
 

 
Complex Singularities and the Lorenz Attractor
Author(s): Divakar Viswanath and  Sönmez Şahutoğlu
Source: SIAM Review, Vol. 52, No. 2 (June 2010), pp. 294-314
Published by: Society for Industrial and Applied Mathematics
Stable URL: https://www.jstor.org/stable/20780145
Accessed: 08-03-2019 18:31 UTC

 
JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide

range of content in a trusted digital archive. We use information technology and tools to increase productivity and

facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

 

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at

https://about.jstor.org/terms

Society for Industrial and Applied Mathematics is collaborating with JSTOR to digitize,
preserve and extend access to SIAM Review

This content downloaded from 141.211.4.224 on Fri, 08 Mar 2019 18:31:24 UTC
All use subject to https://about.jstor.org/terms



 SIAM Review
 Vol. 52, No. 2, pp. 294-314

 (c) 2010 Society for Industrial and Applied Mathematics

 Complex Singularities and the
 Lorenz Attractor*

 Divakar Viswanath^

 S?nmez ?ahutoglu*

 Abstract. The Lorenz attractor is one of the best-known examples of applied mathematics. However,
 much of what is known about it is a result of numerical calculations and not of mathemat
 ical analysis. As a step toward mathematical analysis, we allow the time variable in the
 three-dimensional Lorenz system to be complex, hoping that solutions that have resisted
 analysis on the real line will give up their secrets in the complex plane. Knowledge of
 singularities being fundamental to any investigation in the complex plane, we build upon
 earlier work and give a complete and consistent formal development of complex singular
 ities of the Lorenz system using the psi series. The psi series contain two undetermined
 constants. In addition, the location of the singularity is undetermined as a consequence
 of the autonomous nature of the Lorenz system. We prove that the psi series converge,
 using a technique that is simpler and more powerful than that of Hille, thus implying a
 two-parameter family of singular solutions of the Lorenz system. We pose three ques
 tions, answers to which may bring us closer to understanding the connection of complex
 singularities to Lorenz dynamics.
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 I. Introduction. The nonlinear system of equations

 dx _^ * x = ( - ),
 dy ? = 2Sx ? y ? xz, dt y
 dz

 (1.1) _ = _8z/3 + a^

 which is named after Lorenz, gives the best-known example of a strange attractor.
 Lorenz [21, 22] derived this system to argue that the unpredictability of weather is due
 to the nature of the solutions of the Navier-Stokes equations and not due to stochastic
 terms of unknown origin, his point being that a deterministic system could possess an
 attracting and invariant set on which the dynamics is bounded and linearly unstable.

 When such strange attractors exist, trajectories are chaotic and appear random.
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 While Lorenz [21, p. 141, 1963] could write that the atmosphere was not nor
 mally regarded as deterministic, we now know that the incompressible Navier-Stokes
 equations by themselves explain a remarkable wealth of turbulence phenomena in
 cluding coherent motions in the near-wall region, the law of the wall, intermittency,
 and vortex structures in fully developed turbulence [2]. The density and temperature
 of the atmosphere vary with altitude, and there is significant electrical activity in the
 atmosphere that is sustained by about 40,000 thunderstorms that occur around the
 world in any single day [6, Chapter 9]. If we nevertheless think that the physics of
 the atmosphere is deterministic, Lorenz and his system are partly responsible.

 Lorenz's point of view was dynamical. He viewed the state of (1.1) as a point
 in R3 and its solutions as trajectories in R3. The dynamical point of view has over

 whelmingly dominated work on the Lorenz system, and Lorenz's original paper [21]
 has remained an outstanding introduction to dynamics. In it, a careful reader can find
 discussions of numerical errors, of concepts of stability, of symbolic dynamics (aspects
 of which Lorenz seems to have rediscovered for himself), of the density of periodic
 solutions on the Lorenz attractor, and of the fractal nature of the Lorenz attractor.

 The point of view in this paper, unlike Lorenz's, will be mainly function theoretic.
 We view t in (1.1) as a complex variable and x, y, as analytic functions of a complex
 variable. Our interest is in triples of analytic functions which satisfy (1.1). Our hope
 is that an investigation in the complex plane will open a route to the mathematical
 analysis of the Lorenz system.

 For the most part, we deal with certain singular solutions of the Lorenz system,
 which will be introduced momentarily. As the right-hand side of the Lorenz system
 (1.1) is analytic, every solution of the Lorenz system admits analytic continuation to
 the complex plane. For some solutions, the analytic continuations have singularities
 of the form we deal with, as indicated by numerical results summarized in section 5.
 In the second part of this introduction, we pose three questions to help connect the
 complex singularities with Lorenz dynamics.

 From residue integration, the method of steepest descent, and the use of deforma
 tion of contours to effect analytic continuation of certain special functions, we know
 that knowledge of singularities is often useful to investigations in the complex plane.
 This observation explains our focus on singular solutions of the Lorenz system.

 I.I. Psi Series Solutions of the Lorenz System. The most common types of
 singularities are poles, algebraic branch points, and logarithmic branch points. The
 singularities of the Lorenz system that we examine are of none of these types but are
 given by psi series representations.

 Definition 1.1. A logarithmic psi series centered at to is a series of the form
 Yln^-NPriiv)^ ? to)n, where is an integer, = log(?(i ? to)), and each pn is a
 polynomial in . In the definition of , b is a complex number with \b\ ? 1, with
 b = ?i often being convenient choices.

 Throughout this paper, log will denote the principal branch of log. The choice
 of the branch is ultimately immaterial but taking ? log(?i(t ? to)) instead of

 = log(? ? to) leads to more convenient branch cuts if 9(to) < 0, as we explain
 in section 3. For a slightly different definition of logarithmic psi series, along with
 definitions of psi series of other types, see [13, Chapter 7.1]. The only type of psi
 series that arises in this paper is the type given by Definition 1.1, and by psi series
 we refer to that definition only.

 The psi series of Definition 1.1 are like the Laurent series, except that the co
 efficients are polynomials in instead of being constants. For that reason, the psi
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 series singularities were called pseudopoles by Hille [11]. Even though the coefficients
 are polynomials in 77, each nonzero term of the logarithmic psi series dominates the
 following term in magnitude in the limit t ? ?0?

