ, z + πΛ),

v(r, θ, z) → −v(r, −θ, z + πΛ),

w(r, θ, z) → w(r, −θ, z + πΛ). (2.5)

The velocity field of the travelling wave of figure 1 is also unchanged by this discrete
symmetry.

The magnitudes of disturbances and the norms of velocity fields are given in § 4
and other places, using the square root of kinetic-energy norm. The kinetic energy,
which is reported in tables such as table 1, is normalized to be 1 for laminar flow.

To conclude this section, we mention a technical point about pipe-flow simulation
using spectral codes that appears not to have been discussed in the literature. Once the
advection term is computed, the equations for evolving the modes decouple for pairs
(m, n) such that the resulting equations depend only upon r for a fixed (m, n). The
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Stable manifolds and the transition to turbulence in pipe flow 221

Re λ1 λ2 λ3

2000 0.03247 0.00897 −0.00594
2500 0.03049 0.00725 −0.02282 + i0.02041
3000 0.02861 0.00631 −0.01978 + i0.01664
4000 0.02529 0.00531 −0.01536 + i0.01190

Table 2. The only unstable eigenvalues are λ1 and λ2; λ3 has the greatest real part among the
stable eigenvalues whose eigenvectors lie in the shift–reflect invariant subspace.

decoupled equations will have terms with the factor m2/r2+n2/Λ2 in the denominator,
and because of that factor the terms will have a singularity at the point r = −imΛ/n

in the complex plane. If the number 2N of grid points in the streamwise direction is
increased while keeping the pipe length 2πΛ fixed, that singularity moves closer to
the real line with greater values of n now being allowed. When the singularity moves
closer to the real line, one has to use more grid points in the r direction to solve the
decoupled equations with the same level of accuracy (Trefethen 2000).

3. Unstable manifold of the travelling wave
To find disturbances of the laminar solution that evolve and hit the asymmetric

travelling wave, it is essential to understand the unstable directions and the unstable
manifold of that travelling wave. Suppose we disturb the laminar solution using rolls
of the appropriate form and some ‘noise’, the magnitude of which is a fixed fraction of
that of the rolls, to introduce streamwise dependence. The disturbed state will evolve
and develop streaks. At the point of closest approach to the travelling wave, we can
think of the evolving velocity field as the travelling wave plus two components, one
of which is a combination of the stable eigenvectors of the travelling wave with the
other being a combination of the unstable eigenvectors. The stable eigenvectors will
decay under evolution. However, the component along the unstable eigenvectors will
be amplified and will take the evolving velocity field away from the travelling wave.
To ensure that the disturbed state hits the travelling wave, the disturbance has to
be arranged in such a way that the evolving velocity field is free of the unstable
directions as it approaches the travelling wave.

Such a disturbance is easiest to arrange if the travelling wave has only one unstable
direction. The component along that direction at the point of closest approach can be
eliminated by simply varying the magnitude of the initial disturbance. However, the
asymmetric travelling wave has two unstable directions as shown in table 2. The two
unstable eigenvalues λ1 and λ2 decrease with increasing Re at rates given by Re−0.41

and Re−0.87, respectively (Viswanath 2008a). Table 2 also shows the leading stable
eigenvalue.

Figure 2 gives a more complete idea of the spectrum of the linearization around
the asymmetric travelling wave. The spectra at different Re were computed using the
Arnoldi iteration. Some of the interior eigenvalues near the centres of the circles in
figure 2 are omitted. But we are certain that no unstable eigenvalues are omitted. In
addition, we have verified that none of the eigenvalues in the figure is spurious.

Data for the unstable eigenvectors is given in table 3. Most of the kinetic energy of
the travelling waves themselves is in the n = 0 (or mean) mode, as shown in table 1.
Much of the kinetic energy remains in n = 0 for the λ1 eigenvector, although n = 1
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Figure 2. For eigenvalues λ of the travelling wave, the plots show exp(10λ) as circles for easier
visualization. If the corresponding eigenvector lies in the shift–reflect invariant subspace, the
circle is solid.

