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This article considers the numerical inversion of the power series p(x)= 1+ b1x+ b2x2 + · · · to
compute the inverse series q(x) satisfying p(x)q(x)= 1. Numerical inversion is a special case of triangular
back-substitution, which has been known for its beguiling numerical stability since the classic work of
Wilkinson (1961, Error analysis of direct methods of matrix inversion. J. Assoc. Comput. Mach., 8,
281–330). We prove the numerical stability of inversion of power series and obtain bounds on numer-
ical error. A range of examples show that these bounds overestimate the error by only a few digits.
When p(x) is a polynomial and x= a is a root with p(a)= 0, we show that root deflation via the simple
division p(x)/(x− a) can trigger instabilities relevant to polynomial root finding and computation of
finite-difference weights. When p(x) is a polynomial, the accuracy of the computed inverse q(x) is
connected to the pseudozeros of p(x).
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1. Introduction

Suppose p(x) is the power series 1+ b1x+ b2x2 + · · · . We consider the numerical accuracy and stability
of computing its multiplicative inverse q(x)= 1+ c1x+ c2x2 + · · · , which satisfies q(x)= 1/p(x). No
assumption is made regarding the convergence of either series. It is only required that the Cauchy
product p(x)q(x)= 1.

The algorithm for inverting power series is especially simple. It is a specialized form of triangular
back-substitution. To find ck , we use ck =−bk −

∑k−1
j=1 cjbk−j in the order k = 1, 2, 3, . . .

Inversion of power series arises as an auxiliary step in polynomial algebra, Hermite interpolation and
computations related to Padé approximation (Butcher et al., 2011; Sadiq & Viswanath, 2013), where a
knowledge of its numerical properties would be useful. Yet the algorithm itself is so simple that it
appears appropriate to state that the numerical properties of triangular back-substitution are especially
subtle. In his classic paper (Wilkinson, 1961), Wilkinson provided a rounding error analysis of trian-
gular back-substitution and remarked that the algorithm itself appeared more accurate than the error
bounds. In particular, while the bounds predict relative error proportional to the condition number, the
actual errors appear independent of condition numbers. Higham (1989, 2002) has refined and extended
Wilkinson’s analysis.

In Section 2.1, we consider the following calculation: a polynomial p(x), for which x= a is a root
satisfying p(a)= 0, is deflated to compute q(x)= p(x)/(x− a). This step arises in polynomial root find-
ing as well as the computation of finite-difference weights. We show that an obvious method for deflat-
ing by a root has a catastrophic numerical instability. Indeed, a general method for calculating spectral
differentiation matrices, implemented by Weideman & Reddy (2000), suffers from this instability as
the order of the derivative increases, as shown earlier in Sadiq & Viswanath (2014). In Section 2.1, we
show why the instability arises in a seemingly harmless situation.
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422 R. NAVARRETE AND D. VISWANATH

It is well known that some natural and obvious methods for basic tasks such as computing the
standard deviation or solving a quadratic equation are numerically unstable (Higham, 2002). Deflating
a polynomial by a root is another example where an obvious method develops a numerical instability.

The problem of deflating by a root is related to, but not exactly the same as that of inverting a power
series. In Section 2.2, we consider the special case of inverting a quadratic. These two problems of
Section 2 bring to light some of the issues that arise in inverting power series in a relatively transparent
manner.

The notion of pseudozeros due to Mosier (1986) (who called them root neighbourhoods) and in
greater generality to Toh & Trefethen (1994) may be invoked to shed further light on rounding errors
that arise during inversion of polynomials. The rounding errors in coefficients of the inverse series
are eventually dominated by the polynomial root closest to the origin. However, the bounds based
on pseudozeros and condition numbers are not good. Condition numbers are derived for each root
separately. In contrast, the perturbative errors in the roots are finely correlated, and the correlation in
errors leads to much better accuracy than the bounds indicate.

In Section 3, we give better bounds for the rounding errors that arise while inverting power
series. These bounds imply the numerical stability of power series inversion. Computations that uti-
lize extended precision arithmetic (with 100 digits of precision) show that the bounds are quite good.
There is no significant gap between numerical condition and actual errors, unlike the situation with
triangular matrices.

