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Numerical solvers of the incompressible Navier–Stokes equations have reproduced turbu-
lence phenomena such as the law of the wall, the dependence of turbulence intensities on
the Reynolds number, and experimentally observed properties of turbulence energy pro-
duction. In this article, we begin a sequence of investigations whose eventual aim is to
derive and implement numerical solvers that can reach higher Reynolds numbers than is
currently possible. Every time step of a Navier–Stokes solver in effect solves a linear bound-
ary value problem. The use of Green’s functions leads to numerical solvers which are highly
accurate in resolving the boundary layer, which is a source of delicate but exceedingly
important physical effects at high Reynolds numbers. The use of Green’s functions brings
with it a need for careful quadrature rules and a reconsideration of time steppers. We
derive and implement Green’s function based solvers for the channel flow and plane Cou-
ette flow geometries. The solvers are validated by reproducing turbulence phenomena in
good agreement with earlier simulations and experiment.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

The incompressible Navier–Stokes equations are given by @u=@t þ ðu � rÞu ¼ �rpþ Du=Re, where u is the velocity field
and p is pressure. The incompressibility constraint is r � u ¼ 0. We assume that a characteristic speed U and a characteristic
length L have been chosen and that the Reynolds number Re is given by UL=m, where m is the kinematic viscosity. It is as-
sumed that the unit for mass is chosen so that the fluid has constant density equal to 1.

The topic of this paper is the use of Green’s functions to solve the incompressible Navier–Stokes equations. The Navier–
Stokes equations are nonlinear while Green’s functions are based on linear superposition. Thus the solutions of the incom-
pressible Navier–Stokes equations cannot be described using Green’s functions. However, if we discretize the Navier–Stokes
equations in time but not in space, and the time discretization treats the nonlinear advection term ðu � rÞu explicitly and the
pressure term �rp and the viscous diffusion term Du=Re implicitly, each time step is a linear boundary value problem. The
simplest such discretization, which is to treat the advection term using forward Euler and the pressure and diffusion term
using backward Euler, gives the equation
unþ1 � un

Dt
þ ððu � rÞuÞn ¼ �rpnþ1 þ 1

Re
Dunþ1;
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where the superscripts indicate the time step. This is a linear boundary value problem for unþ1 with the constraint
r � unþ1 ¼ 0 and with boundary conditions on u depending upon the geometry of the flow. Green’s functions may be derived
for this linear boundary value problem as shown in the theory of hydrodynamic potentials [16].

Green’s functions exploit the principle of linear superposition to express solutions of linear boundary value problems in
integral form. In numerical methods based on Green’s functions, the weight of the method falls upon quadrature rules as
opposed to rules for the discretization of derivatives. The importance of quadrature rules is already clear in the early work
of Rokhlin [25,26], where Richardson extrapolation and trapezoidal rules are used to effect accurate quadrature of the inte-
gral equations of acoustic scattering and potential theory.

From the beginning, Greengard, Rokhlin and others [9,25,26] have emphasized the ability of Green’s function based meth-
ods in handling very thin boundary layers. Shear flows such as channel flow or pipe flow or plane Couette flow are charac-
terized by very thin boundary layers at high Reynolds numbers. There is turbulence activity in the boundary layer as well as
in the outer flow and the viscous effects propagate into the domain from the boundary layer. Green’s function based methods
are likely to be advantageous in handling such boundary layers. It is legitimate to ask why a numerical method must be be-
lieved to capture the effect of the viscous term with the very small 1=Re coefficient. In Green’s function based methods, that
effect is captured exactly by the analytic form of the Green’s function.

As far as we are aware, time integration using Green’s functions has not been tried on a nonlinear problem of the scale and
difficulty associated with fully developed turbulence. Thus some of the issues that come up in relation to time integration in
Section 3 cannot be considered unexpected.

Many of the subtleties associated with the numerical integration of the Navier–Stokes equations are related to the treat-
ment of pressure. The equations do not explicitly determine the evolution of pressure. Instead, pressure is determined
implicitly through the incompressibility constraint on the velocity field. One of the key algorithms for solving the Navier–
Stokes equations in channel and plane Couette geometries is due to Kleiser and Schumann [14]. Kleiser and Schumann intro-
duced a numerical technique for enforcing the physically correct boundary conditions on pressure. Another method was
introduced by Kim et al. [13, 1987] in a paper that is a landmark in the modern development of fluid mechanics. Kim
et al. reproduced several features of fully developed turbulence from direct numerical simulation of the Navier–Stokes equa-
tions. Their calculation was initialized with a velocity field that was generated using large eddy simulation. One of the high-
lights of the paper by Kim et al. is the correction of a calibration error in a published experiment using numerical data.

The channel geometry is rectangular with x; y, and z being the streamwise, wall-normal, and spanwise directions by con-
vention. The corresponding components of the velocity field u are denoted u; v , and w. The walls are at y ¼ �1 with fluid in
between. The no-slip boundary conditions require u ¼ 0 at y ¼ �1. The boundary conditions in the wall-parallel directions
are typically periodic in numerical work. The flow is driven either by maintaining a constant mass flux or a constant pressure
gradient in the streamwise direction. In plane Couette flow, the geometry is the same but the walls are moving. The no-slip
boundary conditions are ðu;v ;wÞ ¼ ð0;�1;0Þ at y ¼ �1. Plane Couette flow is driven by the motion of the walls.

Both the Kleiser–Schumann and Kim–Moin–Moser methods come down to solving linear boundary value problems in the
y or wall-normal directions. The periodic directions are tackled using Fourier analysis and dealiasing of the nonlinear advec-
tion term. Each Fourier component then yields a linear boundary value problem in the y direction. The y direction is discret-
ized using Chebyshev points yj ¼ cos jp=M with j ¼ 0; . . . ;M.

Here we parenthetically mention the interpretation of the parameters a and b, which occur in the ensuing discussion. The
parameters are given by a2 ¼ ‘2=K2

x þ n2=K2
z and b2 ¼ a2 þ cRe=Dt, where ‘ and n are the Fourier modes and 2pKx and 2pKz

are the dimensions of the domain in the streamwise and spanwise directions, respectively. The parameter c depends on the
time integration scheme. More details are found in Section 3.

In Fig. 1.1, we have shown the solution of the linear boundary value problem
ðD2 � b2ÞðD2 � a2ÞuðyÞ ¼ f ðyÞ uð�1Þ ¼ u0ð�1Þ ¼ 0 ð1:1Þ
with f ðyÞ � 1. Here D ¼ d
dy. A fourth order boundary value problem of this type occurs explicitly in the method of Kim–Moin–

Moser but it is treated as a composition of two second order boundary value problems corresponding to the factors D2 � a2

and D2 � b2. In the method of Kleiser–Schumann, a fourth order boundary value problem is not formed explicitly. Both meth-
ods solve the second order boundary value problem
ðD2 � b2ÞuðyÞ ¼ f ðyÞ uð�1Þ ¼ 0 ð1:2Þ
by using the Chebyshev series uðyÞ ¼
PM

m¼0cmTmðyÞ and the set of equations obeyed by the coefficients cn given on p. 119 of
Gottlieb and Orszag [7, 1977].

Although the method on p. 119 of Gottlieb and Orszag [7] has been extensively used in turbulence computations for more
than two decades, its numerical properties have not been investigated as far as we know. For reliable use in solving the
Navier–Stokes equations at high Reynolds numbers, the method should be able to accurately reproduce thin boundary
layers, such as the one shown in Fig. 1.1. There is reason to be concerned. If the method is used to solve fourth order
problems of the type (1.1), it forms linear systems with condition numbers of the order a2b2 for the fourth order boundary
value problem (1.1) and of order a2 for the second order boundary value problem (1.2) [31]. For the problem shown in
Fig. 1.1, the condition number is more than 1024 and greatly exceeds the machine epsilon of double precision arithmetic.
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Fig. 1.1. Very thin boundary layer at y ¼ 1 in the solution of the fourth order boundary value problem ðD2 � b2ÞðD2 � a2Þu ¼ 1 with boundary conditions
uð�1Þ ¼ u0ð�1Þ ¼ 0 and with parameters a ¼ 106 and b ¼
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a. The solid markers are from an exact formula and the solid line is a numerical solution.
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Zebib [34, 1984] and Greengard [8] suggested using a Chebyshev series for the highest derivative. For the fourth order
problem (1.1), the Chebyshev expansion would be u0000 ¼

PM
m¼0cmTmðyÞ. This device avoids the ill-conditioning of Chebyshev

differentiation due to clustering at the end points that causes large errors in spectral differentiation. However, the spectral
integration method of Zebib and Greengard also has a condition number greater than a2b2 for the fourth order boundary
value problem (1.1) [5,31].