 In an intriguing and original pair of papers, Tabor and Weiss [32] and Levine and
 Tabor [19] considered psi series solutions of the Lorenz system (1.1). The psi series
 they used were expressed as a double sum. Below we give the psi series in a different
 form:

 x{t) = ^iM + ( ) + pl{v)it _ to) + p2{ri)it _ tof + ... , t ? to

 y{t) = + Gofa) + Qi(v)(t -10) + Q2(v)(t -10)2 + -..,

 (1.2) z(t) = + Roto) + Ri(v)(t - to) + Mv)(t -10)2 +

 Here the P?, Q?, and Ri are polynomials in 77, where = log(?(? ??o)) as in Definition
 1.1. As the Lorenz system is autonomous, to is an arbitrary complex number. The
 fact that the leading powers of (t ? to) in the three series in (1.2) are ?1, ?2, and
 ?2 may be guessed by substituting poles (t ? to)~a, (t ? to)~^, (t ? ?o)~7 for 2

 into the Lorenz system and then solving for a, /?, 7 by matching the order of the
 left- and right-hand sides [32]. This test-power method [13, p. 90] does not always

 work and can be tricked into failing for the Lorenz system with a linear change of
 variables.

 Melkonian and Zypchen [24] have recast the psi series of Tabor and Weiss [32] into
 the formalism of Hille [11]. The formal development of psi series that we give in section
 3 is similar to that of Melkonian and Zypchen [24] but improves that of Melkonian and
 Zypchen in two respects. First, the development in section 3 shows the dependence
 on undetermined constants C and D explicitly, pointing out the occurrence of 77 and
 C in the group (77+ C). Second, we prove that the degrees of Pm+i, Qm, i?m are given
 by l112^} for m = 0,1,_The proof hinges on a surprising cancellation for m = 2.
 It is important to get such details fully right if a mathematical theory is to be set up.
 As Hille [13, p. 68] pointed out, "constants of integration play a remarkable role in
 the advanced theory of nonlinear DEs." In addition, a complete formal calculation is
 essential for a fully correct convergence proof.

 The first few coefficients of the psi series (1.2) are listed in Table 1.1. It is evident
 that 77 and C always occur in the group (77 + C). If D were real, the coefficients of the
 polynomials in (77 + C) listed in that table all would be either pure imaginary or real.

 The following is one of our main theorems. It reappears in a more specific form
 in section 4, where it is proved.

 Theorem 1.1. The psi se?es (1.2), some of whose coefficients are listed in Table
 1.1, satisfy the Lorenz system (1.1) in the disc \t ? to\ < r for some r > 0 but with
 the singular point t ? to and a branch cut deleted from the disc. The constants C and

 D are undetermined.
 The proof of this theorem is valid for any choice of the undetermined constants

 C and D, but the estimate for r depends upon the choice. A key step in its proof is
 to show the convergence of the psi series.

 An important aspect of the convergence of the Lorenz psi series is not brought
 out in Theorem 1.1. As evident from the appearance of 77 in Definition 1.1, a typ
 ical psi series will have logarithmic branch points in the ?-pla?e. To get around
 the multiple-valuedness, Theorem 1.1 fixes a branch cut in the i-plane. The branch
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 Table I.I Coefficients of the psi semes of (1.2) with as in Definition 1.1. Evidently, the degrees
 of Pm_|_i, Qm, Rm are [m+2 j for m = 0,1,2,3. The other valid choice for coefficients
 of (1.2) is obtained by changing the signs of all the Pi's and Qi }s, while leaving the Ri 's
 unchanged. The constants C and D are both undetermined.

 Q-2, R-2
 P-i, Q-i, f?-i

 Po, Qo, Rq

 2i

 ~zT7 9 1

 2i

 _ 1
 _5_
 II
 9

 Pu Qu Ri  9880
 81  i(V + C)  108

 211189 167960 /? , ^\ 972 729 v/"1"0/

 _^iF? + ^^ + c)_ P2
 Q2  10  ^ _65610 H'/T^y 2187 1 w

 _ _ 138959125 _ 58846039 (vi , ^\ _ 1444456 /_ , ^ ^ 17496_32805 ^ + 2187 l"tui ?2  f4W>_3??gUi

 ,D_ 96^11 -(|y + P3
 _ 25925844899 ? , 32 ?n 708588 1 ^ 27 LLJ
 _55n 64036692917 27 ^ 3542940

 CO "\? ' ~ /_6561 "v7~w/_

 55 , 64036692917 _ 2458513 (? r>\ J. 813193160 /? , fi\2 "27^T 3542940_2187 "tlJ'f 59049 V'tW ?3
 25 ?n _ 64653009635 ? 54 708588 ?

 2187 vi  59049 * ' ~>

 4

 cut can be dispensed with by parameterizing the Riemann surface using . A dis
 cussion of convergence in the 77-plane is found in section 4 (see Figure 4.1 in parti
 cular).

 Hille's "frontal attack" to prove convergence of psi series can be modified to apply
 to the Lorenz system [11, 24]. In an appendix, Hille [12] pointed out that his technique
 could handle only the Emden-Fowler system (see section 2) with = 2, while a more
 complicated technique due to Smith [30] could handle = 2,3,_The technique we
 use in section 4.1 is also a frontal attack, but it is a good deal more transparent than
 Hille's approach. In place of an elaborate analytic setup and an inductive hypothesis
 to bound the coefficients of the psi series, we use the Laplace transform, elementary
 combinatorics, and an elementary implicit function theorem. Our technique seems to
 extend to all the cases handled by Smith [30]. Detailed comments on this point are
 found in section 4.2.

 1.2. Complex Singularities and Lorenz Dynamics: Three Questions. From
 Theorem 1.1 we get a two-parameter family of singular solutions of the Lorenz system
 (1.1). The form of the singular solutions is given by the psi series (1.2), and the two
 undetermined constants C and D are shown in Table 1.1. The location to of the
 singularity can be anywhere in the complex t-plane.

 For some definite integrals, the singularities of the integrand and Cauchy's residue
 theorem imply the value of the integral. So we ask, what do the singular solutions of
 the Lorenz system tell us about the dynamics in R3 for real time? As the analytic
 theory of solutions of the Lorenz system is still in its infancy, a complete answer to the
 question cannot be given. Nevertheless, the question merits a thorough discussion.

 Many beautiful visualizations of the Lorenz attractor are found on the Internet.
 The visualizations originally offered by Lorenz [21] are packed with information and
 are models of concision. The Lorenz attractor is a butterfly-like subset of R3. Except
 for the fixed points, all trajectories either approach the attractor as t ?? 00 or are
 already on it.
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 Fig. I. I The periodic orbit in the first plot is labeled AB to indicate the sequence in which it moves
 between the A quadrant (with < ?16.432, y < ?16.432, = 27) and the quadrant
 (with > 16.432, y > 16.432, = 27). Each filled circle is directly below a singularity
 in the complex t-plane. To the right are plots of x(t) (solid), y(t) (dashed), z(t) (dotted)
 against real t. In the bottom plot, the location of the complex singularities of AB that are
 closest to the real line are marked as crosses. The orbit AB is computed with 547 digits of
 precision.