A significant contribution to explain the puzzle raised by Wilkinson (1961, p. 320), namely the
observed independence of relative errors from condition numbers in triangular back-substitution, was
made by Stewart (1997). Stewart has noted that triangular matrices that arise from Gaussian elimination
or QR factorization are likely to be rank-revealing (in a sense explained in Section 3). For such matrices,
Stewart has proved that the ill-conditioning can be eliminated using row scaling, thus partially explain-
ing Wilkinson’s observation. The triangular Toeplitz matrices associated with power series are typically
not rank-revealing, but can be so in some situations, as shown in Section 3, but in these situations power
series inversion is well-conditioned. Thus bounds for power series inversion are generally quite good,
unlike the situation with triangular matrices.

2. Inversion of polynomials

In this section, we first consider deflating a polynomial p(x) by factoring out (x− a), where a is a
root satisfying p(a)= 0. Next, we look at the calculation of the multiplicative inverse of a quadratic
polynomial and the theory of pseudozeros.

Following Higham (2002), but with some modifications, we set down the basic properties of
floating-point arithmetic. The floating-point axiom is fl(x.op.y)= (x.op.y)(1+ δ), where |δ|� u. We
may also write

fl(x.op.y)= (x.op.y)/(1+ δ),

where again |δ|� u. Here, u is the unit round-off (u= 2−53 for double precision arithmetic) and op may
be addition, subtraction, division or multiplication.

To handle the accumulation of relative error through a succession of operations, it is helpful to
introduce θn, which is any quantity that satisfies

1+ θn = (1+ δ1)
ρ1(1+ δ2)

ρ2 · · · (1+ δn)
ρn
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ACCURACY AND STABILITY OF INVERSION OF POWER SERIES 423

for |δi|� u and with each ρi being +1, −1 or 0. In our usage, the θ variables are local to each usage.
So, for example, if θ3 occurs in two different equations or in two different places in the same equation,
it is not the same θ3, but each θ3 is a possibly different relative error equal to the relative error from
three (or fewer) operations. If a and b are of the same sign, we may write a(1+ θn)+ b(1+ θn)=
(a+ b)(1+ θn), but not if they are of opposite signs.

It may be shown (see Higham, 2002) that |θn|� γn, where γn = nu/(1− nu), if nu < 1. Unlike θn, γn

stands for the same quantity in every occurrence. Whenever γn is used, the assumption nu < 1 is made
implicitly. Another useful bound is (1+ γk)(1+ γl) � 1+ γk+l.

2.1 Deflation by x− a

Let p(x)= xn + bn−1xn−1 + · · · + b0 and p(a)= 0. Consider

xn + bn−1xn−1 + · · · + b1x+ b0

x− a
= xn−1 + cn−2xn−2 + · · · + c1x+ c0.

Equating coefficients, we get the equations

−ac0 = b0,

−ac1 + c0 = b1,

...

−acn−2 + cn−3 = bn−2,

−a+ cn−2 = bn−1.

(2.1)

We consider the accumulation of rounding error when these equations are solved for ci in the order
c0, c1, . . . , cn−2 using ck = (ck−1 − bk)/a for k > 1. If ĉk is the computed quantity in floating-point arith-
metic, we assume inductively that

ĉk−1 =−bk−1

a
(1+ θ2)− bk−2

a2
(1+ θ4)− · · · − b1

ak−1
(1+ θ2k−2)− b0

ak
(1+ θ2k−2).

Following the convention stated earlier, the two occurrences of θ2k−2 above are possibly different
relative errors, each resulting from 2k − 2 or fewer operations. Since the recurrence ck = (ck−1 − bk)/a
involves two operations, we have

ĉk =−bk

a
(1+ θ2)− bk−1

a2
(1+ θ4)− · · · − b1

ak
(1+ θ2k)− b0

ak+1
(1+ θ2k).

Using ck =−
∑k

j=0 bj/ak+1−j, we have the following bound for the rounding error in ck .

Theorem 2.1 If Equations (2.1) are solved for ci in the order c0, c1, . . . , cn−2, and ĉk is the computed
value of ck in floating-point arithmetic, we have

|ĉk − ck|� γ2

∣∣∣∣bk

a

∣∣∣∣+ · · · + γ2k

∣∣∣∣b1

ak

∣∣∣∣+ γ2k

∣∣∣∣ b0

ak+1

∣∣∣∣� γ2k

k∑
j=0

∣∣∣∣ bj

ak+1−j

∣∣∣∣ .
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424 R. NAVARRETE AND D. VISWANATH

(a) (b)

Fig. 1. Accumulation of rounding error in the coefficients when the polynomial p(x) is deflated by (x− a), a being a root.