The method of spectral integration has been extended and investigated carefully in [31]. The equations presented some-
what tersely on p. 119 of Gottlieb and Orszag [7] are in fact a form of spectral integration. The methods used by Kleiser–
Schumann and Kim–Moin–Moser have numerical properties that are practically identical to that of Zebib and Greengard.
The essential equivalence of the Gottlieb–Orszag equations with spectral integration was first recognized by Charalambides
and Waleffe [3]. Because of this equivalence the advantages of explicit spectral integration, as implemented in [18,19,32], are
not as overwhelming as illustrated in Fig. 3 of [32]. When we refer to spectral integration, it includes the methods of Gott-
lieb–Orszag, Kleiser–Schumann, Zebib, Kim–Moin–Moser, and Greengard as well as the more general and powerful formu-
lations derived in [31].

Regardless of which version of spectral integration is used, the fact remains that the linear system for the fourth order
boundary value problem (1.1) has a condition number of a2b2. Yet, remarkably, even systems with condition numbers
exceeding 1024 (see Fig. 1.1) can be solved with a loss of only five or six digits of accuracy. The accuracy of spectral integra-
tion in spite of large condition numbers can be partly explained using the singular value decomposition [31]. Another prop-
erty of spectral integration (in all its forms) is that some of the intermediate quantities have large errors which cancel in the
final answer [31]. A robust implementation must take these two properties into account. Spectral integration can indeed
handle thin boundary layers, such as the one shown in Fig. 1.1, in spite of large condition numbers. The robustness of spectral
integration was essential to the outstanding success of the methods of Kleiser–Schumann and Kim–Moin–Moser in more
than two decades of use (however, not all implementations are equal).

In Fig. 1.1, the thickness of the boundary layer is of the order 10�6. It takes more than 10,000 Chebyshev points in the
interval �1 6 y 6 1 to resolve that boundary layer in spite of quadratic clustering near the endpoints. That is a lot more than
the number needed if the grid points are chosen in a suitably adaptive manner. Viswanath [31] has derived a version of spec-
tral integration that applies to piecewise Chebyshev grid points. Using that method, the number of grid points needed to
solve a linear boundary value with a boundary layer as thin as the one shown in Fig. 1.1 is reduced from 8192 to 96. It ap-
pears that this new method can be used to obtain considerable improvement in both the Kleiser–Schumann and Kim–Moin–
Moser methods.

The Green’s function method, whose development we begin in this paper, is an alternative which in its final form will
enjoy the same advantages. Spectral integration is an essentially one dimensional idea and cannot be generalized to pipe
flows with non-circular cross-sections and to other non-rectangular geometries. The use of Green’s functions on the other
hand will generalize. A great many analytic and numerical complications arise when Green’s functions are derived for
cross-sections of pipes as a part of a numerical method for solving the Navier–Stokes equations. It is essential to develop
the method for the channel geometry, as we do here, before those difficulties are confronted. It is also possible that the
Green’s function method will turn out to be faster than the methods of Kleiser–Schumann and Kim–Moin–Moser, revised
in the manner suggested in the previous paragraph, but one cannot be certain until the two alternatives are developed to
their final form. Spectral integration over piecewise Chebyshev grids appears to be sensitive to the location of the nodes used
to divided the interval [31]. The Green’s function method is likely to be much less sensitive. Lastly, we mention that the
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Green’s function method has a theoretical advantage. When implemented using suitable quadrature rules, its numerical sta-
bility is immediately obvious.

The Green’s function method for solving the Navier–Stokes equations in channel and plane Couette flow geometries is
developed in Sections 2 and 3. The quadrature rule that is used is provisional. The way to derive robust quadrature rules
is indicated in Section 3 and the complete method will be given in the sequel to this paper.

In Section 4, we show the theoretically intriguing result that Green’s functions may be used to eliminate numerical dif-
ferentiation in the wall-normal or y direction entirely from the numerical scheme. The derivatives that occur in the nonlinear
advection term can be transferred to the Green’s function using integration by parts with the result that numerical differ-
entiation is replaced by analytic differentiation. Such a scheme is not practical at high Reynolds numbers for reasons given
in that section.

In Section 5, we validate the Green’s function based method. In view of the extensions discussed in this introduction, the
code has been written in such a way that it can reach hundreds of millions of grid points using only a dozen or two processor
cores. Since the piecewise Chebyshev extension with robust quadrature rules is yet to be fully developed, the full capabilities
of this code are not exercised. Yet we report simulations with up to ten million grid points and investigate certain aspects of
fully developed turbulence to demonstrate the viability of the Green’s function approach.

2. Green’s functions and template boundary value problems

Every time step in the solution of the Navier–Stokes equations in the channel geometry reduces to the solution of a num-
ber of linear boundary value problems of the type (1.1) and (1.2). In this section, we derive the Green’s functions for the solu-
tions of those boundary value problems. The Green’s functions can be derived using very standard methods. However, the
resulting expressions are unsuitable for numerical evaluation. When the parameters a and b are as large as 106, as in Fig. 1.1,
quantities of the type eby or e�by will overflow. Thus we begin by deriving the Green’s functions in a manner that leads to
expressions suitable for accurate numerical evaluation. In the last part of this section, we consider the evaluation of deriv-
atives such as du=dy, where u is the solution of either of the boundary value problems (1.1) and (1.2), and the evaluation of
the solution u when the source term f is given in the form f � df1=dy.

2.1. Green’s functions of linear boundary value problems

Let Lu ¼ uðnÞ þ a1ðyÞuðn�1Þ þ � � � þ an�1ðyÞuð1Þ þ anðyÞu. The coefficients aiðyÞ, 1 6 i 6 n, are assumed to be real-valued and
sufficiently smooth. The adjoint operator is given by Lþv ¼ ð�1Þnv ðnÞ þ ð�1Þn�1ða1vÞðn�1Þ þ � � � þ anv . We assume throughout
that the functions that arise have the requisite order of smoothness and that n P 2. The degree of differentiability is specif-
ically mentioned only if there is a nontrivial reason for doing so.

The lemmas in this subsection are not new. They can be found in [4] in some form or the other. However, our derivation
leads to formulas which are easier to manipulate and which are suitable for numerical evaluation. Our derivation of the
Green’s function for the boundary value problem Lu ¼ f , a 6 y 6 c, with suitable boundary conditions on u, is based on
the Lagrange identity, which is the next lemma.

Lemma 1. For any two functions u and v, the Lagrange identity v Lu� uLþv ¼ ½uv �0 holds, with
½uv� ¼
Xn�1

k¼0

Xn�k�1

r¼0

ð�1ÞrðvakÞðrÞuðn�k�r�1Þ
and a0 � 1.
Proof. Begin with
R

v Ludy and integrate each term by parts repeatedly. h

Define
~u ¼

u

uð1Þ

..

.

uðn�1Þ

0
BBBB@

1
CCCCA:
The quantity ½uv� which appears in the Lagrange identity may be written as ½uv � ¼ ~uT A~v , where A is an n� n matrix. All the
entries of A are determined by the lemma. However, all that we need to know about A is that it has the following reverse
triangular structure
A ¼

� � � ð�1Þn�1

� � � 0
� �1 0 0
1 0 0 0

0
BBBB@

1
CCCCA
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and that the reverse diagonal is as shown above.
Let u1; . . . ;un be a basis of solutions of the homogeneous problem Lu ¼ 0. Similarly, let v1; . . . ;vn be a basis of solutions of

the adjoint problem Lþu ¼ 0. Denote the n� n matrices
ð~u1; . . . ; ~unÞ and ð~v1; . . . ; ~vnÞ
by U and V, respectively (the determinant of U is the Wronskian). The Lagrange identity implies the following lemma.

Lemma 2. d
dy ðU

T AVÞ ¼ 0.