 Figure 1.1 shows the periodic orbit labeled AB, which resides on the attractor. A
 great advantage of computing such orbits, as opposed to arbitrary trajectories, is that
 the computations take on a definite character that makes it possible to report them
 precisely. As already mentioned at the beginning of this introduction, periodic orbits
 are believed to be dense in the Lorenz attractor. Such orbits can be computed with
 great precision. The locations of the complex singularities shown in the rightmost plot
 of Figure 1.1 were obtained by computing the orbit AB with more than 500 digits of
 precision.

 A worthy goal for the analytic theory of the Lorenz system is a proof of existence
 of periodic solutions y(t), z(t)) of the Lorenz system (1.1), where we seek a proof
 that is based solely on mental conceptions. There is a definiteness to seeking periodic
 solutions, as already pointed out. In addition, periodic orbits are key to extracting
 order from chaos, to borrow an expression from Strogatz [31]. For instance, Figure
 1.2, which illustrates the fractal property of the Lorenz attractor, was obtained by
 computing periodic orbits. The plots were computed in parallel on a machine with
 two quadcore 2.33 GHz Xeon processors. The plots took a day or two of computing.
 For the theory behind such computations, see [33] and [34].
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 Fig. 1.2 Fractal property of the Lorenz attractor. (a) 77ie intersection of an arbitrary trajectory on
 the Lorenz attractor with the section = 27. T/ie p/o? shows a rectangle in the x-y plane.
 All later plots ((b) and above) zoom in on a tiny region (too small to be seen by the unaided
 eye) at the center of the red rectangle of the preceding plot to show that what appears to
 be a line is in fact not a line. These plots and the plots of [33, 34], of which these plots
 are a refinement, appear to be the only plots made of the fractal structure of the Lorenz
 attractor.

 A proof of existence of periodic solutions of the Lorenz system (1.1) appears to
 be far away. We formulate three questions to serve as more immediate goals for the
 development of the analytic theory of the Lorenz system.

 Question 1.1. Are all singular solutions of the Lorenz system given by psi series
 expansions (1.2) with suitable choice of the undetermined constants C and D?

 The role of the undetermined constants C and D is partly shown in Table 1.1.
 Their role in the psi series is clarified further in sections 3 and 4. Lorenz [21] gave
 arguments that partially imply that a real solution of the Lorenz system cannot be
 come singular in finite time. The implication covers both increasing and decreasing
 time. In section 5, we give a complete proof of that result. Thus for solutions of the
 Lorenz system that are real for real t, the locations to of the complex singularities
 must have a nonzero imaginary part. In fact, Foias and others [8, Theorem 2.3] have
 proved that for solutions on the Lorenz attractor, the imaginary part of the location
 of the singularity in the complex ?-pla?e must exceed 0.037 in magnitude. For an
 investigation of the backward-in-ti me behavior of the Lorenz system (for real data),
 see the paper by Foias and Jolly [7].

 The techniques used to deduce psi series solutions of the Lorenz system are not
 of much use for answering Question 1.1. However, if to is any singular point of the
 Lorenz system, then \x(t)\ + \y(t)\ + \z(t)\ ?* oo as t ?> to, as implied by a slightly
 stronger theorem proved in section 5.

 For analytic functions such as the gamma and zeta functions, analytic continu
 ation into the complex plane is an important step in understanding the true nature
 of those functions [25]. The question of analytic continuation is important in the
 theory of differential equations in the complex plane as well [13]. These observations

 motivate us to ask the following question.
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 Question 1.2. Do solutions of the initial value problem for the Lorenz system
 with (x(0),y(0),z(0)) being finite (but possibly complex) admit of analytic continuation
 to the entire complex t-plane except for branch points?

 An affirmative answer to Question 1.1 appears to imply an affirmative answer to
 Question 1.2. The process of analytic continuation can be blocked by singularities.
 But if all singularities are given by psi series of the form (1.2), Theorem 1.1 implies
 that we can continue around any such singularity into a disc of finite radius around
 that singularity (radius is r in the theorem). The possibility where a succession of
 psi series singular solutions of decreasing radii of convergence accumulate on another
 singular point is easily ruled out if the answer to Question 1.1 is yes.

 Singular solutions given by psi series representations exist for plane quadratic
 systems as well as plane polynomial systems [12, 30]. Such planar systems certainly
 cannot exhibit chaos [31]. The dynamics of planar systems is tightly circumscribed
 by results such as the Poincar?-Bendixson theorem. Unlike the Lorenz system, the
 planar systems considered by Hille [12] and Smith [30] can have real solutions that
 develop singularities in finite time. Yet one is probably justified in thinking the mere
 existence of singular solutions represented by psi series is unlikely to tell us anything
 about the chaotic nature of the Lorenz system.

 This is perhaps the place to comment on the three free parameters with which
 the Lorenz system is usually written but which are given the values used by Lorenz
 [21] in (1.1). The three parameters correspond to the Rayleigh number, the Prandtl

 number, and the system size for the convection PDE from which the Lorenz system
 was derived. With regard to the choice of these parameters, there are three cases for
 which the Lorenz system admits a Laurent series as a solution [29, 32]. There are
 five other cases, due to Segur [29] and Kus [18], for which time-dependent integrals
 of motion are known. In their pioneering work, Tabor and Weiss [32] considered
 the connection between integrability and the type of the singularities. For another
 discussion of the connection between psi series and integrability, see [3].

 In addition to the integrable cases, there are a number of other regions in pa
 rameter space where the Lorenz system has nonchaotic dynamics yet admits singular
 solutions with psi series representation. In these instances, it is quite possible that
 even though the real-valued dynamics is nonchaotic, more varied solutions exist when
 complex numbers are allowed. In the case of plane polynomial systems, although the
 differential equations cannot have chaotic solutions that are real [1, 31], the equations
 may have chaotic solutions that are complex.

 It is not entirely clear how the nature of the singularity can be connected to
 chaotic dynamics. It is perhaps significant that only real solutions have a bearing on
 dynamics. Therefore we ask the following question.

 Question 1.3. // a psi series solution of the Lorenz system (1.1) of the form
 (1.2) is obtained by analytic continuation of a solution that is real for real t, what
 constraints must C, D, and to satisfy?

 The detailed development of psi series found in section 3 and partly shown in
 Table 1.1 could help answer this question. Numerical computations are also likely to
 be useful. A suspicion of ours is that the undetermined constant D is real for the psi
 series singularities of Question 1.3.

 2. A Brief History of Early Work on Psi Series. The equation of Briot and
 Bouquet

 (2.1)  t? =pt + w + F{t,w),
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 where F is a polynomial with quadratic and higher terms, seems to be the simplest
 differential equation whose singularities are given by psi series. Dulac [4, p. 368,
 1912] and Malmquist [23, p. 19, 1921] (also see Theorem 11.3.1 of [13]) proved that
 the general solution of (2.1) around t = 0 is given by a convergent psi series if is a
 positive integer. For generalizations to higher order Briot-Bouquet equations, see [17].