Within the error bound of Theorem 2.1, there are two different mechanisms for large rounding errors.
These two mechanisms are illustrated in Fig. 1. Figure 1(a) shows the relative errors in the coefficients
of (x−√2)99 computed in two ways. The first computation begins with (x−√2)100 and then divides
by x−√2. In the second computation, 99 factors x−√2 are multiplied. In the first computation, it is
seen that the relative errors are initially small, but begin to explode after the halfway mark. In contrast,
the relative errors remain small throughout in the second computation.

The error bound in Theorem 2.1 corresponds to the exact formula ck =−
∑k

j=0 bj/ak+1−j. The
relative error in ck will be large if some of the terms of this sum are much larger than ck . In the binomial
expansion, the coefficients at the edges are much smaller than the ones in the middle. Thus deflation,
using the method of Theorem 2.1, leads to large errors once we get past the middle. This is the first
mechanism for large rounding errors.

The Chebyshev polynomial Tn(x) is defined as cos(n arccos x) for x ∈ [−1, 1]. All its n roots are
in the interval [−1, 1]. Figure 1(b) shows the errors in the coefficients of Tn(x)/(x− a), where a is a
root close to 0 and when a is a root close to 1. The errors grow explosively for a≈ 0 (k = 53 in the
plot), but are quite mild when a≈ 1 (k = 3 in the plot). Here too, as indicated by Theorem 1, there
must be cancellations between the terms of −∑k

j=0 bj/ak+1−j for large relative errors. The cancella-
tions can be particularly severe when a is small. This is the second mechanism for large rounding
errors.

One of the methods for computing spectral differentiation matrices (Welfert, 1997; Weideman &
Reddy, 2000) suffers from an instability related to the second mechanism. This instability has been
completely fixed (Sadiq & Viswanath, 2014), yet we explain exactly how it comes about. In the orig-
inal formulation (Welfert, 1997; Weideman & Reddy, 2000), the connection to polynomials and root
deflation is not transparent.

Equation (7) of Welfert (1997), which is the heart of the algorithm in that paper, reads as follows:

(Dp+1)k,j = p+ 1

xk − xj

(
ck

cj
(Dp)k,k − (Dp)k,j

)
.
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ACCURACY AND STABILITY OF INVERSION OF POWER SERIES 425

The grid points x0, x1, . . . , xn figure in the denominator and are assumed to be distinct. Here, (Dp)k,j

denotes the coefficient at xj of the pth derivative at xk . More specifically, if we seek to approximate the
pth derivative of the function f at xk using the function values at the grid points, the finite-difference
formula is

f (p)(xk)=
n∑

j=0

(Dp)k,j f (xj)+ error.

The ci in the recurrence formula for (Dp)k,j are normalizing constants extraneous to the discussion here
and will be ignored. They are unrelated to the ci that appear in (2.1).

Let lj(x) denote the Lagrange cardinal function which is equal to 1 at xj and 0 at the other grid points.
The coefficients of up and up+1 in the polynomial lj(u+ xk)

(u+ xk − x1)(u+ xk − x2) · · · (u+ xk − xn)

u+ xk − xj
,

multiplied by normalizing constants which we ignore, are equal to the pth and (p+ 1)st deriva-
tives of the Lagrange cardinal function lj(x) evaluated at xk , respectively (see Sadiq & Viswanath,
2014). Similarly, the coefficient of up+1 of

∏n
i=1(u+ xk − xi), multiplied by a normalizing con-

stant which we ignore, is equal to the pth derivative of the Lagrange cardinal function lk(x) evalu-
ated at xk (Sadiq & Viswanath, 2014). Finite-difference weights are nothing but the coefficients of
Lagrange cardinal functions, suitably normalized. It follows that Equation (7) of Welfert (1997) is
using exactly the same recurrence as in Theorem 2.1, and is therefore susceptible to the instability
exhibited above.

Root deflation is a part of the polynomial root finding algorithm due to Jenkins & Traub (1970). In
contrast, the commonly used root finding algorithm based on companion matrices involves only implicit
deflation. The Ehrlich–Aberth algorithm (Ehrlich, 1967; Aberth, 1973) iterates simultaneously for all the
roots. In the Jenkins–Traub algorithm, Equations (2.1) are solved for ci in the order cn−2, cn−3, . . . , c0.
The bound in the following theorem is proved in much the same way as the bound in Theorem 2.1.