We will assume that the bases of solutions are chosen in such a way that
UðyÞT AðyÞVðyÞ ¼ I; ð2:1Þ
where I is the identity matrix. The homogeneous solutions ui and v i are used to construct the Green’s function of Lu ¼ f .
Before deriving the Green’s function, we give the identity
v j ¼

det

u1 . . . uðn�2Þ
1 0

u2 . . . uðn�2Þ
2 �

� � � 1
� � � �

un . . . uðn�2Þ
n 0

0
BBBBBB@

1
CCCCCCA

det

u1 u01 . . . uðn�1Þ
1

u2 u02 . . . uðn�1Þ
2

� � �
un u0n . . . uðn�1Þ

n

0
BBBB@

1
CCCCA

:
ð2:2Þ
The entry equal to 1 in the last column of the numerator is in row number j. This identity is derived as follows. We choose the
j-th column of (2.1) to get
UðyÞT AðyÞ

v j

..

.

v ðn�1Þ
j

0
BB@

1
CCA ¼

0
..
.

1
..
.

0

0
BBBBBBB@

1
CCCCCCCA
:

Because of the reverse triangular structure of A, the last entry of A~v j is equal to v j. Identity (2.2) is implied by Cramer’s rule.
By working with rows of (2.1) instead of columns, we get the identity
uj ¼ ð�1Þn�1

det

v1 . . . v ðn�2Þ
1 0

v2 . . . v ðn�2Þ
2 �

� � � 1
� � � �

vn . . . v ðn�2Þ
n 0

0
BBBBBB@

1
CCCCCCA

det

v1 v 01 . . . v ðn�1Þ
1

v2 v 02 . . . v ðn�1Þ
2

� � �
vn v 0n . . . v ðn�1Þ

n

0
BBBB@

1
CCCCA

:
ð2:3Þ
The identities (2.2) and (2.3) are used to construct Green’s functions in Section 2.2.
So far, we have not specified the boundary conditions u must satisfy in addition to Lu ¼ f . We take the domain to be

a 6 y 6 c and require that ~uðaÞ must lie in an n� ‘ dimensional subspace V ‘ (this corresponds to ‘ linear conditions on
~uðaÞ). Similarly, the right boundary conditions require that ~uðcÞ should lie in a n� r dimensional subspace Vr . We require
‘þ r ¼ n. The Green’s function is built up using homogeneous solutions of Lu ¼ 0 which satisfy the left or the right boundary
conditions. We assume that the basis solutions are chosen and then ordered in such a way that
~u1ðcÞ; . . . ; ~u‘ðcÞ and ~u‘þ1ðaÞ; . . . ; ~unðaÞ
span the subspaces Vr and Vl, respectively. The following lemma gives the boundary conditions satisfied by v1; . . . ;vn, a basis
of solutions of Lþv ¼ 0 which is related to u1; . . . ;un by (2.1). The lemma is useful for checking correctness of the implemen-
tation. It may also be used for the construction of v i given ui. Its proof is obvious from UT AV ¼ I.
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Lemma 3. ~v1ðaÞ; . . . ; ~v lðaÞ span the orthogonal complement of the n� ‘ dimensional space AðaÞT Vl and ~v lþ1ðcÞ; . . . ; ~vnðcÞ span the
orthogonal complement of the n� r dimensional space AðcÞT Vr.

Let u be the solution of Lu ¼ f subject to the boundary conditions ~uðaÞ 2 V ‘ and ~uðbÞ 2 Vr . If we apply the Lagrange iden-

tity using u and v i, where v i is a solution of the homogeneous problem Lþv ¼ 0, we get f v i ¼ d

dy ð~uT Av iÞ for i ¼ 1; . . . ;n. The
equations with i ¼ 1; . . . ; ‘ are integrated from a to y and the rest are integrated from y to c. The boundary conditions as given
by the previous lemma imply that
Z y

a
f v1 ¼ ~uðyÞT AðyÞ~v1ðyÞ

� � �Z y

a
f v l ¼ ~uðyÞT AðyÞ~v lðyÞ

�
Z c

y
fv lþ1 ¼ ~uðyÞT AðyÞ~v lþ1ðyÞ

� � �

�
Z c

y
fvn ¼ ~uðyÞT AðyÞ~vnðyÞ:
The last entry of AðyÞT ~u is equal to ð�1Þnu. Using Cramer’s rule, we get
ð�1Þn�1u ¼

det
v1 v 01 . . . v ðn�2Þ

1

R y
a f v1

� � �
vn v 0n . . . v ðn�2Þ

n �
R c

y f vn

0
B@

1
CA

det

v1 v 01 . . . v ðn�1Þ
1

v2 v 02 . . . v ðn�1Þ
2

� � �
vn v 0n . . . v ðn�1Þ

n

0
BBBB@

1
CCCCA

:
ð2:4Þ
The following lemma gives the Green’s function in a more useful form.

Lemma 4. The solution of Lu ¼ f subject to the boundary conditions uðaÞ 2 V ‘ and uðcÞ 2 Vr is given by
uðyÞ ¼ u1ðyÞ
Z y

a
v1ðgÞf ðgÞdgþ � � � þ ulðyÞ

Z y

a
v lðgÞf ðgÞdg� ulþ1ðyÞ

Z c

y
v lþ1ðgÞf ðgÞdg� � � � � unðyÞ

�
Z c

y
vnðgÞf ðgÞdg: ð2:5Þ
Proof. Use (2.3) and (2.4). h

The following lemma justifies the delta-function interpretation of Green’s functions favored by physicists. It is used in
Sections 2.3 and 4.

Lemma 5. Let u1; . . . ;un and v1; . . . ;vn be bases of solutions of the homogeneous problems Lu ¼ 0 and Lþv ¼ 0, respectively, that
are related by UðyÞT AðyÞVðyÞ ¼ I. Then we have
Xn

i¼1

uðjÞi v i ¼ 0 for j ¼ 0;1; . . . ;n� 2

¼ 1 for j ¼ n� 1
and
Xn

i¼1

uiv ðjÞi ¼ 0 for j ¼ 0;1; . . . ;n� 2

¼ ð�1Þn�1 for j ¼ n� 1:



420 D. Viswanath, I. Tobasco / Journal of Computational Physics 251 (2013) 414–431
Proof. Use (2.2) and (2.3). h
2.2. Template boundary value problems

The first template boundary value problem is
ðD2 � b2Þu ¼ f
with boundary conditions uð�1Þ ¼ 0. The Green’s function of this boundary value can be deduced in any number of ways. We
have
Gðy;gÞ ¼ �ebð�2þyþgÞ þ e�bð4�yþgÞ þ ebð�yþgÞ � e�bð2þyþgÞ

2bðe�4b � 1Þ ð2:6Þ
for �1 6 g 6 y 6 1. The Green’s function is symmetric and the solution is given by uðyÞ ¼
R y
�1 Gðy;gÞ f ðgÞdgþR g

y Gðg; yÞ f ðgÞdg. This form of the Green’s function suits numerical work because none of the terms will overflow for even
b very large. The terms in the numerator are factored as follows:
ebð�2þyþgÞ ¼ ebð�1þyÞebð�1þgÞ;

e�bð4�yþgÞ ¼ e�2be�bð1�yÞe�bð1þgÞ;

e�bð2þyþgÞ ¼ e�bð1þyÞe�bð1þgÞ:
None of the factors will overflow even for large b. The term ebð�yþgÞ is not factored and will not overflow because g 6 y. Using
these factorizations and noting that y and g must be exchanged to get the Green’s function for y 6 g, we infer that the eval-
uation of the solution of the first template problem using u ¼

R y
�1 Gðy;gÞ f ðgÞdgþ

R g
y Gðg; yÞ f ðgÞdg reduces to the quadratures
Z y

�1
e�lðgþ1Þf ðgÞdg;

Z 1

y
e�lðgþ1Þf ðgÞdg;

Z y

�1
elð�1þgÞf ðgÞdg;

Z 1

y
elð�1þgÞf ðgÞdg ð2:7Þ
and
 Z þ1

�1
e�ljy�gjf ðgÞdg ð2:8Þ
with l ¼ b. Each one of these quadratures yields a function of y and must be multiplied by a prefactor which is also a func-
tion y. For example, the first term of (2.6) contributes the prefactor �ebð�1þyÞ=2bðe�4b � 1Þ to

R y
�1 ebð�1þgÞf ðgÞdg. Since the term

is unchanged when y and g are interchanged to obtain the Green’s function in y 6 g region, it contributes the same prefactor
to
R 1

y ebð�1þgÞf ðgÞdg. The prefactor of the function defined by (2.8) with c ¼ b is 1=2bðe�4b � 1Þ. Unlike the result of the quadr-
atures (2.7) and (2.8), the prefactors do not depend upon f and can be computed and stored in advance. Thus the cost of solv-
ing the first template problem is very nearly equal to the cost of the quadratures (2.7) and (2.8) with c ¼ b.