 In the last decade of his life, Einar Hille [10, 11, 12, 13] grew interested in the
 Emden-Fowler equation d2y/dt2 = t~2^vy1+2^p with > 1 being a positive integer.
 The Emden-Fowler equation originally arose in cosmology. The special case =
 2 is the Thomas-Fermi equation, which arose in atomic physics. After 60 years
 of encounters with differential equations, Hille wrote a splendid book on ordinary
 differential equations in the complex plane [13, 1976]. The last chapter of that book
 gives an outline of the work of Hille and Russell A. Smith [30] on psi series singularities
 of the Emden-Fowler equation. The techniques involved are highly relevant to the
 Lorenz system. In section 4, we point out that some of the theorems of Hille and
 Smith admit simpler proofs using an approach introduced in that section.

 From Hille's illuminating bibliographic discussions [13], it is clear that Dulac
 [5, 1934] was a central figure with regard to psi series, with Horn [14, 1905] being
 another early contributor. Hille does not mention Dulac's claim about one of the
 Hilbert problems, however, and indeed that claim was mistaken [15]. It appears that
 the error was related to a subtlety in the interpretation of psi series in the complex
 plane [15].

 3. Formal Development. The formal development of psi series has a history
 that goes back a hundred years or more. All formal developments proceed in a similar
 way?one begins with psi series and then determines their coefficients using a recur
 sion. In two of his papers, Hille [11, 12] gave clear and detailed formal developments.
 Our derivation is quite similar but is more careful about subtleties such as the choice
 of the branch of log, the degrees of the polynomials P?, <2?, and Ri in (1.2), and the
 role of the undetermined constants (C and D in Table 1.1).

 Since the Lorenz system (1.1) is autonomous, the choice of the location to of
 the singularity is arbitrary. For the sake of definiteness and because the primary
 interest is in solutions that are real for real t, we may assume 5ft(to) < 0 and take

 = log(?i(t ? to)) to obtain a branch cut that does not intersect the real axis.
 However, nothing changes if to is arbitrary and some other branch cut is chosen for
 defining . The choice of branch cut is equivalent to the choice of b in Definition 1.1.

 The form of the singularity is assumed to be given by (1.2):

 (3.1)  oo oo oo

 X(t)= Pm(v)(t-t0)m, y(t)= Qm(v)(t-to)m, Z(t)= ]T Rm(v)(t-to)m
 m=?1 m=?2 ra=?2

 where Pm, Qm, and Rm are polynomials in . We arrived at this form based on
 numerical work summarized in section 5. However, the credit for discovering the form
 of the psi series singularities of the Lorenz system belongs for the most part to Tabor
 and Weiss [32].

 Substituting (3.1) into (1.1) and denoting derivatives with respect to by a prime,
 we get
 (3.2a)
 oo oo

 {P'mto)+mPmto)){t-to)m-1 = 10Q_2(?-?o)-2+ (10Qm(r/)-10Pm(7/))(?-<o)'
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 m= ?1  m=-2
 (QUv) + mQm(v))(t - tor'1 = 28 pmin){t - - 3m(*7)(? - to)"

 ra=-2

 (3.2b)
 'ra+2

 m=-3\j=-l /

 m=-2
 (CW + m^C^C?-?or-1--- -?mfo)(*-*o)

 (3.2c)

 m=-2

 oo / m+2

 + Pj(r})Qm-M)(t-to)m m=-s\j=-l )

 For the psi series on either side of (3.2), a nonzero term with m = m\ is greater in
 magnitude than an m = ra2 term in the limit t to i? mi < rri2. Therefore it is
 formally consistent to equate powers of (t ? to) in increasing order.

 Equating coefficients of (t ? to)~2 in (3.2a) and of (t ?10)~3 in (3.2b) and (3.2c),
 we get P'_x - P_i = 10Q_2, <2'_2 - 2Q_2 = -P_i?_2, and R'_2 - 2R-2 = P_iQ_2.
 The degree of P_i and Q_2 in must be the same, while the degree of P_2 must be
 twice that degree, and the degree of Q_2 must be the sum of the degrees of the other
 two. The only possibility is for all the degrees to be zero. We get

 (3.3)  (P_!,g_2,P_2) = (2?,-?/5,-l/5) or (-2?, i/5,-1/5).

 We consider only the first possibility for now but will account for the second possibility
 in Lemma 3.2.

 The next set of equations is P? = 10(Q_i-P_i), Q'_x = Q-i-2iR_i+ P0/5+i/5,
 and R'_! = R-i + 2?Q_i ? ?Po/5 + 8/15. The only solution polynomial in is given
 by

 (3.4)  (P0,G-i,?-i) = (71i/9,2*,17/9).

 For m = 0,1,2,..., we equate powers of (t ? to)r'
 i0)m_1 in (3.2b) and (3.2c) to get

 in (3.2a) and powers of (f

 (3.5)

 where

 (3.6)

 Xm ?

 Pm ?  ~10Pmm
 28Pm?1 Qm?l y~]j?p Pj Rm?j ? 1

 ? gPm_l + ^2j?o PjQm-j-1

 The eigenvalues of Am are ? m + 2, ?m, and ?m ? 3. If the linear system (3.5)
 is diagonalized using the eigenvectors of Am as a basis, it turns into three scalar
 equations of the form a /a = a -h /( ) with a being ?m -h 2 or ?m or ?m ? 3
 and with / being a polynomial in each case. If a 0, we have a unique polynomial
 solution for ?(77) whose degree is the same as that of /.
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 We can have a = 0 if and only if m = 0 or m = 2. Thus if m 0 and ra 2,
 we can assert that (3.5) has a unique polynomial solution Xm and the degree of that
 solution in is the same as that of Fm.

 In the case ra = 0, Fm is a constant and the three scalar equations are of the form
 a /a = 2 +/? , a /a = ?3 +/?2, and a /a = ?s, where the ?i are known constants.
 The only admissible solution of either of the first two equations is a constant. The last
 equation, however, has the solution ^3(77 + C), where C is an undetermined constant.
 If the eigenvectors of Aq are multiplied by the respective solutions and summed, we
 get

 fPi\ /-9880i/8l\ / 0 \ (3.7) Qo = -988?/81 \ ( + C) + -349?/81 ,
 \R0J \ -988/81 / V !385/54 /

 where the factor multiplying (77 + C) is the eigenvector of A0 that corresponds to the
 eigenvalue ?m = 0.

