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We derive necessary conditions that traveling wave and other solutions of the Navier—Stokes
equations must satisfy in the pipe, Couette, and channel flow geometries. Some conditions are exact
and must hold for any traveling wave solution or periodic solution irrespective of the Reynolds
number (Re). Other conditions are asymptotic in the limit Re — cc. For the pipe flow geometry, we
give computations up to Re=100 000 showing the connection of our asymptotic conditions to
critical layers that accompany vortex structures at high Re. © 2009 American Institute of Physics.

[doi:10.1063/1.3244660]

The Navier-Stokes equations (NSEs), which model the
evolution of the velocity field u of an incompressible fluid,
are ou/dr+(u-V)u=-=Vp+(1/Re)Au, where the velocity
field u must satisfy the incompressibility constraint V-u=0.
In the NSE, p denotes pressure and Re denotes the Reynolds
number. Traveling wave solutions of the form u(x,7)=u(x
—ct) form our main topic. As the motion of turbulent fluids is
characterized by disordered and intermittent fluctuations
about a mean,' the significance of traveling wave solutions
may seem limited. However, there is some evidence connect-
ing traveling wave solutions to transitional flows,”™ although
the connections that have been made are not conclusive.

Further, certain lower branch traveling waves exhibit
critical layers at high Re (Refs. 5 and 6) that are far beyond
the reach of ordinary direct numerical simulation. The ability
to compute critical layers in fully resolved numerical solu-
tions of the NSE could be significant, as critical layers occur
in many important situations.”® The gigantic trailing vortices
that escape from the boundary layers of airplanes during
take-off may develop critical layers,9 so could vortices shed
by wind turbines, with possible implications for the optimal
arrangement of turbines in a wind farm.

Many linearly unstable (and nonlaminar) traveling wave
solutions and equilibria (which are special cases of traveling
waves with ¢=0) of Couette,lo’11 channel,3’12’13 and pipeM’15
geometries have now been computed. A notably systematic
and extensive effort is due to Gibson ez al.'®' If the stream-
wise velocity is averaged in the streamwise direction, the
resulting field, denoted by U(y,z) in the case of the Couette
flow and by W(r,#) in the case of pipe flow, is called a
streak. Streaks appear crucial to connections of traveling
waves with observed phenomena.m’18 All the conditions that
we derive apply to the streaks alone.

We now turn to the derivation of the asymptotic condi-
tions. In the velocity field u=(u,v,w) of the NSE, u, v, and
w are the streamwise (coordinate axis x), wall-normal (y),
and spanwise (z) components, respectively, for the rectangu-
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lar Couette and channel geometries. In the case of pipe flow,
u, v, and w are the radial (r), polar (6), and streamwise (or
axial) (z) components, respectively.

In plane Couette flow, the walls at y= = 1 move in the x
direction with speeds equal to 1. The boundary conditions
in the streamwise and spanwise directions are periodic, with
the periods taken to be 27A, and 27A., respectively. For
pipe flow, we assume the axial or streamwise boundary con-
dition to be periodic with period 27rA. The walls are no slip
in all cases. The derivations are given mainly for the plane
Couette flow geometry.

Traveling waves normally arise from saddle-node bifur-
cations with increasing Re. 12141519 The branch corre-
sponding to lower energy dissipation is called the lower
branch. We will now derive certain scalings with respect to
increasing Re that are characteristic of the lower branch
families.

In the case of plane Couette flow or channel flow, if a
traveling wave solution is given by @(x—cz), the velocity
field @(x) can be decomposed as

o0

uy(y,2) + 2 [w,(y,2)explinax) + c.c.], (1)

n=1

where a=1/A,. We take wuy=(U,vy,w,) and u,
=(u,,v,,w,) for n=1. For pipe flow, the decomposition
analogous to Eq. (1) is given by uy(r,6)
+2 [u,(r, Oexp(inaz)+c.c.], with a=1/A. We take u,
=(u,,v,,w,) for n=1 as for Couette flow, but u,
=(ug,vg, W) for pipe flow.

The scalings of the lower branch family that are already
known apply to the streaks (U or W), rolls [(vy,w,) or
(1g,vp)], or magnitude of modes such as u;. It is an empiri-
cal fact (but see Refs. 3, 20, and 21) that the rolls and the uy
mode diminish in magnitude approximately at the rate Re™!.
Higher modes with n> 1 appear to diminish even faster. The
derivations assume these scalings. In addition, the dissipation
rate of the lower branch families decrease with increasing
Re, assuming that the dissipation rate of the laminar solution
is normalized to be 1.”°

© 2009 American Institute of Physics
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FIG. 1. (Color online) Three traveling wave solutions of pipe flow are shown. Units are chosen to make the pipe radius and the center line speed of the laminar
solution equal to 1. The boundary condition fixes the mass flux (and not the pressure gradient) to be that of the laminar solution. Solutions (a) and (b)
correspond to the ¢ family and the upper dashed-dotted curve of Fig. 7 of Ref. 15, respectively. For more on (c), see Refs. 5 and 22. In the upper plots, the
four contour levels of |u,| are equispaced in (0, max), with maximum being 0.0094, 0.0011, and 0.0002, respectively. The thick line is the critical curve. The
plots below correspond to the ones directly above. Plot (d) (the thick line is for ¢,) can be validated against Fig. 7 of Ref. 15 after replacing Re and ¢ by ¢, Re
and c/c,, respectively. In (e) and (f), the legends show the choice of f(U) and I(f) denotes Eq. (7) (y=1.5).