The second template problem is the fourth order boundary value problem
ðD2 � b2ÞðD2 � a2Þu ¼ f
with boundary conditions uð�1Þ ¼ u0ð�1Þ ¼ 0. For this problem, it takes more work to write the Green’s function in such a
way that there are no numerical overflows even if a and b are very large. However, the final result is similar to what we have
seen for the first template problem. The evaluation of u can be reduced to the quadratures (2.7) and (2.8) with c ¼ a and
c ¼ b. The results of quadratures are multiplied by prefactors and summed to obtain u.

We now turn to the derivation of the 4� 4 matrix shown in Fig. 2.1. That matrix is useful for computing the prefactors.
Like the first template problem, the second template problem is self-adjoint. We take the basis of homogeneous solutions

to be
u1 ¼ ebðy�1Þ þ e�bðy�1Þ � eaðy�1Þ � e�aðy�1Þ;

u2 ¼ aebðy�1Þ � ae�bðy�1Þ � beaðy�1Þ þ be�aðy�1Þ;

u3 ¼ ebðyþ1Þ þ e�bðyþ1Þ � eaðyþ1Þ � e�aðyþ1Þ;

u4 ¼ aebðyþ1Þ � ae�bðyþ1Þ � beaðyþ1Þ þ be�aðyþ1Þ:
It may be verified that u1 and u2 satisfy the right boundary conditions while u3 and u4 satisfy the left boundary conditions as
assumed in Section 2.1. The functions v1;v2;v3;v4 may be calculated using (2.2) or Lemma 3. It is convenient to define
W ¼ �4abd2r2e�4a � 4abd2r2e�4b þ 4
abd4e�4b�4a

r2 þ 32a2b2d2e�2b�2a þ 4
abd4

r2
where d ¼ a2 � b2 and r ¼ aþ b (the Wronskian is equal to e2aþ2bW). The function v1 is equal to



Fig. 2.1. Entries of a 4� 4 matrix with the first two columns placed above the last two. This matrix determines the Green’s function of the second template
problem. Here d ¼ a2 � b2 and r ¼ aþ b.
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2abðbþ aÞð�bþ aÞ2eaðy�1Þ � 2abðbþ aÞð�bþ aÞ2ebðy�1Þ þ 2abð�bþ aÞðbþ aÞ2e�aðyþ3Þ

þ 2abð�bþ aÞðbþ aÞ2e�bðyþ3Þ þ 2abðbþ aÞð�bþ aÞ2e�4a�by�3b � 2abð�bþ aÞðbþ aÞ2e�4aþby�b

� 4a2bð�bþ aÞðbþ aÞe�2a�by�b � 2abðbþ aÞð�bþ aÞ2e�4b�ay�3a � 2abð�bþ aÞðbþ aÞ2e�4bþay�a

� 4ab2ð�bþ aÞðbþ aÞe�2b�ay�a þ 4ab2ð�bþ aÞðbþ aÞeay�3a�2b þ 4a2bð�bþ aÞðbþ aÞeby�3b�2a
divided by W. The expression for v2 is similarly long.
For g 6 y, the Green’s function is given by Gðy;gÞ ¼ u1ðyÞv1ðgÞ þ u2ðyÞv2ðgÞ. This Green’s function is determined by the

4� 4 matrix shown in Fig. 2.1. We think of the rows and columns of the matrix as being indexed by �b, b, �a, a in that order.
The ð�b;�bÞ entry, which appears in the top left corner, is divided by W to get the coefficient of e�bðyþ1Þe�bðgþ1Þ in the expres-
sion for Gðy;gÞ for g 6 y. The other entries are interpreted similarly but there are two special entries. These are the ð�b; bÞ
entry which must be interpreted as W times the coefficient of ebðg�yÞ and the ð�a;aÞ entry which must be interpreted as W
times the coefficient of eaðg�yÞ. The Green’s function for y 6 g is obtained from symmetry.

It follows that solving the second template problem ðD2 � b2ÞðD2 � a2Þu ¼ f with boundary conditions uð�1Þ ¼ u0ð�1Þ ¼ 0
reduces to quadratures (2.7) and (2.8) with c ¼ a and c ¼ b. Each quadrature yields a function of y which is multiplied by a
prefactor. The prefactor is determined using the 4� 4 matrix of Fig. 2.1 and the formula for W.

The formula for W and the entries of the 4� 4 matrix use d and r to avoid cancellation errors. Because of the way the
parameters a and b arise in the numerical integration of channel flow, d ¼ a2 � b2 can be evaluated accurately.

Each of the quadratures (2.7) and (2.8) is well-conditioned. However, if a � b there will be large cancellation errors when
the results of the quadratures are multiplied by prefactors and summed. This phenomenon may be understood as follows.
When a – b, the solutions e�ay, e�by form a basis of homogeneous solutions. When a ¼ b, the basis is e�ay, ye�ay. When a � b,
the Green’s function tries to produce terms which resemble yeay using terms such as ðeay � ebyÞ=ða� bÞ resulting in large can-
cellation errors. Fortunately, this situation does not arise in channel flow or plane Couette flow.
2.3. Derivatives using Green’s functions

For the template boundary value problems Lu ¼ f , we have derived Green’s functions such that uðyÞ ¼
R 1
�1 Gðy;gÞ f ðgÞdg.

Here we will consider the use of Green’s functions to evaluate derivatives such as du=dy.
The ability to differentiate solutions of boundary value problems using Green’s functions has been utilized in an impor-

tant paper by Greengard and Rokhlin [9]. They consider the boundary value problem u00 þ pðyÞu0 þ qðyÞu ¼ f ðyÞ and solve it by
representing the solution u in the form u ¼

R 1
�1 Gðy;gÞrðgÞdg, where G is the Green’s function of a linear boundary value

problem with constant coefficients which satisfies the same boundary conditions. In fact, the background boundary value
problem is simply taken to be u00 ¼ f . With the representation of u using r, the boundary value problem becomes an integral
equation for r. Starr and Rokhlin [28] have generalized the method to first order systems. The papers by Greengard, Rokhlin,
and Starr show how to apply numerical methods based on Green’s functions to problems with non-constant coefficients.
Once the boundary value problem is cast in integral form using the background Green’s function, the method handles diag-
onal blocks using Nyström integration and pieces together the global solution efficiently by exploiting the low rank of the
off-diagonal blocks.

We derive integral formulas for derivatives of solutions of both the second and fourth order template boundary value
problems. In addition, we consider boundary value problems of the type Lu ¼ df1=dy and Lu ¼ d2f2=dy2 and show how to
get the solution u as well as its derivatives without numerically differentiating f1 or f2. In Section 4, these calculations are
used to show that numerical differentiation in the wall-normal or y direction can be entirely eliminated in the numerical
integration of channel flow.
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For the template second order problem, which is Lu ¼ d2u=dy2 � b2u ¼ f with boundaries uð�1Þ ¼ 0, we take the Green’s
function to be Gðy;gÞ ¼ u1ðyÞv1ðgÞ for�1 6 g 6 y 6 1. The Green’s function for�1 6 y 6 g 6 1 is taken to be Gðg; yÞ since the
problem is symmetric or self-adjoint. The function u1 satisfies the right boundary condition and the relationship between
u1;u2 and v1;v2 is as given in Section 2.1. The Green’s function for �1 6 y 6 g 6 1 is also given by �u2ðyÞv2ðgÞ. As a conse-
quence of symmetry, we have �u2ðgÞv2ðyÞ ¼ u1ðyÞv1ðgÞ.

If Gðy;gÞ ¼ u1ðyÞv1ðgÞ, we have G1ðy; yÞ ¼ G2ðy; yÞ þ 1, where subscripts of G denote partials with respect to the first or
second argument. This follows from symmetry and Lemma 5. In addition, we have Gð1; yÞ ¼ Gðy;�1Þ ¼ 0 because u1 satisfies
the right boundary condition and v1 satisfies the left boundary condition.