 The matrix Am has a zero eigenvalue again when m = 2. In this case, the degree
 of Fm in 77 is 2. We would expect the polynomial solution Xm of (3.6) to be cubic.
 However, the component of Fm along the eigenvector of Am corresponding to the
 eigenvalue ? m + 2 = 0 is zero (with regard to this point, compare (2.9) of [32]).
 Therefore P3, Q2, and which make up X2, are all quadratic in as shown in
 Table 1.1. A new undetermined constant D enters at this stage. If P3, Q2, and
 R2 were cubic and not quadratic, L223^] m tne lemma below would be replaced by

 Lemma 3.1. The degrees of the polynomials Pm+i(r7)? Qm(^)? oiad Rm{r]) are at
 most for m = 0,1,2,....

 Proof For m = 0,1,2, the lemma can be verified explicitly using Table 1.1. If
 the maximum degree of a component of Xk is dk for 0 < k < ra, (3.4) and (3.6) imply
 that the degree of Fm is at most

 max (dj-i -f dm_j_i), 0<j<m

 where we assume m > 3 and take d-\ =0. We use the inductive hypothesis and note

 dj-i + dm-j-i <

 for 0 < j < m to complete the proof. The second inequality above is an equality for
 odd j.

 It appears as if the degrees in Lemma 3.1 are actually equal to L22^]- To prove
 as much, one has to rule out cancellations that can happen in a variety of ways, which
 may or may not be worth the trouble. Below we give a formula for the polynomial
 solution Xm of (3.5) that is easily derived using the variation of constants formula
 and integration by parts:

 I m+2 I
 2 rl3 TP

 (3-8) A
 3=0 1

 for ra > 3. The correctness of (3.8) can be verified by direct substitution into (3.5).
 The lemma below summarizes the discussion in this section.

 3 + 1  +
 ra  3 + 1  < ra + 2
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 Fig. 3.1 Schematic plot of the location of the singularities in the t-plane for an orbit such as AB.
 The singularities are shown as red spots and the branch cuts are dashed. Only singularities
 within a single period are shown in the t-plane (compare Figure 1.1).

 Lemma 3.2.
 (i) For the coefficients Pm+i, Qm, Rm shown in Table 1.1 for -2 < m < 3

 and defined for m > 3 by (3.6) and (3.8), the psi senes (3.1) (or {1.2))
 satisfy the Lorenz system (1.1) formally. The location of the singularity to is
 arbitrary and two undetermined constants, C and D, occur in the psi se?es.
 The constant C and always occur in the group ( + C).

 (ii) Another formal solution is obtained by flipping the signs of all the 's and
 the Q's while leaving the R's unchanged.

 (iii) For the solution to be formally valid, can be defined as \og(b(t - to)) for any
 complex number b with \b\ = 1.

 Proof For the part about flipping signs, note that the Lorenz system is unchanged
 by the transformation (x,y, ) ?? (?x,-y,z). More specifically, note that flipping
 signs of the P's and the Q's changes the sign of the first two components of Fm in
 (3.6) but not that of the third component.

 This other formal solution accounts for the second possibility in (3.3).
 If the psi series singularity is an analytic continuation of a solution that is real

 for real ?, the location to of the singularity must be off the real line (see section 5).
 Accordingly, as 3(?o) < 0 or 3(?o) > 0, the choices b = ?i or b = i give branch cuts
 that do not intersect the real line, as shown in Figure 3.1.

 4. Proof of Convergence. Hille's [11] proof of the convergence of psi series so
 lutions relies on the formula

 for the solution Xm of (3.5) which is polynomial in . A similar formula is fundamental
 to the approximation of strange attractors, including Lorenz's, by algebraic sets in
 the work of Foias, Temam, and others [8, 9].

 Our proof of convergence does not use Hille's formula but instead relies on the
 Laplace transform and other devices. In the second part of this section, we remark
 that our technique will likely give simpler proofs for certain theorems of Hille and
 Smith. In one instance, our technique can probably be used to prove a theorem that
 has been stated but not proved completely.
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 4.1. Psi Series Solutions of the Lorenz System. If is a polynomial in (77 + C),
 we define \p\ as the sum of the absolute values of its coefficients. Since and C always
 occur in the group (77+ C), we can think of C as being subsumed by 77. \Xm\ is defined
 as the maximum of |Pm+i|, |Qm|, and |Pm|. For m > 2, \Xm\ will depend upon the
 undetermined constant D. The key to the proof of convergence of the psi series (3.1)
 is a bound of the form \Xm\ < , where K\ and K2 are positive constants that
 depend upon the undetermined parameter D.

 For Fm defined by (3.6), |Pm| is the maximum of |?| over its three components,
 each of which is a polynomial in (77 + C). We begin with the following easy lemma.

 Lemma 4.1. For m>3,
 m?l

 \Fm\ < 30 |Xm-i| + 28 |Xm_2| + ^ |Xm_j_i| ?
 i=i

 Proof. If and q are polynomials in 77+C, then \pq\ < \p\ \q\ and \p + q\ < \p\ + \q\.
 Repeated use of those inequalities with the definition (3.6) of Xm and Fm gives

 m

 \Fm\ < 10 \Xm-i\ + 28 \Xm.2\ + \ -3~ \ \Xj-i\ ?
 3=0

 The lemma results when the j = 0 and j = m terms are moved out of the summation
 while using Table 1.1 to note that \X-i\ < 10.

 For matters related to the existence and uniqueness of the Laplace transform
 that arise implicitly in the proof below, see [35]. In the lemma below, we treat only
 polynomials in (assuming C = 0), but the lemma still applies when and C occur
 in the group (77 + C) and C ^ 0.
 Lemma 4.2. Let abe a complex number with \a\ > 1 and let ( ) be a polynomial

 in 77. Let ( ) be the polynomial solution of the differential equation

 (4.1) ^=a + f(V).
 If the polynomial 7(77) is of degree n, assume \a\ > a(n + 1/2) for some a > 1. Then

 \a\ a ? 1

 Proof. Let /(^) = / + / ^7 -\~ fnrf1- To take the Laplace transform of (4.1),
 we multiply (4.1) by e-r?s and integrate from 77 = 0 to 77 = 00. We get

 8 (8) - (8) = (0) + 7 + ^2- + ^3" + ??? + ^ ?

 Rearranging, we have

 (8) ?-h 7- - + -r~9 "?-1" 7- ? s ? a (s ? a)s (5 ? a)s? [s ? a)sn^L
 All terms on the right-hand side above except the first are rewritten using the identity

 1 111 1

 (s ? a)sk ak(s ? a) aks a;fc-152 as k '
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 In the resulting expression, (0) is chosen to cancel all the l/{s ? a) terms to get a
 polynomial solution. We then have

 (4.3) = - ? kJ^ + ? + ? ? ? + k=0 \ /

 (44) yW^-Wfc-i k\fk n\fn \

 The coefficients of ( ) are evident from inspecting the summations (4.3) and (4.4).
 Prom the summation (4.3) and the inverse Laplace transform, we get
 (4.5)

 / j?\ fc\ ?j ?i \ Jl^ k\ ^
 '^' " ?? ' ' \o! |afc+1|+?!l^+' ' '+(?;-l)!|a2| + W~M / W \p? ^ y

 To clarify the calculation that gives (4.5), let us consider the special case a /a =
 a? + Vk- Its unique polynomial solution is = r\k ?a. ? kr\k~x/a2 ? ? ? ? ? k\/ak+1 and
 this \ \ corresponds to the kth term in (4.5).