At this point we assume ¢=(c,0,0) so that the traveling
wave moves in the streamwise direction only with
wavespeed c. The wall normal or y component of the n=1
mode of the NSE gives

iU~ c)vy == 3dypy +Re7!(- v, + &ivl + &fvl) 4o
(2)

for plane Couette or channel flow. The first neglected terms
in Eq. (2) are —v(dyv;—wod.v;—v1d,09—wd.0,. The analo-
gous equation for the radial component of pipe flow is
ia(W—c)uy=—3d,p;+Re™! A,u;, where A, corresponds to the
usual form of the Laplacian in the radial component of the
NSE. Terms such as —v;dgv,/r are neglected.

Using Eq. (2), Wang et al.® estimated that most of the
variation in v, is concentrated in a region around the critical
curve U=c, with the width of that region scaling as Re™!". In
the case of pipe flow, an identical argument gives W=c as the
equation of the critical curve. The top set of plots in Fig. 1
illustrates the critical layer in the case of pipe flow.

To derive further scalings, we consider the streamwise
component of the n=0 mode of NSE, which is

vod,U+wod.U=Re ™ (c, + AU) + M 3)

for plane Couette or channel flow. Here ¢,/ Re gives the pres-
sure gradient in the streamwise direction, with c,=0 for
plane Couette flow and ¢,>0 for channel flow. The pipe
flow analog is uyd,W+(vy/r)dgW=Re ' (c,+AW)+M. In Eq.
(3) and its pipe flow analog, —M equals the n=0 mode of the
streamwise component of [(@—u)-V](@—u,). From here on

we restrict the derivation to plane Couette flow or to channel
flow.

Since uy=(U,v,,w,) has zero divergence, we can find a
function ¢(y,z) such that vy=4d,¢ and wy=—d, ). We then get

Ly=Re ' (c,+AU) + M, 4)
where
L=(3,0)d.-(3,U)d,. (5)

The skew symmetry of the linear operator L is the key to
deducing further scalings.

Let ¢(y,z) and ¥(y,z) have z periods of 27A, and be
sufficiently smooth. The following calculation uses integra-
tion by parts:

27TAZ 1
f j dLYdydz
0 -1

1

= | oyU,[iay - f

-1 0

2mA,

1
J (YU, . + U, )dydz
-1

271'/\z
- J YU ! dz
(

)
271']\z 1

+ J f (YU. ¢y + U, )dydz,
0 -1

where the subscripts are for partial derivatives. On the right
hand side, two double integral terms cancel and the single
integral terms are both zero because U, is periodic in z and



101703-3

U, is zero at the walls (from no slip). We are left with
—[[¢Lédydz on the right, verifying skew symmetry of the
operator L.

From direct substitution into Eq. (5), it is evident that
L[f(U)]=0 for any smooth f. Thus the functions f(U) are in
the kernel of the antisymmetric operator L. Since the linear
system (4) can be solved for ¢ (or equivalently for the rolls),
the Fredholm alternative implies that

2mA, 1
f f fU)(c,+ AU +Re M)dydz=0.
0 -1

For lower branch traveling wave families with @1—u,, of mag-
nitude Re™” with y= 1, the magnitude of M is approximately
Re~? in the limit Re — . We have

Jf(U)[A U(y.z) + c,]dydz = O(Re™”) (6)

for any smooth f, where the integral is over the cross section
of the channel. Here y>1 is possible if there are cancella-
tions in the integral of M over the cross section. The analo-
gous condition for pipe flow is given by

ff(W)[AW(r, 0) + c,lrdrd0= O(Re™), (7)

with y as above.

Both conditions (6) and (7) apply to the streaks alone. At
Re=00, the asymptotic conditions become exact. The balance
between streaks and rolls is fundamental to the existence of
lower branch solutions at large Re.*? If the theory is to be
made exact, the streaks must satisfy the conditions we have
derived.

In addition to the pipe families of Fig. 1, we computed a
lower branch equilibrium family and a traveling wave family
of plane Couette flow up to Re=45 000 and Re=7000. The
(a) and (b) families of Fig. 1 could not be continued to Re
much higher than shown in the top plots. For a given reso-
lution, we cannot expect to find solutions if the rolls, which
diminish in magnitude with Re, are too small to be detected.
Even after using sufficient resolution, the GMRES-hookstep
iterations (see Refs. 5 and 23) became very slow. Even
though the residual error could be made quite small, the
norm of the Newton steps became quite large and increased
with iteration. Although it is uncertain if all lower branch
families exist in the Re— o limit, Fig. 1 amply demonstrates
that they exist for large enough Re for the predicted scalings
to hold.