λ1 λ2

Re ke0 ke1 ke2 ke3 ke0 ke1 ke2 ke2

2000 6.9 × 10−1 2.6 × 10−1 4.9 × 10−2 1.1 × 10−3 1.2 × 10−1 7.4 × 10−1 1.4 × 10−1 3.1 × 10−3

2500 7.0 × 10−1 2.6 × 10−1 4.2 × 10−2 7.6 × 10−4 1.1 × 10−1 7.7 × 10−1 1.2 × 10−1 2.3 × 10−3

3000 7.0 × 10−1 2.6 × 10−1 3.8 × 10−2 6.2 × 10−4 1.1 × 10−1 7.8 × 10−1 1.1 × 10−1 1.9 × 10−3

4000 7.0 × 10−1 2.6 × 10−1 3.2 × 10−2 4.9 × 10−4 1.1 × 10−1 7.9 × 10−1 9.4 × 10−2 1.5 × 10−3

Table 3. The kinetic energies in the n = 0, ±1, ±2, ±3 modes of the λ1 and λ2 eigenvectors.
The eigenvectors are normalized to have kinetic energy equal to 1.

λ1 mode λ2 mode

Figure 3. Contour plots of the z-averaged streamwise velocity for the two unstable
eigenvectors at Re = 2500. If the eigenvectors are normalized to have unit kinetic energy,
the level curves are equispaced in the intervals [−1.38, 1.66] and [−1.01, 0.34]. The lighter
regions correspond to higher values. At other values of Re, the signs of the eigenvectors are
chosen to yield plots similar to the ones above.

now has more than a quarter of the kinetic energy. For the λ2 eigenvector, the n = 1
mode dominates.

Figure 3 shows that the λ1 eigenvector weakens the high speed streaks of the
travelling wave. The effect of adding the λ2 eigenvector to the travelling wave would
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Figure 4. Plots of the mean streamwise flow w̄(r) at various values of Re. The eigenvectors
are normalized to have kinetic energy equal to 1.

be to displace the high-speed streaks to a more symmetrical position. It must be
noted, however, that the plot of the streaks of the λ2 eigenvector is not as meaningful
because the n = 1 mode is dominant. The two plots in figure 3 are used to assign
positive and negative signs to the eigenvectors at different Re in a consistent manner.
When comparing cross-sections of velocity fields to travelling-wave solutions (Hof
et al. 2004; Eckhardt & Schneider 2008; Willis & Kerswell 2008), it may be worthwhile
to look at the unstable eigenvectors of the travelling waves. The inevitable deviations
from the streak patterns of the travelling waves may correlate with the streak patterns
of the unstable eigenvectors.

Figure 4 shows the mean streamwise flow that corresponds to the λ1 and λ2

eigenvectors. To form an idea of the distortion to the mean flow of the laminar
solution when those eigenvectors are added as disturbances, the plots in figure 4 must
be scaled by a factor of 1/50 or less.

Figure 5(a) shows that if the asymmetric travelling wave is disturbed with a small
and positive multiple of the λ1 eigenvector, the disturbed state evolves and becomes
laminar uneventfully. That is unsurprising because the disturbance has the effect of
weakening the high-speed streaks. In contrast, adding a negative multiple leads to
what appears to be sustained turbulence at Re = 2500. It is easily noticeable that
energy dissipation D is greater than energy input I when the plots in figure 5(a) spike
up but is lesser when the plots dip down. Thus the kinetic energy of the velocity field
as a whole decreases during the spikes but increases during the dips. The decrease of
kinetic energy during a spike is well correlated with flattening of the mean velocity
profile.

Figure 6(a) shows a schematic sketch of the unstable directions of the asymmetric
travelling wave while distinguishing between directions that turn turbulent and ones
that do not. Figure 5(b) corresponds to two trajectories close to the border between
turbulent and laminar directions. In that figure, the trajectories near the border
separate after t = 300. By refining the border, it appears that the point of separation
can be deferred indefinitely with a view to locating edge states.

To better visualize the unstable manifold, we adopt a technique introduced by
Gibson et al. (2008) with the aim of getting good phase-space visualizations of
turbulent trajectories. The velocity field is a point in phase space, and the evolution
of an initial velocity field with respect to the incompressible Navier–Stokes equation
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Figure 5. (a) Plots of D (solid) and I (dashed) against time at Re = 2000 and Re = 2500.
For both values of Re, perturbation of the travelling wave by a positive multiple of the λ1

eigenvector shown in figure 4 leads to rapid laminarization (thin lines at lower left corner).
Perturbation by a negative multiple leads to a long transient at Re = 2000 and what appears
to be sustained turbulence at Re = 2500. (b) Plots close to the edge.

is a trajectory in that phase space. Because the phase space is infinite-dimensional
and does not lend itself to plots directly, one has to use projections. An obvious
projection would be to pick some Fourier–Chebyshev modes from the discretization
of the velocity field. Although such projections have been employed, they have a
number of shortcomings. The choices of the component of the velocity vector and
of the mode of that component are both arbitrary. The component and the mode
that are chosen capture only a partial aspect of the velocity field. As a result of these
shortcomings, such projections look messy, and one cannot form a good idea of the
dynamical structures in phase space from such projections.