The solution of Lu ¼ f is given by
uðyÞ ¼
Z y

�1
Gðy;gÞ f ðgÞdgþ

Z 1

y
Gðg; yÞ f ðgÞdg: ð2:9Þ
Differentiating with respect to y, we get
u0ðyÞ ¼
Z y

�1
G1ðy;gÞ f ðgÞdgþ

Z 1

y
G2ðg; yÞ f ðgÞdg ð2:10Þ
where subscripts of G stand for partial differentiation. The integral equation is no longer symmetric in y and g. Suppose the
boundary value problem is Lu ¼ df1=dy. We may substitute f 01 for f in (2.9) and integrate by parts to get
uðyÞ ¼ �
Z y

�1
G2ðy;gÞ f 1ðgÞdg�

Z 1

y
G1ðg; yÞ f 1ðgÞdg: ð2:11Þ
This integral equation for uðyÞ is not symmetric. Differentiating with respect to y and using G1ðy; yÞ ¼ G2ðy; yÞ þ 1, we get
du
dy
¼ �

Z y

�1
G12ðy;gÞ f 1ðgÞdg�

Z 1

y
G12ðg; yÞ f 1ðgÞdgþ f1ðyÞ: ð2:12Þ
The template fourth order problem is Lu ¼ ðD2 � b2ÞðD2 � a2Þu ¼ f with boundary conditions uð�1Þ ¼ u0ð�1Þ ¼ 0. We
again take the Green’s function to be Gðy;gÞ for �1 6 g 6 y 6 1. From Section 2.1, we have Gðy;gÞ ¼ u1ðyÞv1ðgÞþ
u2ðyÞv2ðgÞ. Fig. 2.1 gives the coefficients of the Green’s function as explained in Section 2.2. The functions u1ðyÞ and u2ðyÞ
satisfy the right boundary condition. Using symmetry, we take the Green’s function for �1 6 y 6 g 6 1 to be Gðg; yÞ. As a
consequence of symmetry, we have
u1ðyÞv1ðgÞ þ u2ðyÞv2ðgÞ ¼ �u3ðgÞv3ðyÞ � u4ðgÞv4ðyÞ:
Using this identity and Lemma 5, we deduce that
G1ðy; yÞ ¼ G2ðy; yÞ;
G11ðy; yÞ ¼ G22ðy; yÞ;
G111ðy; yÞ ¼ G222ðy; yÞ þ 1:
Here the subscripts of G denote partial differentiation with 1 and 2 standing for the first and second arguments of G. Since u1

and u2 satisfy the right boundary conditions while v1 and v2 satisfy the left boundary conditions, we have
Gð1; yÞ ¼ G1ð1; yÞ ¼ Gðy;�1Þ ¼ G2ðy;�1Þ ¼ 0:
In other words, the Green’s function satisfies the boundary conditions.
The solution of Lu ¼ f , with the boundary conditions associated with the fourth order template problem, are given by
uðyÞ ¼
Z y

�1
Gðy;gÞ f ðgÞdgþ

Z 1

y
Gðg; yÞ f ðgÞdg ð2:13Þ
as before. Differentiating with respect to y gives
du
dy
¼
Z y

�1
G1ðy;gÞ f ðgÞdgþ

Z 1

y
G2ðg; yÞ f ðgÞdg; ð2:14Þ

d2u

dy2 ¼
Z y

�1
G11ðy;gÞ f ðgÞdgþ

Z 1

y
G22ðg; yÞ f ðgÞdg: ð2:15Þ
The subscripts of G denote differentiation. If the fourth order template problem is of the form Lu ¼ df1=dy, its solution is gi-
ven by
uðyÞ ¼ �
Z y

�1
G2ðy;gÞ f 1ðgÞdg�

Z 1

y
G1ðg; yÞ f 1ðgÞdg: ð2:16Þ
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This form of the solution is obtained after substituting df1=dt for f in (2.13) and then integrating by parts. The boundary terms
vanish. Differentiating with respect to y, we get
du
dy
¼ �

Z y

�1
G12ðy;gÞ f 1ðgÞdg�

Z 1

y
G12ðg; yÞ f 1ðgÞdg; ð2:17Þ

d2u

dy2 ¼ �
Z y

�1
G112ðy;gÞ f 1ðgÞdg�

Z 1

y
G122ðg; yÞ f 1ðgÞdg: ð2:18Þ
The boundary terms vanish on both occasions. If the template fourth order boundary value problem is in the form
Lu ¼ d2f2=dy2, the analogous formulas are as follows:
uðyÞ ¼
Z y

�1
G22ðy;gÞ f 2ðgÞdgþ

Z 1

y
G11ðg; yÞ f 2ðgÞdg;

du
dy
¼
Z y

�1
G122ðy;gÞ f 2ðgÞdgþ

Z 1

y
G112ðg; yÞ f 2ðgÞdg;

d2u

dy2 ¼
Z y

�1
G1122ðy;gÞ f 2ðgÞdgþ

Z 1

y
G1122ðg; yÞ f 2ðgÞdgþ ðG122ðy; yÞ � G112ðy; yÞÞ f 2ðyÞ:

ð2:19Þ
These formulas are derived using the properties of G given in the previous paragraph.
Formulas (2.9)–(2.19) give a method to compute solutions and solution derivatives without numerical differentiation

even when the right hand side of the boundary value problem is given as a derivative. If the right hand is df1=dy, these for-
mulas use f1 and not df1=dy. The derivatives are transferred to the Green’s function which can be differentiated analytically.
In the case of the template fourth order problem, the kernels of the formulas can be described using a matrix such as the one
displayed in Fig. 2.1. In fact the kernels can be obtained by multiplying the entries of that matrix with suitable powers of a
and b. With such a representation the kernels can be evaluated in a numerically stable way as described in Section 2.2.

The numerical evaluation of formulas (2.9) through (2.19) is affected by discretization and rounding errors in varying
ways. To avoid writing down long formulas, we limit the discussion of numerical errors to the template second order prob-
lem and note that very similar issues arise for the template fourth order boundary value problem.

When the integral formulation is used, the solution of the template second order problem ðD2 � b2Þu ¼ f at the boundary
point y ¼ 1 is obtained as the sum of the following four terms:
Z 1

�1

ebðg�1Þf ðgÞ
2bð1� e�4bÞ dg;

Z 1

�1

e�2be�bðgþ1Þf ðgÞ
2bð1� e�4bÞ dg; �

Z 1

�1

e�2be�bðgþ1Þ f ðgÞ
2bð1� e�4bÞ dg; �

Z 1

�1

ebðg�1Þ f ðgÞ
2bð1� e�4bÞ dg: ð2:20Þ
The second and third terms are exceedingly small even for moderate b. The main contribution to numerical error is from
the exact cancellation between the first and the last terms. The magnitude of the first or the last term is of the order
jf j1=b

2. If the quadrature rule is a very good one, each of the integrals may be evaluated with an error of around
jf j1b�2�machine. If such a quadrature rule is devised, the error in the boundary layer will also be of the same order. If we
suppose f � b2, then the exact formula will look like 1� ebðy�1Þ near the y ¼ 1. Since 1 is a special number in machine arith-
metic, the subtraction y� 1 will be exact at y ¼ 1 but not at other nearby points. If we take the subtraction error at y ¼ 1 to
follow the same model as at other points, we get the error in the boundary layer using the exact formula to be of the order
j1� eb�j � b� or jf j1�machine=b. Thus the integral form has the potential to be more accurate in the boundary layer than even
the mathematically exact formula. Here we envisage quadrature rules for the sort of integrals that occur in (2.20) which
take into account the occurrence of terms such as e�bðgþ1Þ in the integrands and whose weights and nodes are computed
using extended precision.

The use of formulas such as (2.10) to compute the derivative du=dy is especially accurate in the boundary layer. For in-
stance, at y ¼ 1 the first term of (2.20) gets multiplied by b and the last term by �b with the result that there is no cancel-
lation error in the boundary layer. In view of this observation, some of the errors reported in Table 7 of [9] may appear a little
high for the function derivative.