Theorem 2.2 If Equations (2.1) are solved for ci in the order cn−2, cn−3, . . . , c0 (bottom to top in (2.1)),
the error in the computed quantity ĉk satisfies the bound

|ĉk − ck|� |bk+1|γ1 + |abk+2|γ3 + · · · + |a|n−k−1γ2n−2k+1.

The computation in Theorem 2.2 corresponds to the formula ck = an−k−1 +∑n−1
j=k+1 bjaj−k−1. This

appears a safer method because it is not vulnerable to the second mechanism when a≈ 0, and if the
coefficients are well-scaled, we may assume that the roots a are not too large. However, it is still vul-
nerable to the first mechanism. For example, if this algorithm is applied to deflate a factor of (x− a)n,
large errors in the coefficients will occur for powers lower than xn/2.

In the computation of finite-difference weights, both instability mechanisms are avoided by the
method of partial products (Sadiq & Viswanath, 2014). In that method, the operation of deflating a
polynomial by a factor is not employed. By analogy, it is natural to make the suggestion that polynomial
root finding algorithms that avoid root deflation may be more accurate for each individual root. The
operation count may be higher, but the polynomial root finding problems are puny compared to the
power of modern computers. Thus accuracy is of greater concern.
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426 R. NAVARRETE AND D. VISWANATH

2.2 Inversion of a quadratic

In a quadratic ay2 + by+ c with ac |= 0, we may make the change of variables x= sy, and choose the
scale factor s to make the coefficients of x2 and x0 equal in magnitude. If the coefficient of x2 is factored
out, we are left with a quadratic of the form x2 + bx± 1. The operations of factoring out the leading
coefficient and rescaling the variable induce minimal relative error in the computed coefficients. There-
fore, as far as the accumulation of error in the coefficients of the multiplicative inverse is concerned, we
are left with only two cases:

1

x2 + bx± 1
=±1+ c1x+ c2x2 + · · · .

In the−1 case, we have c1 =−b, c2 = bc1 − 1 and cn+1 = bcn + cn−1. It follows that ci has the opposite
sign to b if i is odd and is negative if i is even. There are no cancellations and all coefficients are
computed with excellent relative accuracy. Both roots of the quadratic equation x2 + bx− 1= 0 are real.

The other case is with +1. In this case, we have

c1 =−b,

c2 = b2 − 1,

c3 =−b3 + 2b,

...

In general, cn+1 =−bcn − cn−1. Each cn is a polynomial in b: cn = Fn(b), where Fn is a polynomial of
degree n. If α and β are the two distinct roots of x2 + bx+ 1= 0, it follows that

cn = Fn(b)= 1

β − α

(
1

βn+1
− 1

αn+1

)
. (2.2)

To keep the discussion simple, we omit the cases b=±2 with repeated roots. The polynomials Fn are a
version of Fibonacci polynomials (Hoggatt & Bicknell, 1973).

An easy induction argument using the recurrence cn+1 =−bcn − cn−1 proves that the polynomial
c2n = F2n(b) has only even degree terms and that the coefficients alternate in sign beginning with b2n.
Similarly, c2n+1 = F2n+1(b) has only odd-degree terms and the coefficients alternate in sign beginning
with −b2n+1.

We write cn = Fn(b)=∑n
k=0 Cn,kbk and prove inductively that ĉn+1 =

∑n+1
k=0 Cn+1,kbk(1+ θ2n+2).

The proof relies on the alternation in sign of the coefficients of Fn(b) mentioned in the previous para-
graph.

We may inductively assume that the computed quantity ĉn−1 is given by
∑n−1

k=0 Cn−1,kbk

(1+ θ2n−2) and that ĉn =
∑n

k=0 Cn,kbk(1+ θ2n). The recurrence cn+1 =−bcn − cn−1 implies that
Cn+1,kbk =−(Cn,k−1bk−1)b− Cn−1,kbk . Crucially, Cn,k−1 and Cn−1,k have the same sign, owing to the
pattern in the signs of the coefficients of Fn(b) and Fn−1(b). Therefore

−Cn,k−1bk(1+ θ2n)(1+ θ2)− Cn−1,kbk(1+ θ2n−2)(1+ θ1)=Cn+1,kbk(1+ θ2n+2),

and we may infer that ĉn+1 =
∑n+1

k=0 Cn+1,kbk(1+ θ2n+2), completing the induction.
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ACCURACY AND STABILITY OF INVERSION OF POWER SERIES 427