 Next we bound k\/j\ \ak~J | for 0 < k < n and 0 < j < k:
 h\

 ^ ^ ^ *(*-!)???(*+ *)
 = \ai-k\(k(j + l))((fc - l)(j + 2))((* - 2){j + 3))...L

 *(^f s(^f s(=*T
 < l/ak-j.

 In the second line above, the last factor L is either (k + j + l)/2 or ((& + j)(& + j +
 2)/4). The first inequality in the third line is obtained by applying the inequality
 xy < ((x + y)/2)2 repeatedly. The inequality in the last line uses the assumption
 \o?\ > a(n + 1/2) made in the statement of the lemma.

 Returning to (4.5), we have

 \ \< f4(l + l/? + 1/a2 + ???), |a|

 which completes the proof.
 The inequality in the lemma below is not strict mainly because \Fm\ = 0 is not

 ruled out.

 Lemma 4.3. For ra > 8, \Xm\ < 192 |Fm| /(ra - 2).
 Proof. We take the matrix of eigenvectors of Am defined in (3.6) to be

 V

 where the columns are ordered to correspond to the eigenvalues ? ra + 2, ?ra, and
 ?ra ? 3, respectively.
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 If (3.5) is rewritten using a similarity transformation that turns Am into a diag
 onal matrix, we get three scalar equations

 ~ = a?& + fi a

 for i = 1,2,3, where (a ,a2,a3) = (-m-h2, -ra, -m-3), (fi,f2,h)' = V_1Fm, and
 Xm = V( ,?25^3)' (the prime denotes transpose).

 To apply Lemma 4.2 to each of the scalar equations, we use Lemma 3.1 and take
 n = [(m + 2)/2j. In addition, we choose an a > 1 such that

 |a | = |ra - 2| > a(ra + 3)/2 > a(n + 1/2).

 The choice a = 12/11 works for m > 8. Thus we get |&| < 12 \fi\/ \c?i\ < 12 \fi\/(ra
 2) for ? = 1,2,3.
 We have < || V"1\\^ \Fm\ for i = 1,2,3 and |Xm| < ||V^||oo maxd^ , |?|2 , |?|3).

 Combining the inequalities, we get

 < -^H^ilooH^-^loo . TTt

 The proof is completed by verifying that ||V||0o||V'~1||oo = 16.
 The lemma below is crucial to showing that the psi series expansions which for

 mally satisfy the Lorenz system by Lemma 3.2 are convergent. Its proof is structured
 to be transparent but does not give the best constants.

 Lemma 4.4. For positive constants K\ and K2 which depend upon the undeter
 mined constant D of Lemma 3.2, \Xm\ < \ for m = 0,1,2,....

 Proof By Lemmas 4.1 and 4.3, we have

 30 192 28 192 192
 |Xm| - m-2 |Xm-1' + m-2 |Xm"2' + m^2 l^m-?-i| |*;- |

 for m > 8. If we define xm ? |Xm| for ra = 0,1,..., 7 and, for ra > 8,

 ra?1

 (4.6) Xm = 960xm_i + 896zm_2 + 32 ^

 then |Xm| < xm (after noting 192/6 = 32 and so on).
 Let f(Z) = J2m=o xrnZm be the generating function of the xm sequence. Using

 (4.6) , we get

 (4.7) f(Z) - (c0 + ciZ + ? ? ? + c7Z7) = 960Z/(Z) + 896Z2/(Z) + 32Z2/(Z)2.

 In (4.7), the constants co,...,c7 account for the fact that the recurrence (4.6) is
 valid only for m > 8. They are put in to get ? ># ,???5#7 as the coefficients of
 Z?, Z1,..., Z7, respectively. They can be determined explicitly (compare Table 1.1);
 for instance, cq = xo = \Xo\ and c\ = x\ ? 960#o = |- | ? 960| |? Because
 \X2 \,..., IX71 depend upon D, so will c2,..., c7.

 The implicit function theorem implies the existence of a unique analytic function
 with /(0) = xo that satisfies (4.7)?if all terms of (4.7) are moved to the left and f(Z)
 is treated as a variable, the partial derivative of the left-hand side with respect to / is 1

This content downloaded from 141.211.4.224 on Fri, 08 Mar 2019 18:31:24 UTC
All use subject to https://about.jstor.org/terms



 308  DIVAKAR VISWANATH AND S?NMEZ ?AHUTOGLU

 when = 0, thus verifying the derivative condition of the implicit function theorem.
 Therefore f(Z) is the generating function of the xm sequence. The bound on xm
 given by the lemma follows from the Hadamard-Cauchy root formula for the radius
 of convergence of f(Z) around = 0. If K2 is taken slightly greater than the inverse
 of the radius of convergence and K\ > 0, the bound \Xm\ < \ holds for large
 enough ra. So K\ can be chosen to make the bound hold for every ra = 0,1, 2,

 An explicit lower bound for the radius of convergence in terms of Co,..., cj can be
 determined using the implicit function theorem proved by Lindel?f using his majorant
 technique [13, p. 63], [20].

 We are now ready to prove convergence of the formal psi series of Lemma 3.2.
 Theorem 4.5. Consider the formal psi series of Lemma 3.2 with = \og(b(t?to))

 and \b\ = 1. The branch cut is the segment

 {to - bp\p > 0}.

 Then the psi series expansions for x(t), y(t), and z(t) given by (1.2) or (3.1) con
 verge uniformly and absolutely on the disc \t ? to\ < r with r > 0 and with an open
 neighborhood of the branch cut excluded from the disc. In general, r will depend upon
 both C and D, which are the two undetermined constants in the psi series.

 Proof We will give the proof for z(t). The proofs for x(t) and y(t) are similar.
 Excluding a neighborhood of the branch cut means that a neighborhood of to is

 excluded from the domain of convergence. Therefore R-2(t ? ?o)-2 and R-\(t ? )-1
 are both bounded on the domain of convergence. The other reason for excluding a
 neighborhood of the branch cut is to ensure that is well defined.