Following Gibson et al. (2008), the projection we use picks a set of velocity fields
that appears well suited to visualize trajectories on the unstable manifold. Let uT W be
the velocity field of the travelling wave, and let u′ and u′′ be an orthonormal basis for
its unstable space. The notion of orthogonality between velocity fields corresponds
to the kinetic-energy norm. We will choose u′ to be the same direction as the leading
eigenvector. With that choice the second eigenvector at Re = 2500 is approximately
−0.13u′ +0.99u′′. For each velocity field that satisfies the shift–reflect symmetry (2.5),
we obtain a projection in terms of uT W , u′ and u′′. The velocity fields u′ and u′′ satisfy
the no-slip boundary condition and have zero mass flux.
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Figure 6. (a) A schematic sketch of directions on the unstable manifold, where the two
eigenvectors are labelled. The trajectories initiated in the dashed directions undergo turbulent
episodes. (b) Projections of trajectories whose initial points are obtained by perturbing the
travelling wave at Re = 2500 by a combination of the λ1 and λ2 modes. The initial points
are all near (0, 0). The trajectories that laminarize turn right, while those that transition to
turbulence (dashed) turn left.

Given a velocity field u that satisfies the shift–reflect symmetry, one can decompose
it as u − uT W = c0u′ + c1u′′ + r, where the remainder r is orthogonal to the plane of
the eigenvectors. One could use c0 and c1 to represent u in a plot, but that would be
unsatisfactory. The problem is that one can translate uT W in the streamwise direction
and obtain different velocity fields that stand for the same wave. In order to eliminate
dependence on translations in the z direction, we shift the velocity field u by sz in the
z direction and consider

u(r, θ, z + sz) − uT W = c0u′ + c1u′′ + r sz
. (3.1)

The shift sz is chosen to minimize |r sz
|, and the axes of the projection, c0 and c1, are

the coefficients for that shift. The need to pick a shift sz arises because the equations
of pipe flow are unchanged by translations along z. The shift–reflect symmetry is
broken by rotations in the θ direction. Since we have restricted ourselves to vector
fields with the shift–reflect symmetry, shifts in θ are not considered in (3.1). The need
to factor out continuous symmetries arises in ordinary differential equations (ODEs)
(Gilmore & Letellier 2007) and partial differential equations (PDEs) such as the
Kuramoto–Sivashinsky equation as well (Cvitanović, Davidchack & Siminos 2007).

Figure 6(b) shows trajectories on the unstable manifold using such a projection. The
initial velocity fields were of the form uT W +εau′+εbu′′, with ε = ×10−4 and a, b being
scalars. In all, we considered 10 velocity fields corresponding to (a, b) = (±1, ±1), the
four coordinate directions, and two directions along the second eigenvector. Since ε

was small, all these velocity fields were very nearly on the unstable manifold. The
distinction between trajectories that laminarize uneventfully and those that undergo
a turbulent episode is clear in Figure 6(b).

In the next section, we return to such projections of the unstable manifold to
partially justify arguments used to find disturbances of the laminar flow which evolve
and hit the asymmetric travelling wave.
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4. Hitting the travelling wave at Re = 2000 and Re = 2500

The fr column of table 4 gives the norm of the rolls. The velocity field of the
rolls, denoted by ur , is obtained by averaging the travelling wave in the streamwise
direction and discarding the streamwise component of the velocity. The norms of the
unstable eigenvectors are denoted by f1 and f2. The velocity fields of the eigenvectors
are denoted by u1 and u2. The laminar solution is uL, and the travelling wave is uT W .

The distance δ of closest approach listed in table 4 is obtained as follows: The
Navier–Stokes equation is integrated from the initial velocity field uL + fr ur + f1u1 +
f2u2. The initial velocity field has the shift–reflect symmetry, and so does ut , where
ut is the velocity field at time t . Define

δ(fr, f1, f2) = min
t�0

min
0�sz<2πΛ

‖ut (r, θ, z + sz) − uT W ‖. (4.1)

To compare ut and uT W , one has to minimize over shifts sz for the same reason as
in (3.1). To find the minimizing shift sz, we first try sz = πΛk/N , 0 � k < 2N . Using
that data, an interval that contains the minimum is found, and that interval is refined
recursively to a depth equal to 30. We refer to the result of the inner minimum in
(4.1) as the distance between uT W and ut . This method of finding that distance is
expensive, with the cost of finding the distance being more than 20 times the cost
of a single time step. However, it finds the distance with an accuracy of four or five
digits.