The error bound
|cn − ĉn|
|cn| � |Fn|(|b|)

|Fn(b)| γ2n,

where |Fn| is the polynomial with all coefficients of Fn replaced by their absolute values, follows
immediately. If we go back to formula (2.2) for cn, we get a sense of when the relative errors in the
computed coefficients may be large. If |b|< 2, both roots α and β of x2 + bx+ 1 are complex of magni-
tude 1 and conjugates of each other. For certain values of n, the arguments of αn+1 and βn+1 will differ
very nearly by a multiple of 2π and formula (2.2) implies a cancellation making Fn(b) much smaller in
magnitude than |Fn|(|b|). The corresponding coefficients cn will have large relative errors.

2.3 Connection to pseudozeros

Let p= p0 + p1z+ pn−1zn−1 + zn be a monic polynomial and let Z(p)= {a1, a2, . . . , an} be the set of
roots of p. We assume p0 |= 0. We shall connect the errors in computing the inverse series q(z)= 1/p(z)
to the pseudozeros of p(z). The analysis here is of conditioning, not of rounding errors. We consider
another monic polynomial p̂ close to p and bound the errors in q̂= 1/p̂ using the pseudozero sets of p.
The subscripted variable pi denotes the coefficient of zi in p(z). Similarly, qi denotes the coefficient of
zi in q(z).

Pseudozero sets have been defined using the infinity norm (Mosier, 1986) or more general norms
(Toh & Trefethen, 1994). Here, we define pseudozero sets using the maximum coefficient-wise relative
error. Our definition is close to that of Mosier (1986). Let

e(p̂) := max
i,pi |= 0

|pi − p̂i|
|pi|

be the maximum coefficient-wise error in p̂ relative to p. The ε-pseudozero set of p in the complex plane
is given by

Zε(p) := {z ∈C : z ∈ Z(p̂), e(p̂) � ε}.
An argument in Mosier (1986) (also see Toh & Trefethen, 1994) implies that

Zε(p)=
{

z ∈C :
|p(z)|
|p|(|z|) � ε

}
,

where |p| is the polynomial with all coefficients of p replaced by their absolute values.
Suppose â ∈ Zε(p) and let a ∈ Z(p), with a= ai for some i, be the root closest to â. All the roots ai

of p(x)= 0 are assumed to be distinct, to avoid technicalities of no value for the discussion here. Then,

|a− â|n �
∏

i,p(ai)=0

|â− ai| = |p(â)|� ε|p|(|â|)

since p is a monic polynomial. We have

|a− â|� n
√

ε|p|(|â|),

but this bound on the error is highly pessimistic. This bound is reasonably good only if |â− a| ≈ |â− ai|
for every i, which is very seldom the case.
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Condition numbers of polynomial roots (Gautschi, 1984; Toh & Trefethen, 1994) may be used to
derive tighter bounds. If aj is a simple root of p, we may define

κ(aj, p) := lim
e(p̂)→0

sup
p̂

|aj − âj|
e(p̂)

,

where âj is the root of p̂ corresponding to aj and e(p̂) is the maximum relative coefficient-wise distance
of p̂ from p defined earlier. If e(p̂) < ε and ε→ 0, we have

p(âj)

p′(aj)(âj − aj)
= (âj − a1) · · · (âj − aj−1)(âj − aj+1) · · · (âj − an)

(aj − a1) · · · (aj − aj−1)(aj − aj+1) · · · (aj − an)
→ 1

implying âj − aj ≈ p(âj)/p′(aj). Therefore, we have

κ(aj, p)= lim
ε→0

sup
p̂,e(p̂)�ε

|p(âj)|/|p′(aj)|
e(p̂j)

= |p|(|aj|)
|p′(aj)|

noting that the inequality |p(â)|� ε|p|(|â|) is sharp for some polynomial p̂ with e(p̂)= ε (see Mosier,
1986).