Finally, we consider a type of numerical error that arises in formulas such as (2.16) that express the solution of
Lu ¼ df1=dy in integral form without differentiation of f1. If b is large in the template second order problem
ðD2 � b2Þu ¼ f , the solution satisfies u � �f=b2 away from the boundary. Thus if f is given in the form df1=dy, the solution
will satisfy u � � df1

dy b�2 and a formula such as (2.16) essentially has to produce the derivative of f1 away from the boundary
using integration. Differentiation is defined by subtracting nearly equal quantities and the cancellation errors inherent in
that process cannot go away entirely. The same comment applies to formulas such as (2.10) which produce solution deriv-
atives using an integral formula or to the evaluation of solution derivatives using the background Green’s function as in [9] or
to the method of spectral integration discussed in the introduction. The principle contribution to the solution of
ðD2 � b2Þu ¼ f for large b and away from the boundary is due to the term
1
2bðe�4b � 1Þ

Z 1

�1
e�bjg�yj f ðgÞdg:
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This is the term which makes the solution look like �f b�2 away from the boundary. When (2.10) is used to evaluate du=dy
with u being the solution of Lu ¼ f , the leading contribution is from the two terms
1
2bðe�4b � 1Þ

Z y

�1
ebðg�yÞ f ðgÞdg�

Z 1

y
ebðy�gÞ f ðgÞdg

� �
:

Here the cancellation error we are looking for is evident. A numerical method that uses integral formulas to evaluate solution
derivatives or to eliminate derivatives that appear on the right hand side would benefit by treating such terms together,
especially when quadrature rules are derived.

3. Time integration of the Navier–Stokes equations

Let u ¼ ðu;v ;wÞ be the velocity field of channel flow or plane Couette flow. We assume the domain to be periodic in the
wall-parallel directions with periods equal to 2pKx and 2pKz in the streamwise and spanwise directions, respectively. The
Fourier decomposition of the velocity field is given by
u ¼
XL=2

‘¼�L=2

XN=2

n¼N=2

û‘;nðyÞei‘x=Kxþinz=Kz :
This Fourier decomposition assumes the number grid points in the streamwise and spanwise directions to be L and N. The
notation û‘;n denotes a Fourier coefficient of the entire velocity field. Similarly, û‘;n; v̂ ‘;n; ŵ‘;n denote the Fourier coefficients of
the streamwise, wall-normal, and spanwise components of the velocity field, respectively. The components of the vorticity
r� u are denoted by xx, xy, xz and their Fourier components are denoted similarly.

Often which modes ‘ and n apply is clear from context and the Fourier modes are indicated as û; v̂ ; ŵ without subscripts.
The ‘ ¼ n ¼ 0 modes are the mean modes and are denoted using an over-bar. For example, the mean mode of the streamwise
velocity is �u. In both the flows considered here, the range of the y variable is �1 6 y 6 1, with the walls located at y ¼ �1.

3.1. The Kim–Moin–Moser equations

We take the Navier–Stokes equations to be @u=@t þH ¼ �rpþ Du=Re, with H ¼ ðH1;H2;H3Þ being the nonlinear term.
Both the Kleiser–Schumann [14]and Kim–Moin–Moser [13] methods begin by substituting the truncated Fourier expansion
of the velocity field u. The various Fourier modes are coupled through the nonlinear term. The nonlinear term is dealiased
using the 3/2 rule [2].

Both the methods use identical equations for the mean streamwise velocity and mean spanwise velocity:
@�u
@t
¼ ��H1 þ pg þ

1
Re

@2�u
@y2 ;

@ �w
@t
¼ ��H3 þ

1
Re

@2 �w
@y2 : ð3:1Þ
For plane Couette flow pg ¼ 0 and the boundary conditions are �uð�1Þ ¼ �1 and �wð�1Þ ¼ 0. For channel flow,
�uð�1Þ ¼ �wð�1Þ ¼ 0 but pg is non-zero. We may take pg ¼ 2=Re and maintain a constant pressure gradient or we may take
pg ¼
1
2

Z þ1

�1

�H1 dy� 1
2Re

@�u
@y

����
y¼1

y¼�1
ð3:2Þ
and keep the streamwise mass flux 1
2

Rþ1
�1

�udy constant at 2/3. The laminar solution of channel flow is u ¼ ð1� y2;0;0Þ in both
cases.

The equations for the ð‘;nÞ mode are
@û
@t
þ Ĥ1 ¼ �

i‘
Kx

� �
p̂þ D2 � ‘2

K2
x

� n2

K2
z

 !
û;

@v̂
@t
þ Ĥ2 ¼ �

@p̂
@y
þ D2 � ‘2

K2
x

� n2

K2
z

 !
v̂ ;

@ŵ
@t
þ Ĥ3 ¼ �

in
Kz

� �
p̂þ D2 � ‘2

K2
x

� n2

K2
z

 !
ŵ:
Here all the hatted variables are Fourier coefficients of the ð‘;nÞ mode and are functions of y. As before D denotes d=dy. The
incompressibility constraint r:u ¼ 0 gives i‘û=Kx þ @v̂=@yþ inŵ=Kz ¼ 0. The equations are solved in this form by the Kleis-
er–Schumann method. In the Kim–Moin–Moser method these equations are altered to
@x̂y

@t
þ Ĥ4 ¼

1
Re

D2 � ‘2

K2
x

� n2

K2
z

 !
x̂y;

@

@t
D2 � ‘2

K2
x

� n2

K2
z

 !
v̂ þ Ĥ5 ¼

1
Re

D2 � ‘2

K2
x

� n2

K2
z

 !2

v̂ : ð3:3Þ
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The boundary conditions are x̂yð�1Þ ¼ v̂ð�1Þ ¼ dv̂
dy ð�1Þ ¼ 0. Here
H4 ¼
@H1

@z
� @H3

@x
and H5 ¼

@2H2

@x2 þ
@2H2

@z2 �
@2H1

@y@x
� @

2H3

@y@z
:

The entire velocity field can be recovered using �u, �w, xy, and v [13].
Imposing physically correct boundary conditions on pressure causes some complications and is a potential pitfall. Early

discussions of this issue are found in [14,?]. A thorough discussion of this topic, important both for mathematical theory and
for computation, is found in an illuminating paper by Rempfer [24].

3.2. Time stepping using Green’s functions

If the Kim–Moin–Moser equations (3.1) and (3.3) are discretized in time, we get linear boundary value problems in the
wall-normal or y direction. Green’s functions will be used to solve these linear boundary value problems. An advantage of
this method is that the boundary layers are analytically built into the Green’s functions.

The original paper by Kim et al. [13] used the CNAB (Crank–Nicolson and Adam–Bashforth) discretization in time. If the
method is applied to the x̂y equation in (3.3), we get
x̂nþ1
y � x̂n

y

Dt
¼ �3Ĥn

4 � Ĥn�1
4

2
þ 1

Re
D2 � ‘2

K2
x

� n2

K2
z

 !
x̂nþ1

y þ x̂n
y

2

 !
:

The superscripts denote time steps. It is well-known that the numerical stability of Crank–Nicolson can be dicey in spite of
its stability region being the entire left half plane. The eigenvalue equal to k corresponds to an amplification factor of
ð1þ kDtÞ=ð1� kDtÞ. The amplification is by a factor less than 1 in magnitude for eigenvalues with a negative real part. How-
ever, the amplification factor can be very close to 1 for eigenvalues such as k ¼ �1010 which correspond to rapid decay. If
care is taken to use the same scheme for differentiating x̂nþ1

y and x̂n
y , or if the boundary value problem is solved for

x̂nþ1
y þ x̂n

y at each time step, CNAB will be stable. We found it difficult to stabilize CNAB for the v̂ equation in (3.3). This could
be because we are mixing integration using a Green’s function with the second derivative that comes from the left hand side
of (3.3), or it could be because the best possible quadrature rules for this problem are yet to be derived. We will not consider
CNAB any further.