The critical curves are away from the pipe walls and
have an inward indentation where the counter-rotating vorti-
ces face each other. Since this behavior is evident even for
Re=2600, we suspect that critical curves or surfaces may
give a way to visualize the structure of puffs in transitional
pipe flow. For puffs, see Ref. 24. For a view of transition to
turbulence based on shears, see Ref. 25.

The exact conditions, whose derivation we now give,
apply to traveling wave solutions and periodic solutions and
to relative periodic solutions that do not have a spanwise
motion. Relative periodic solutions can capture some aspects
of turbulent fluctuations.” The conditions we derive are con-
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sequences of the Reynolds averaged equations. Nevertheless
they appear not to have been noticed in literature on travel-
ing waves and other exact solutions of the NSE.

Let u(x,7)=@(x—ct) be a traveling wave solution of
plane Couette flow. We assume ¢=(c,0,0) so that the trav-
eling wave moves in the streamwise direction only. If o
=(u,v,w), the streamwise or x component of the NSE gives

c 1
= cu + (udu +vdu+wiu) =—dyp + ﬁ% + R—eAu. (8)

Let U(y,z) denote (27A,)~' [3™u(x,y,z)dx, which is the
mean streamwise component of u. From Eq. (8), we get

c,+ AU

(udu+vou+wd,u) = —?, (9)

where the overline denotes streamwise averaging. At the
walls y=*1, du=0, and v=w=0 because of no slip. For the
same reason, d,,U=0 at the walls. Therefore,

c,+3,U=0 (10)

must hold at the walls.

As the velocity field @ has zero divergence, we may
rewrite Eq. (9) as
c,+AU

V-(uz,uv,uW)=z9yﬁ+ 8ZW=JT (11)

Both Egs. (9) and (11) are Reynolds averaged equations
(Ref. 1, Chapter 5). If Eq. (11) is integrated over the cross
section, Green’s theorem applies to the expression in the
middle of Eq. (11). The integral of the middle term must be
zero because v=0 at the walls and uw is periodic in z. Thus
we have

27A, [+]
f f (AU +c,)dydz =0. (12)
0 -1

The derivation of the necessary conditions (10) and (12) ap-
plies to channel flow with no change. However, c¢,# 0 for
channel flow.

Conditions (10) and (12) must be satisfied by all travel-
ing wave solutions of plane Couette flow or channel flow,
whose wave speed vector ¢ only has a streamwise compo-
nent. Indeed, those conditions must be satisfied by all peri-
odic solutions with u(x,7)=u(x,7+7), T being the period, or
relative periodic solutions with u(x,¢)=u(x+s,r+7) if the
spatial period s only has a streamwise component. To form U
in these instances, one must average both over a single pe-
riod and in the streamwise direction as a simple modification
of our derivation will show. Similarly, ¢, must be averaged
over the entire period. These conditions have been verified,
where applicable, for the relative periodic solutions reported
in Ref. 23.

For the case of pipe flow, let ¢=(0,0,c¢) so that the trav-
eling wave travels in the streamwise direction only. Let
W(r,0):(27TA)‘1f%”Aw(r,0,z)dz be the mean streamwise
velocity. The analog of Eq. (10) requires
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oW
cpt W+ ; =0 (13)

at all points on the circumference. If we assume the pipe
radius to be 1, the analog of Eq. (12) is

27 1
f J (AW +¢,)rdrdf=0. (14)
0

0

The derivation of the necessary conditions (13) and (14) for
pipe flow is similar to that of their Couette analogs. The
conditions must hold for relative periodic solutions with
u(x,f)=u(x+s,r+7) as well, if the spatial period s has
streamwise motion only. If the spatial period of the relative
periodic motion has spanwise motion, the conditions will not
apply.

A reviewer has kindly pointed out to us that a necessary
condition such as Eq. (12) can be derived for traveling wave
solutions that have wavespeeds in both the spanwise and
streamwise directions. In such a case, one has to consider the
averaged component of the velocity field in the direction of
the wavespeed vector instead of U.

Any velocity field of the form (u(y,z),0,0) is a solution
of the Euler equations. However, our asymptotic conditions
show that such a velocity field can arise as a limit of lower
branch solutions of NSE only if it satisfies the conditions of
Eq. (6). The exact condition (12) represents a balance be-
tween the viscous, pressure, and inertial terms. Unlike the
energy balance between those terms, which uses the entire
velocity field, Eq. (12) is a condition on the streaks alone.

Some approaches use a velocity field to model the sta-
tistical steady state of high Re turbulence. More specula-
tively, the sort of conditions we have derived could be useful
in that context. In this letter, we have mainly supplied con-
ditions on the streaks that occur as a part of traveling waves
but also pointed out the connection between the critical curve
and the placement of the rolls.

The authors thank B. Eckhardt, R. Kerswell, Y. Lan, S.
Maslowe, and F. Waleffe for discussions, and the reviewers
for preparing valuable reports. Y.C.L. was partly supported
by DoE under Grant No. 0009527. D.V. was partly supported
by the NSF under Grant Nos. DMS-0407110 and DMS-
0715510.
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