If p has only distinct roots as assumed, we have

q(z)= Res(q, a1)

(z− a1)
+ · · · + Res(q, an)

(z− an)
,

where the residue of q at one of its simple poles aj is given by Res(q, aj)= 1/[(aj − a1) · · ·
(aj − aj−1)(aj − aj+1)(aj − an)]. We may expand q as

q(z)=
n∑

j=1

Res(q, aj)

(−1

aj

) ∞∑
k=0

(
z

aj

)k

=
∞∑

k=0

⎛
⎝ n∑

j=1

−Res(q, aj)

ak+1
j

⎞
⎠ zk ,

with the infinite sum being convergent if and only if |z|< minj |aj|. Let q̂= 1/p̂, where e(p̂) � ε, and let
Z(p̂)= {â1, . . . , ân} with âi corresponding to ai, with ε assumed small enough that the correspondence
may be set up. The error in the coefficient of zk is

(q− q̂)k =
n∑

j=1

(
Res(q̂, âj)

âk+1
j

− Res(q, aj)

ak+1
j

)
.

A perturbative calculation of error, assuming ε so small that Δai = âi − ai satisfies |Δai| 
 |aj − ak|
for any i, j, k, follows. The perturbative calculation is based on

Res(q̂, âj)=Res(q, aj)

⎛
⎝1−

∑
i |= j

Δaj −Δai

aj − ai

⎞
⎠+O(Δa2)
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(a) (b)

(c) (d)

Fig. 2. Pseudozero sets and plots of relative error vs. coefficient for a well-conditioned polynomial (a and b) and an ill-conditioned
one (c and d), both of degree 13. The bound (2.4) bounds absolute errors. It is converted to a bound on relative errors in the plots.

and
1

âk+1
j

= 1

ak+1
j + kak

j Δaj +O(Δa2
j )
= 1

ak+1
j

− (k + 1)ak
j Δaj

a2(k+1)
j

+O(Δa2
j ).

These complete the first-order perturbative calculation by implying

(q− q̂)k =−
n∑

j=1

Res(q, aj)

ak+1
j

⎛
⎝ (k + 1)Δaj

aj
+
∑
i |= j

Δaj −Δai

aj − ai
+O(Δa2)

⎞
⎠ . (2.3)

Turning to condition number of roots of p(z)= 0, we get the asymptotic bound

|(q− q̂)k|� ε

n∑
j=1

∣∣∣∣∣Res(q, aj)

ak+1
j

∣∣∣∣∣
⎛
⎝ (k + 1)κ(aj, p)

|aj| +
∑
i |= j

κ(ai, p)+ κ(aj,p)

|aj − ai|

⎞
⎠ . (2.4)
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430 R. NAVARRETE AND D. VISWANATH

If the jth term of this bound is assigned to the jth root aj, the term that begins to dominate as k
increases is the term with |aj| smallest. That is because the parenthesized factor increases only lin-
early with k, while 1/ak+1

j varies exponentially with k. Therefore, the bound suggests that the error in
the kth coefficient is dominated by the root closest to 0 in the limit k→∞. In the transient phase, it
suggests that the dominant contribution to the error is from either the smallness of |aj| or the small-
ness of |aj − ai|, owing to the proximity of two roots or the largeness of the condition number of
a root.

Figure 2 compares the bound (2.4) (dashed line) to actual errors (solid line) for two examples.
The first example is

∏9
i=−3(x− 2i/2), implying well-conditioned roots, and the second example is∏13

i=1(x− i
√

2), implying ill-conditioned roots. Both examples are based on Wilkinson (1984). In both
examples, the bound (2.4) suggests transient errors at the beginning which never materialize. The bound
is highly pessimistic for the ill-conditioned example.

Part of the problem with the bound (2.4) is that the condition numbers κ(aj, p) can overesti-
mate the perturbation to the roots. But a more serious problem is that the errors Δai in the first-
order error estimate (2.3) are highly correlated, and this correlation is lost when they are bounded
separately using κ(aj, p). Since p and p̂ are both monic polynomials, the negative sums of their
roots must equal pn−1 and p̂n−1, respectively. Therefore, no matter how large each perturbation Δai

may be, their sum
∑

Δai must be of the order of machine precision, implying correlation between
the errors.

Such correlation between the errors Δai is lost in the asymptotic bound |Δai|� κ(ai, p). Whether
the pseudozero plots contain information about correlations in the errors is unknown.