Suppose dX=dt ¼ f ðXÞ þ DX=Re, where f ðXÞ is a nonlinear term. The time discretizations we consider are of the following
form:
1
Dt

cXnþ1 þ
Xs�1

j¼0

ajX
n�j

 !
¼
Xs�1

j¼0

bjf ðXn�jÞ þ 1
Re

DXnþ1:
If the �u equation of (3.1) is discretized in time, it fits the template second order boundary value problem ðD2 � b2Þu ¼ f with
u ¼ �unþ1; b2 ¼ cRe
Dt

; f ¼ Re
Dt

Xs�1

j¼0

aj�un�j þ Re
Xs�1

j¼0

ð�Hn�j
1 � pnþ1

g Þ: ð3:4Þ
The time discretization of the �w equation of (3.1) fits the template second order boundary value problem ðD2 � b2Þu ¼ f with
u ¼ �wnþ1; b2 ¼ cRe
Dt

; f ¼ Re
Dt

Xs�1

j¼0

aj �wn�j þ Re
Xs�1

j¼0

Hn�j
3 : ð3:5Þ
The time discretization of the x̂y equation of (3.3) also fits the template second order boundary value problem:
u ¼ x̂nþ1
y ; b2 ¼ ‘2

K2
x

þ n2

K2
z

þ cRe
Dt

; f ¼ Re
Dt

Xs�1

j¼0

ajx̂n�j
y þ Re

Xs�1

j¼0

bjĤ
n�j
4 : ð3:6Þ
The time discretization of the v̂ equation of (3.3) fits the template fourth order boundary value problem (1.1) as follows:
u ¼ v̂nþ1; a2 ¼ ‘2

K2
x

þ n2

K2
z

; b2 ¼ a2 þ cRe
Dt

; f ¼ Re
Dt

Xs�1

j¼0

ajðD2 � a2Þv̂n�j þ Re
Xs�1

j¼0

bjĤ
n�j
5 : ð3:7Þ
From the manner in which a2 and b2 arise, the advantage of casting the Green’s function for the template fourth order prob-
lem using d ¼ a2 � b2 and r ¼ a2 þ b2, as we did in Fig. 2.1 and Section 2.2, is evident. Both d and r can be evaluated without
cancellation errors.

Eqs. (3.4)–(3.7) are reduced to quadratures of the type (2.7) and (2.8) as explained in Section 2. In the fourth order prob-
lem (3.7), which is solved for v̂nþ1, the right hand side uses second derivatives of v̂n�j from previous stages. The calculation of
this second derivative is reduced to quadratures using (2.14).



426 D. Viswanath, I. Tobasco / Journal of Computational Physics 251 (2013) 414–431
The time stepping schemes we have implemented use
s ¼ 1; c ¼ 1; a1 ¼ �1; b1 ¼ 1;
s ¼ 2; c ¼ 3=2; a1 ¼ �2; a2 ¼ 1=2; b1 ¼ 2; b2 ¼ �1;
s ¼ 2; c ¼ 11=6; a1 ¼ �3; a2 ¼ 3=2; a3 ¼ �1=3; b1 ¼ 3; b2 ¼ �3; b3 ¼ 1:
These are implicit–explicit multistep schemes that correspond to backward Euler, BDF2, and BDF3 respectively. For deriva-
tions of these schemes, see [1,6,30].

The absolute stability regions of the explicit halves of some time integration schemes are shown in Fig. 3.1 for reference.
In turbulence simulations, the nonlinear advection term, which is discretized using an explicit scheme, is more of a con-
straint on the time step than the diffusion term which is handled implicitly. The discretization of the viscous diffusion term
is by itself unconditionally stable.

To complete the description of these methods, we need to explain the method that is used to solve the quadrature prob-
lems (2.7) and (2.8) numerically. These quadrature problems are extremely well-conditioned even for large l. The method
that is currently implemented for (2.7) expands the integrand in a Chebyshev series and integrates the terms of the series
using well-known formulas. A better method would be to obtain quadrature nodes and weights for weighted integrals with
weight functions equal to e�lðt	1Þ, evaluate the other factor f ðtÞ at the nodes using an accurate and efficient interpolation
algorithm, and sum using the quadrature weights. Such a method will be developed in future research. The current method
develops spurious difficulties when l is large, although it is good enough to allow us to exhibit simulations of fully devel-
oped turbulence in Section 5. In addition, if the idea of representing functions using piecewise Chebyshev collocation, which
is briefly mentioned in the introduction and discussed at greater length in the context of spectral integration in [31], is em-
ployed, even the basic quadrature that is now implemented is likely to be adequate, even for very large l. The Green’s func-
tions of Section 2 are completely independent of the discretization used in the wall-normal or y direction. The discretization
could be Chebyshev, or piecewise Chebyshev, or something else. The ease with which piecewise Chebyshev discretization
can be incorporated into numerical methods that use Green’s functions was one of our prime motivations. At the moment,
the quadrature problem (2.8) is solved numerically using spectral integration. Similar comments apply to this quadrature
problem as well.

In direct numerical simulation of turbulence it is more common to use explicit–implicit Runge–Kutta methods in the di-
rect numerical simulation of turbulence [11,21,23,27]. The advantanges of Runge–Kutta are ease of initialization and the pos-
sibility of adaptive time-stepping with embedded pairs. In the solution of ordinary differential equations, multistep methods
and Runge–Kutta methods have been compared extensively [10]. It is now known that multistep methods can be initialized
and time stepped adatively with equal effectiveness. This technology will be carried over to implicit–explicit multistep for-
mulas in future research. Here we have preferred multistep formulas partly in order to leave room for this future research.
Runge–Kutta methods typically have larger stability region but with each step costing more function evaluations. In future
research, we will show how to derive implicit–explicit multistep methods with stability regions that are particularly advan-
tageous for problems such as high Re turbulence simulations.
4. A discrete model without spatial differentiation

Here we explain how numerical differentiation in the wall-normal or y direction can be completely eliminated by
employing the divergence form of the nonlinear term.
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Fig. 3.1. Absolute stability regions of the explicit halves of the implicit–explicit methods based on backward Euler, CNAB, BDF2, and BDF3.
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The Kim–Moin–Moser equation for �u given in (3.1) has an �H1 term. The nonlinear term H1 is given by
H1 ¼ @xðu2Þ þ @yðuvÞ þ @zðuwÞ. So we may take �H1 ¼ @y �uv . The mean mode �u is advanced in time by solving the boundary
value problem (3.4). The right hand side of the template boundary value problem is taken to be f, where f is given by
(3.4). The �H1 terms in that right hand side may be removed and a new right hand side written as df1=dy introduced in their
place. The contribution of a given time step to f1 is taken to be Re times �uv evaluated at that time step. These contributions
are weighted by bj and combined as before. The mean mode �u is advanced in time using (2.9) and (2.16) and its derivative, if
needed in (3.2), is calculated using (2.10) and (2.12).

The �w and x̂y equations are treated similarly. The x̂y equation in (3.3) has an Ĥ4 term. The terms of H4 that do not require
differentiation in y are
@2u2

@x@z
þ @

2uw
@z2 �

@2uw
@x2 �

@2w2

@x@z
and the terms which require a single differentiation are
@2uv
@y@z

� @
2vw
@x@y

:

These terms are separated and some of them are removed from the f given in (3.6) and a new term df1=dy is inserted in the
right hand side.

The treatment of v̂ modes is a bit more elaborate. The right hand side H5 may be written as
@3ðuvÞ
@x3 þ @

3ðuvÞ
@x@z2 þ

@3ðvwÞ
@x2@z

þ @
3ðvwÞ
@z3

 !
þ @3ðv2Þ

@x2@y
þ @

3ðv2Þ
@y@z2 �

@3ðu2Þ
@x2@y

� 2
@3ðuwÞ
@x@y@z

� @
3ðw2Þ
@y@z2

 !
þ � @

3ðuvÞ
@x@y2 �

@3ðvwÞ
@y2@z

 !
;

where terms are grouped depending upon whether they require zero, one, or two differentiations with respect to y. The right
hand side of the template fourth order problem which is given as f in (3.7) may be rewritten as f þ df1=dyþ d2f2=dy2, with
none of f ; f1, and f2 involving differentiation with respect to y. The integral Eqs. (2.13) through (2.19) may be used to produce
v̂ , dv̂=dy, and even d2v̂=dy2. The first derivative dv̂=dy is needed when the full velocity field is reconstructed from �u; �w, and
the modes x̂y and v̂ [13]. Turning this into a practical method hinges on numerical issues discussed at the end of Section 2.
Eliminating numerical differentiation with respect to y may be useful if a large number of Chebyshev points is used in the y
direction. However, it appears that piecewise Chebyshev grids can resolve boundary layers and internal layers while using
only a small number of Chebyshev points in each sub-interval. Handling piecewise Chebyshev grids after reducing each time
step to quadratures of the form (2.7) and (2.8) is as easy as

R c
a ¼

R b
a þ

R c
b . In piecewise Chebyshev grids, numerical errors due

to differentiation are not a cause for concern.