Given the expense of finding the distance between ut and uT W , the distance being
the inner minimum in (4.1), care has to be exercised in finding the outer minimum
over t . If the distance is computed after every time step, the cost of the computation
becomes prohibitive. The wall time for integrating a velocity field for a time interval
of 100 is about an hour on an Opteron processor but becomes more than 20 hours
if the distance to uT W is computed after every time step. For an initial waiting time
when the streaks are still forming, we do not compute the distance at all. This waiting
time is longer for larger Re. Thereafter the distance is computed every 100 time steps
only, a time step being 0.01. As the distances vary smoothly as a function of time,
we use polynomial extrapolation to predict if the distance function has a minimum
within the next 100 time steps or not. If it is predicted to have a minimum within
the next 100 time steps, we measure the distance every 10 time steps. If the distance
function is predicted to have a minimum within the next 10 time steps, we measure
the distance after every time step. The value of δ is the first local minimum found in
this manner, and it is very probably also the global minimum over t . The time step can
be successively decreased to get finer estimates of δ, but that was not implemented.

The times T at which the minima were attained are given in table 4; T is measured
with a precision of 0.01 in only two lines of that table. The measurements in the
other lines have a precision of 0.1. If the last four columns of table 4 are compared
with the last four columns of table 1, the comparison confirms that the approach to
the travelling wave is closer when δ is smaller. Figure 7 leaves no room for doubt
that the first disturbances listed for Re = 2000 and Re = 2500 in table 4 evolve and
hit the corresponding travelling waves. The smallest distance δ from the travelling
wave is realized after time T , which is listed in table 4. Figure 7 shows that the plots
of the distances from the travelling wave and the laminar solution both become flat
around t = T . The disturbance moves away from the laminar solution rapidly at
t = 0. In contrast, for heteroclinic connections there are two flat regions in t , which
correspond to time spent in the neighbourhoods of the invariant solutions joined by
the heteroclinic connection (Halcrow et al. 2009).
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fr f1 f2 T δ ke0 ke1 ke2 ke3

7.084220 × 10−3 −2.114944 × 10−2 0 371.49 8.1 × 10−4 9.8 × 10−1 4.3 × 10−4 2.2 × 10−5 2.1 × 10−7

1.242439 × 10−2 1.890000 × 10−2 0 219.70 8.9 × 10−3 9.8 × 10−1 3.3 × 10−4 1.4 × 10−5 1.0 × 10−7

9.119378 × 10−3 0 1.720663 × 10−2 257.80 4.2 × 10−3 9.8 × 10−1 4.1 × 10−4 2.0 × 10−5 1.9 × 10−7

1.017473 × 10−2 0 −1.400000 × 10−2 240.90 5.5 × 10−3 9.8 × 10−1 3.7 × 10−4 1.7 × 10−5 1.4 × 10−7

9.048182 × 10−3 3.923814 × 10−4 1.757170 × 10−2 281.40 2.9 × 10−3 9.8 × 10−1 4.2 × 10−4 2.2 × 10−5 2.0 × 10−7

5.687034 × 10−3 −1.643322 × 10−2 0 323.84 2.9 × 10−3 9.8 × 10−1 2.5 × 10−4 1.0 × 10−5 7.7 × 10−8

9.591329 × 10−3 1.562075 × 10−2 0 318.60 7.7 × 10−3 9.8 × 10−1 3.1 × 10−4 1.5 × 10−5 1.4 × 10−7

7.049209 × 10−3 0 1.420195 × 10−2 268.00 4.8 × 10−3 9.8 × 10−1 2.4 × 10−4 9.4 × 10−6 6.9 × 10−8

7.986395 × 10−3 0 −1.115761 × 10−2 309.80 6.0 × 10−3 9.8 × 10−1 2.2 × 10−4 8.1 × 10−6 5.5 × 10−8

5.676511 × 10−3 −1.646355 × 10−2 8.768074 × 10−5 292.70 3.7 × 10−3 9.8 × 10−1 2.9 × 10−4 1.3 × 10−5 1.2 × 10−7