 By the definitions of \Rm\ and |Xm| given at the beginning of this section,

 \Rm(v)(t - t0r\ < \Rm\ max(l, |log6(t - t0) + C\L(m+2)/2j)\t - t0\m
 < \Xm\max(l, |log6(* - t0) + c|L(m+2)/2j) \t - t0\m

 < max(l, |log?(* - t0) + C\L(m+2)/2J) \t - to\m ,
 where ra > 0 and |6| = 1. The first inequality above uses Lemma 3.1 and the third
 inequality uses Lemma 4.4.

 Choosing an r > 0 such that

 (4.8) r < 1/K2 and r(|logr| + + \C\) < 1/K2
 is sufficient to ensure uniform and absolute convergence. The in (4.8) is explained
 by the inequality |log6(? ? *o)| < |log\t ? to\ \ + . A choice of r in accord with (4.8)
 suffices for the convergence of the psi series for x(t) and y(t) as well.

 A further argument is required to show that the convergent psi series actually sat
 isfy the differential equation, a point that seems to have been overlooked on occasion.

 When the psi series for x(t), y(t), and z(t) are substituted into the Lorenz system
 (1.1), the summation and multiplication of psi series on the right-hand side is justi
 fied by standard results on rearrangements of absolutely convergent series. To justify
 the differentiation of psi series on the left-hand side, we mention that the uniform
 convergence of a sequence of analytic functions on an open set implies the uniform
 convergence of the derivatives on any compact subset of that open set [28, Theorem
 10.28]. We can now state the following theorem.

 Theorem 4.6. The psi series for x(t), y(t), and z(t) given by (1.2) or (3.1),
 whose formal validity is asserted by Lemma 3.2, satisfy the Lorenz system (1.1) in
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 the disc \t ? to\ < r, with the branch cut excluded, for some r > 0. In general, r
 will depend upon both C and D, which are the two undetermined constants in the psi
 series.

 Levine and Tabor [19] raised the possibility that the locations of the singularities
 of an orbit of the Lorenz system may have accumulation points in the complex t-plane.
 Theorem 4.6 shows that psi series singularities cannot be accumulation points.

 So far, in results such as Lemma 3.2 and Theorem 4.6, we have regarded the
 psi series as functions of t. It is useful to consider them as functions of 77, where
 77 = \ogb(t ? to) gives a parametrization of the Riemann surface that gets rid of the
 branch cut in the t-plane. To be specific, we assume 3(to) < 0 and b = ?i. In that
 case, we have (t ? to) = iexp(ry), and the psi series (3.1) take on the form

 00 00 00

 = imPm(v)emr?, ( ) = imQm{r,)em\ ( ) = ^m^e1""
 ra= ?1 m=?2 ra=?2

 (4.9)

 with Pm, Qm, Rm being polynomials in which 77 always occurs in the group (77 + C).
 Every time t passes through the branch cut of log(?i(t ? to)), 77 increases or decreases
 by 2 . Because 77 and C always occur in the group (77 + C) in Pm, Qm, Rm, we can
 allow for other branches of log(?i(t ? to)) in the psi series of (3.1) or (1.2) by keeping
 the principal branch of the logarithm in the definition of 77 and incrementing C by an
 integer multiple of 2 . The change in the estimate for the radius of convergence r of

 Theorem 4.6 for these other branches will then be in accord with (4.8). (Note that
 K2 depends only on D.)

 If the domain of convergence of the transformed psi series (4.9) is considered
 in the 77-plane, the choice of the principal branch of log(?i(t ? to)) implies ? <
 $( ) < , and the r estimated by Theorem 4.6 implies ^(77) < logr. Thus the

 region of convergence of the principal branch will be a semi-infinite rectangle in the
 77-plane. To pass to other branches, we keep C fixed and allow the imaginary part of
 77 to be arbitrary. For 77 corresponding to different branches, one has to use different
 estimates for r as explained in the previous paragraph. Therefore the estimated
 domain of convergence of the transformed psi series (4.9) will be a union of semi
 infinite rectangles as in Figure 4.1. If we start at the principal branch of log(?i(t?to))
 and cross its branch cut m times, then by (4.8) r ? XjiK^l'K \m\) for large integers m.
 For such a branch ? + 2 < $$( ) < + 2 and $1( ) ^ ? log |m| for convergence,
 which gives an approximate idea of the shape of the domain sketched in Figure 4.1.

 4.2. Remarks on Theorems of Hille and Smith. In [12], Hille proved that the
 plane quadratic system

 dx/dt = x(ao + a\x 4- o^y),

 dy/dt = y(b0 + hx + b2y)

 has a logarithmic psi series singularity if (a\ ? bi)(a2 ? b2)/(a\b2 ? a2b\) is a positive
 integer. Smith [30] generalized that result to plane polynomial systems. Smith's proof
 is based on a reduction to results proved early in the 20th century for Briot-Bouquet
 systems. These results are summarized in sections 12.5 and 12.6 of Hille's book [13].

 One difference between the results of Hille and Smith for plane polynomial systems
 and Theorem 4.6 is as follows. The singular solutions for plane polynomial systems
 look like simple poles near the singular point. The singularities of the Lorenz system
 implied by Theorem 4.6 look like double poles.
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 9(7?)

 Fig. 4.1 Schematic plot of domain of convergence of the psi series in the plane, as implied by
 Theorem 4.5. The shape of the region is given approximately by ?&( ) ? ? log|ra| for
 integers m of large magnitude and ? + 2 < $$( ) < + 2 .

 In [11], Hille proved the existence of logarithmic psi series solutions for the
 Emden-Fowler system d2y/dt2 = t~2/py1+2/p for = 2. At the end of the paper,
 Hille discussed the difficulty of extending his technique and noted remarks by a ref
 eree suggesting a proof of existence of logarithmic psi series solutions for positive
 integral 2p. Like Smith's proof for plane polynomial systems, the suggested proof
 goes through a reduction to a Briot-Bouquet system, but no complete proofs are
 found in the literature as far as we are aware. The result for positive integral 2p

 was stated as Theorem 12.4.2 in Hille's book [13]. Hille mentioned that "the various
 proofs are nasty" and omitted them.

 The proofs using reduction to Briot-Bouquet systems are difficult to follow in
 their entirety, partly because they depend so crucially on results proved long ago.
 It appears that use of the Laplace transform and the implicit function theorem will
 give simpler proofs for plane polynomial systems and complete proofs that are not so
 "nasty" in the case of the Emden-Fowler system with 2p a positive integer.

 Theorem 4 of Smith's paper [30] states that all singularities of real solutions of
 certain plane polynomial systems must be of the form determined in Theorem 3 of
 that paper. The statement occurs again as Theorem 12.6.3 of [13]. Smith's proof
 begins with an ingenious change of variables. Near the end of the proof, we find the
 argument "in the case when > 0, the arbitrary constant c in (20) can be chosen
 to fit this solution ( ) in the neighborhood of = 0." We are unable to follow that
 argument and believe it requires substantial explication at the very least.