5. Numerical validation

The numerical method described in Section 3 for solving the incompressible Navier–Stokes equations has been
implemented and tested in numerous ways. Many earlier computations of plane Couette flow and channel flow have been
reproduced with precision. In this section, we describe a few computations of fully developed turbulence. All the compu-
tations described here are for channel flow. Channel flow is used far more often than plane Couette flow in turbulence
simulations.

A useful summary of turbulence computations of channel flow is given by Toh and Itano [29]. The Reynolds number Re by
itself is not a good metric to assess the difficulty of a turbulence computation because simple solutions such as the laminar
solution can be computed easily at any Reynolds number. The metric must take into account both the Reynolds number and
the kind of solutions that the simulation generates. One useful metric is obtained by taking the time average of d�u=dy at the
walls, where �u is the mean streamwise velocity, and then computing Res ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Re� jd�u=dyj

p
. The frictional Reynolds number

Res is a good measure of the difficulty of the simulation. The highest Res reached appears to be 2000 in the work of Hoyas and
Jiménez [11]. The lowest Res at which one still observe turbulence appears to be around 100 [12]. Nikitin [22,23] has derived
a method for solving the incompressible Navier–Stokes equations in orthogonal curvilinear coordinates. Nikitin’s method
uses staggered grids, centered differences, cell averages for nonlinear terms, and explicit projections to enforce the incom-
pressibility condition. The same program can handle channel, pipe, eccentric pipe and other geometries. Nikitin’s method has
been used to simulate fully developed turbulence at an Res of 500.

Prior to numerical validation, we discuss the pressure boundary condition to make a point about the behavior of �H1 in a
turbulent flow. Fig. 5.1 shows a simulation of channel flow with Re ¼ 104, Kx ¼ 2:0 and Kz ¼ 1:0. The grid parameters used
L ¼ 64, M ¼ 128, and N ¼ 64. The boundary condition used was pg ¼ 2=Re in the equation for �u given in (3.1). It is noticeable
that the mean shear converges to �2 at the upper wall. The equation for the mean flow �u is given by
@�u=@t þ �H1 ¼ pg þ 1

Re @
2�u=@y2. The mean flow fluctuates very little once the flow is fully turbulent. If we average the mean

flow over time, we get @2�u=@y2 ¼ Reð�H1 � pgÞ with �uð�1Þ ¼ 0. The Green’s function for this boundary value problem is given
by Gðy; tÞ ¼ ðy� 1Þðgþ 1Þ=2 for �1 6 g 6 y 6 1. Using (2.10), we get
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@�u
@y

�����
y¼þ1

¼
Z 1

�1
G1ðy;gÞf ðgÞdg ¼ Re

Z 1

�1

ðg� 1Þð�H1 � pgÞ
2

dg ¼ �2:
Since pg ¼ 2=Re, we have
R 1
�1

�H1ðyÞdy ¼ 0. The reason �H1 satisfies this condition appears not to be known. In rotating channel
flows, the mean flow exhibits a stretch where its slope is given by the rate of rotation (see Fig. 3 of Yang and Wu [33]). The
reason for that phenomenon too appears to be unknown. The mean flow flattens during transition as evident from the sec-
ond plot of Fig. 5.1. At the very beginning, the mean flow develops oscillations which look somewhat like the oscillatory
shears considered in [17]. It is well-know that fixing the mass flux leads to a quite different value for the mean shear.
Fig. 5.2 shows a turbulence simulation which fixed the mass-flux using (3.2). The parameters used were Re ¼ 104,
Kx ¼ 1:0 and Kz ¼ 0:5. The grid parameters used L ¼ 256, M ¼ 256, and N ¼ 128 correspond to approximately 8:5 million
grid points.

The two test cases used for numerical validation are detailed in Table 1. The two cases are close to but not exactly the
same as two of the cases reported in the simulations of Moser et al. [21]. The first test case has Res ¼ 171 against
Res ¼ 180 in [21]. The second test case has Res ¼ 380 against Res ¼ 392 in [21].

The plots in Fig. 5.3 may be compared with the plots of Moser et al. [21]. Fig. 5.3 (a) shows the mean streamwise velocity
as a function of the distance from the wall. This curve is usually fitted using the famous log-law of the wall. Moser et al. dis-
cuss power law fits as well. The plot for Res ¼ 380 is quite close to the plot for Res ¼ 392 given in [21]. The plot for Res ¼ 171
shows a pronounced low Reynolds number effect. However, the low Reynolds number effect is much less pronounced in our
test than in the Res ¼ 180 test in [21]. This could be either because of the superior resolution in our test or because of the
much longer time integration used to eliminated transients.
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ū/U

y/
h

Fig. 5.2. Similar to Fig. 5.1 but using a boundary condition that fixes the mass flux.



Table 1
Parameters of turbulence simulations used for numerical validation. The Dxþ/Dyþc /Dzþ column gives the grid resolution in wall units, with Dyþc being the
distance between grid points along y near the center of the channel. The initialization time used to eliminate transients T1, the time over statistics is
accumulated T2, and the time step Dt are non-dimensionalized using the centerline speed of the laminar solution U and the channel half-width h.

Re Res Kx Kz L M N Dxþ/Dyþc /Dzþ UT1=h UT2=h UDt=h

4000 171.4 2 2/3 320 128 128 6.7/4.2/5.6 1125 300 .005

104 379.9 1 1/2 320 256 256 7.4/4.6/4.6 580 120 .002

Fig. 5.3. Statistics for the two cases detailed in Table 1. In all the figures, the horizontal axis is yþ , which denotes the distance from the wall in frictional
units. In plots (a) and (b), the dashed lines are for Res ¼ 171, which is the first row in the table, and the solid line is for the other row with Res ¼ 380. The
data in these plots is compared to classical simulations as well as existing theory in the text. Data from the Res ¼ 392 simulation by Moser et al. [21] is
marked using þ.
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Fig. 5.3(b) shows the turbulence energy production as a function of the distance from the wall. The straight lines in the
figure are theoretical curves for the peak (solid line) and the envelope (dashed line) derived by Laadhari [15]. Both test cases
are in excellent agreement with Laadhari’s theory and simulations.

Fig. 5.3(c) and (d) show turbulence intensities and rms vorticity profiles, respectively. The plots for Res ¼ 380 are in good
agreement with plots for Res ¼ 392 reported in [21]. There is a noticeable discrepancy in the rms plots of xx between our
Res ¼ 171 test case and the Res ¼ 180 test case of [21]. This discrepancy is most probably due to the superior resolution
of our test case. Close observation of the plots in Fig. 5.3 shows that the mean streamwise velocity �u of the Res ¼ 380 test
case is slightly above that of Res ¼ 392 benchmark (marked using þ) while the turbulence intensities as indicated by the
rms velocity u0 are more noticeably lower. The slight differences, especially the later, are probably because of the lower value
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of the frictional Reynolds number in the test case as against the benchmark. The time interval used to gather statistics is
another factor which causes slight variations.

6. Conclusion

Green’s function based methods are known to be advantageous for resolving boundary layers. Since boundary layers be-
come thinner as the Reynolds number increases, it is reasonable to try Green’s function based methods for fully developed
turbulence. In this paper, we have worked out a numerical method based on Green’s functions for channel flow and plane
Couette flow and demonstrated that it is capable of reproducing turbulence phenomena correctly.

Current methods for turbulent channel flow and plane Couette flow are the result of intensive research spanning more
than three decades. The Green’s function approach developed here builds upon that research at many points. Green’s func-
tions have not been shown to work for nonlinear problems of the complexity of fully developed turbulence requiring tens of
millions of grid points. Getting the Green’s function approach to work for fully developed turbulence is a task in itself.

In the sequel to this paper, the method will be extended in two different directions. The first direction will use a piecewise
Chebyshev grid in the wall-normal direction as well as spectral integration, which amounts to implicit use of Green’s func-
tions. The second direction will use a piecewise Chebyshev grid, explicit Green’s functions as developed in this paper, and
carefully derived quadrature rules. Both directions appear capable of challenging or going beyond the current state of the
art in turbulence simulations.
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