Table 4. Data at Re = 2000 (above the double line) and at Re = 2500 (below the double line). The various f are magnitudes of disturbances of
the laminar solution; T is the time of closest approach to the travelling wave; δ is the distance from the travelling wave at that time. The last
four columns give the kinetic energies in the n = 0, ±1, ±2, ±3 modes at the point of closest approach.

https://doi.org/10.1017/S0022112009006041
Downloaded from https://www.cambridge.org/core. Univ of Michigan Law Library, on 08 Mar 2019 at 18:14:28, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/S0022112009006041
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


228 D. Viswanath and P. Cvitanović
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Figure 7. Distances from the laminar solution (dashed) and the travelling wave (solid). The
three pairs of curves correspond to the first line with Re = 2000 in table 4 and the first two
lines with Re = 2500. Data in that table may be used to deduce the assignment of curves
above the rows in that table.

We are yet to explain the method used to find the numbers fr , f1 and f2 in table 4.
With each of those disturbances to the laminar solution, the disturbed state lands
close to the stable manifold of the travelling wave and evolves to make a close
approach of small δ to the travelling wave. Each line in table 4 was obtained by
minimizing δ(fr, f1, f2) in different ways. The manner of minimization will now be
described.

Although δ has three arguments corresponding to three disturbances, each
minimization was two-dimensional. The unstable manifold of the travelling wave at
the Re under consideration is two-dimensional as shown by table 2. If the directions
that correspond to translating and rotating the travelling wave are ignored, the co-
dimension of the travelling wave is two. The inner minimization in (4.1) accounts
for streamwise translations, while rotations around the pipe axis would break the
shift–reflect symmetry. Thus the stable manifold is in effect a co-dimension two
object.

Suppose there is some system of coordinates for the infinite-dimensional phase
space in which the travelling wave is (0, 0, 0, . . .). Suppose further that its unstable
manifold is given by fixing all except the first two coordinates at zero and that its
stable manifold is obtained by fixing the first two coordinates at zero. To disturb
the laminar solution on to the stable manifold, the first two components must be
zeroed out. Generically, it is impossible to zero out two components by varying the
amplitude of a single disturbance. That is why we varied two disturbances.

All the rows of table 4 have fr > 0. Adding the rolls to the laminar solution causes
the flow to develop streaks of approximately the right form. But the key to hitting the
travelling wave is to disturb the laminar state in such a way that the evolving velocity
field is free from unstable directions as it approaches the travelling wave. If we were
allowed to make disturbances near the travelling wave, we could simply eliminate the
unstable directions. Since the disturbances are made to the laminar solution, we have
to somehow guess the directions at t = 0 which evolve into unstable directions at
t = T , the time of closest approach. Analysis can possibly suggest a better choice,
but we simply used the unstable directions u1 and u2 to disturb the laminar flow. In
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Figure 8. Similar to figure 6(a), but the thick lines show the projections of trajectories at
Re = 2500 which are initialized using the disturbances in table 4.
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Figure 9. The axes correspond to the T and δ columns in table 4. The plot is for Re = 2000
and shows the progress of a single minimization (first line of table 4). Each point corresponds
to a certain stage in the sequence of optimizations used to find a disturbance of the laminar
flow such that the disturbed flow evolves and hits the travelling wave.

addition the magnitude of the rolls themselves can be varied to get a direction that
has a non-zero component along the unstable manifold at t = T .

Each row of table 4 that has f1 = 0 and f2 = 0 was obtained by fixing that
disturbance at 0 and minimizing over the other two disturbances. In addition, the
sign of the other disturbance that adds an eigenvector was prescribed. Thus there
are four rows of that type for Re =2000 and Re = 2500. For the last row with
Re = 2000 or Re =2500, fr was fixed, while f1 and f2 were varied. Figure 8 shows
that for disturbances at Re= 2500, the flow evolves to a state in which its dynamics
is governed mainly by the unstable manifold of the travelling wave, thus partially
supporting the reasoning used to find those disturbances.

When δ(fr, f1, f2) is minimized numerically, the disturbances found at successive
stages of the minimization give smaller δ but with larger values of T , the time of
closest approach to the travelling wave, as shown in figure 9. For the theoretical ideal
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δ = 0, T would be infinite. Thus the numerical optimization becomes progressively
more expensive.

A severer impediment to numerical minimization is the non-smooth dependence
of δ on the disturbances when δ = 0. Because the time to hit the travelling wave
diverges, even a small change in the disturbances causes a big change in the value
of δ.