 5. Complex Singularities and the Lorenz Attractor. If t ? to is a singularity
 of the Lorenz system (1.1), the solution must diverge to infinity as the singularity is
 approached.

 Theorem 5.1. Let he a Lipschitz curve in the complex t plane that approaches
 to at one of its two endpoints. Let (x(t),y(t), z(t)) be a solution of the Lorenz system
 (1.1) defined for t G 7. If to is a singular point, then

 (5.1)

 as t approaches to along the curve 7.
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 Proof. Denote \x(t)\ + \y(t)\ 4- \z(t)\ by rt. Consider the set of all complex (x, y, z)
 in the region \x ? x(t)\ + \y ? y(t)\ + \z ? z(t)\ < b for some b > 0. Then the sum of
 the absolute values of the right-hand sides of the Lorenz system (1.1) is bounded by

 M = ?2(rt + ?) + 2(rt + ?)2,

 where 10 + 10 + 28 + 1 + 8/3 < 52 explains the first coefficient.
 Theorem 8.1, Chapter 1, of [1] (also see Theorem 2.3.1 of [13]) with a = oo and

 M and b as above implies that the solution admits a unique analytic continuation to
 all ? in the disc \t' -t\<R with

 52(ri + ?) + 2(rt + ?)2

 Taking 6 = rt, we get R = 1/(104 + Srt).
 Being a singular point, to must lie outside the disc of analyticity. Therefore

 \to ?1\ (104 + Srt) > 1. Taking the limit t ?> to along points on 7 completes the
 proof.

 The curve 7 is assumed to be Lipschitz to ensure uniqueness of the solution.
 Theorem 5.1 proves that as the singular point to of the Lorenz system is ap

 proached, the magnitude of the solution must diverge at a rate that is at least as
 great as 0.125/ \t ? ?o|. In fact, if the answer to Question 1.1 is yes and the singular
 ities of the Lorenz system are all given by psi series of the form (1.2), the divergence

 would be proportional to 1/ \t ? to|2
 Theorem 5.1 is used to prove the theorem below.
 Theorem 5.2. Consider a trajectory of the Lorenz system (1.1) which is real

 for real values oft. In particular, assume that the state (x(0), 2/(0), z(0)) at t = 0 is
 real. Then there is no singularity at any finite and real value of t and the solution is
 defined for all real values oft.

 Proof Let Q = x2 + y2 + z2. Prom (1.1), we have

 dQ/dt = 2(-10x2 - y2 - Sz2/3 + 3Sxy).

 The matrix 1-norm of the symmetric form on the right-hand side is bounded by 58
 and so are the magnitudes of its eigenvalues. Therefore, \dQ/dt\ < 58Q and

 r\t\

 Q(t) < Q(0) + 58 / Q(s)ds. Jo
 At this point it appears as if the proof can be completed using the Gronwall inequality
 (Theorem 1.6.6 of [13]) to deduce that Q{t) < Q(0)exp(58 However, the bound
 on Q(t) holds only if we assume the existence of the solution, which is what we set
 out to prove.

 In circumstances such as these, oscillatory singularities for which the solution
 does not tend to a limit as the singular point is approached must be ruled out?
 an important point that goes back to Painlev? [13, Chapter 3]. Theorem 5.1 forces
 the norm of the solution to diverge near a singular point thus making it possible to
 complete the proof.

 Theorem 5.2 is implied by Theorem 2.4(i) of [8]. In fact, Theorem 2.4 of [8] is a
 sharper result as it implies that Q(t) < Cexp(20 |t|) for some constant C independent
 of t. We have given a proof that brings out the connection to the nature of the singular
 points.
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 Table 5.1 Imaginary parts of the singular points closest to the real line in the t-plane.

 AB ??0.1714501006
 AAB ?i0.1617621257
 AAAB ??0.1563426260
 AAB ?i0.1636066901

 So far we know that the Lorenz system has singularities represented by logarithmic
 psi series and that the solution must diverge as a singularity is approached. But do
 solutions such as the one shown in Figure 1.1 have complex singularities and are they
 represented by psi series?

 Using numerical methods based on [26], we found the complex singularities closest
 to the real line of a few solutions listed in Table 5.1. Those solutions, of course, are all
 real for real t. They are assigned the labels AB, AAB, AAAB, and AAB following
 the convention explained in the caption to Figure 1.1. From Table 5.1, we see that
 the complex singularities are located at a distance greater than 0.037 from the real
 line, in agreement with Theorem 2.3 of Foias et al. [8]. In addition to computing
 the location of the singularities, we have verified numerically that their form matches
 the formal development of psi series given in section 3. This numerical work will be
 described in detail elsewhere.

 6. Conclusion. Given that the Lorenz system (1.1) has resisted mathematical
 analysis on the real line, one may say that it is natural to think of t as a complex
 variable and x, y, as analytic functions of t. When the solutions of the Lorenz system
 are viewed as analytic functions, it is natural to begin their investigation by looking
 at their singularities. We have given a complete formal development of singularities
 in the complex t-plane, proved convergence of the psi series representations using a
 new technique, and proved that the psi series indeed satisfy the Lorenz system. The
 development of the analytic theory appears to be a fascinating avenue for further
 investigations.

 The geometrical theory of differential equations, in which the Lorenz system is a
 famous example, sprang out of problems in analytic function theory?a fact that is
 not well known. More specifically, the stable manifold theorem, which is undoubtedly
 fundamental to the geometrical theory, was first proved to understand the solution of
 dz I dw = P(z, w) I Q(z, w) in a neighborhood of = w = 0 when and Q are bivariate
 polynomials with P(0,0) = Q(0,0) = 0 [13, p. 97], [27]. Thus our suggestion that
 the mathematical analysis of the Lorenz system (1.1) could be a problem in analytic
 function theory is an attempt to complete the circle.

 The properties of analytic functions x(t) which satisfy the nonlinear Riccati equa
 tion dx/dt = fo(t) + fi(t)x + f2(t)x2, where the fi(t) are rational in t, is a well-studied
 topic. All the movable singularities of the Riccati equation are poles and the depen
 dence of its solution on the undetermined constant is given by a fractional linear
 transformation. For the Lorenz system some of the movable singularities have psi
 series representations of the form determined in section 4. The dependence of these
 psi series solutions on the undetermined constants is much more complicated than for
 the Riccati equation.

 Another well-studied topic is the classification of second order nonlinear systems
 all of whose movable singularities are poles. The Painlev? classification has been
 presented with lexicographic thoroughness by Ince [16]. There appear to be few
 classification results for third order systems such as the Lorenz system. Studying a
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 specific system will probably sidestep many difficulties of the classification problem.
 In any event, the movable singularities of the Lorenz system are not poles.
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