The numerical optimization was implemented using MATLAB’s fmincon(), which
allows constraints to be placed on the values of fr or f1 or f2. The C++ code for
computing the function δ(fr, f1, f2) was invoked from MATLAB. The unconstrained
version fminunc() was not used because it tends to take such large steps while varying
fr or f1 or f2 that the numerical integration of the Navier–Stokes equation becomes
unstable. Because of the non-smoothness, a nonlinear least squares solver, such as
MATLAB’s lsqnonlin(), might be a better option than fmincon(); lsqnonlin() minimizes√

|x + 2| from x = 3 with just 6 function evaluations, while fmincon() takes 63 function
evaluations to find a slightly worse approximation to the minimum. It was not used,
however, because it does not provide the facility to constrain the arguments.

The choice of initial guesses for the disturbances is not much of an issue because
the numerical optimization is relatively efficient at the early stages. However, as δ = 0
is approached, the optimization routine tries unrealistically large steps, necessitating a
lot of wasteful backtracking. It is difficult to assess the quality of the search directions.
Each row in table 4 required at least 200 hours of computing and often significantly
more. The first rows with Re= 2000 and Re = 2500 required much more than 1000
hours to attain smaller values of δ. The computations required repeated manual
intervention to reset the parameters to fmincon(), which is the reason we were able to
run the numerical optimization longer for only two rows of table 4.

Table 5 shows that the magnitude of the disturbances of the laminar flow required
to hit the travelling wave diminishes with Re. The quality of the approach to the
travelling wave degrades with increasing Re. The quality of the approach can be
assessed using the δ column of table 5 and by comparing the last four columns of
that table to the last four columns of table 1. We are not certain why the numerical
minimization has worse performance for increasing Re, although it could be because
the non-smoothness issue gets worse as Re increases. The tendency of the eigenvalues
to approach the imaginary axis at varying rates as Re is increased may have something
to do with it.

5. Conclusion
The aim of this paper was to find a method to disturb the laminar flow such that the

disturbed state evolves and hits a given travelling wave. For the asymmetric travelling
wave of Pringle & Kerswell (2007), we showed that certain linear combinations of
rolls and the two unstable directions generate disturbances of the laminar solution
that evolve and hit the travelling wave. Numerical minimization was used to find
linear combinations that achieve that effect. As the numerical minimization comes
closer and closer to finding disturbances that evolve and hit the travelling wave, the
minimization problem becomes non-smooth.

It is reasonable to conjecture that this method of disturbing the laminar flow so
that it evolves and hits a given travelling wave is applicable to other lower branch
solutions of pipe flow and the channel flows. However, the computational effort will
increase with the number of unstable directions. As indicated in the text, it may
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Re fr f1 f2 T δ ke0 ke1 ke2 ke3

2000 9.119378 × 10−3 0 1.720663 × 10−2 257.80 4.2 × 10−3 9.8 × 10−1 4.1 × 10−4 2.0 × 10−5 1.9 × 10−7

2500 7.049209 × 10−3 0 1.420195 × 10−2 268.00 4.8 × 10−3 9.8 × 10−1 2.4 × 10−4 9.4 × 10−6 6.9 × 10−8

3000 6.466047 × 10−3 0 −9.890996 × 10−3 356.61 7.0 × 10−3 9.8 × 10−1 2.2 × 10−4 9.4 × 10−6 8.4 × 10−8

4000 4.600000 × 10−3 0 8.829559 × 10−3 386.95 9.5 × 10−3 9.8 × 10−1 6.9 × 10−5 1.5 × 10−6 7.1 × 10−9

Table 5. Data at various Re. The columns are as in table 4.
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be possible to use analysis to find disturbances that work better than the unstable
eigenvectors of the travelling wave.

It is yet unknown if spatially localized structures such as puffs in transitional
pipe flow and turbulent spots in plane Couette flow correspond in their entirety to
invariant solutions of the Navier–Stokes equation. The existence of such invariant
solutions is a topic worthy of investigation. If such solutions are indeed found, the
logic used to find disturbances that evolve and hit the asymmetric travelling wave
will become applicable to transition in pipes of realistic lengths with consequences
for experimental investigations.

The authors thank the referees and J. F. Gibson for helpful discussions. They are
particularly grateful to a referee for catching a mad misstatement in the caption of
figure 9. The Center for Advanced Computing at the University of Michigan provided
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