It is reasonable to expect a numerically stable algorithm for finding roots to reproduce elementary
symmetric functions, such as the sum of all the roots or the product of all the roots, accurately. However,
the Jenkins–Traub algorithm progresses from root to root, deflating the polynomial every time a root is
found. Perhaps, for that reason it does not seem to have this property. If deflation uses the method of
Theorem 2.2, the Jenkins–Traub algorithm will reproduce the sum of the roots with accuracy, but not the
product of the roots. The Ehrlich–Aberth method (Ehrlich, 1967; Aberth, 1973) iterates simultaneously
for all the roots. Whether the roots computed by the Ehrlich–Aberth method accurately reproduce all
the elementary symmetric functions, with values corresponding to the coefficients of the polynomial,
remains to be investigated.

3. Error bounds and numerical stability

The analysis given in this section uses techniques pioneered by Wilkinson (1961) and refined by Higham
(1989, 2002). The application of the techniques is specialized to the inversion of power series. Near the
end of this section, we discuss the work of Stewart (1997) when comparing the errors that are realized
with the error bounds.

3.1 Rounding error analysis

To invert a power series as in

1

1+ b1x+ b2x2 + · · · = 1+ c1x+ c2x2 + · · · ,
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ACCURACY AND STABILITY OF INVERSION OF POWER SERIES 431

the coefficients ci may be computed using

c1 =−b1,

c2 =−b2 − c1b1,

...

ck =−bk − c1bk−1 − · · · − ck−1b1. (3.1)

The subtractions here are assumed to be left to right associative, unlike Wilkinson’s analysis of triangu-
lar back-substitution (Wilkinson, 1961), which assumes the opposite. Left to right associativity has the
advantage of preserving the Toeplitz structure of the matrices that arise in error bounds.

If we define Cn and Tn as

Cn =

⎛
⎜⎜⎜⎜⎜⎝

1
c1

c2
...

cn

⎞
⎟⎟⎟⎟⎟⎠ , Tn=

⎛
⎜⎜⎜⎜⎜⎝

1
b1 1
b2 b1 1
...

...
...

. . .
bn bn−1 bn−2 . . . 1

⎞
⎟⎟⎟⎟⎟⎠ , then T−1

n =

⎛
⎜⎜⎜⎜⎜⎝

1
c1 1
c2 c1 1
...

...
...

. . .
cn cn−1 cn−2 . . . 1

⎞
⎟⎟⎟⎟⎟⎠ . (3.2)

Here, T−1
n is, like Tn, a Toeplitz matrix. In addition, we have TnCn = e1, where e1 is the vector whose

first component is 1 and all others are 0. In the recursion (3.1) for computing ck , the last term ck−1b1

participates in only two arithmetic operations, namely the multiplication of ck−1 and b1, and the sub-
traction of that product. Earlier terms participate in more subtractions and the second term, which is
−c1bk−1, participates in k subtractions. If the computed quantity is denoted by ĉk , we may write

ĉk =−bk(1+ θk+1)− ĉ1bk−1(1+ θk)− · · · − ĉk−1b1(1+ θ2).

In other words, if Ĉn is the vector made up of ĉ1, . . . , ĉn, we have (Tn +ΔTn)Ĉn = e1 with |ΔTn|� En,
where

En =

⎛
⎜⎜⎜⎜⎜⎝

0
γ2|b1| 0
γ3|b2| γ2|b1| 0

...
...

...
. . .

γn+1|bn| γn|bn−1| . . . 0

⎞
⎟⎟⎟⎟⎟⎠ . (3.3)

The identity
(Ĉn − Cn)=−T−1

n ΔTn(Ĉn − Cn)− T−1
n ΔTnCn (3.4)

is the basis of the error bounds.
We may take norms of either side of (3.4) and obtain

|ĉn − cn|� ||Cn − Ĉn||∞ � |||T
−1
n |En|Cn|||∞

1− |||T−1
n |En||∞ . (3.5)

However, this bound is very poor. The coefficients of power series are typically scaled badly, with terms
increasing or decreasing at a rapid rate. Norm-wise bounds are not of much use.
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432 R. NAVARRETE AND D. VISWANATH

To get a component-wise bound, we go back to (3.4) and take absolute values of both sides.

|Ĉn − Cn|� |T−1
n |En|Ĉn − Cn| + |T−1

n Cn|E,

(I − |T−1
n |En)|Ĉn − Cn|� |T−1

n Cn|En.

Noting that the matrix (I − |T−1
n |En) is lower triangular with a non-negative inverse, we have the fol-

lowing theorem.

Theorem 3.1 If a power series is inverted using the recurrence (3.1) and left to right associativity, we
have the error bound

|Ĉn − Cn|� (I − |T−1
n |En)

−1|T−1
n Cn|En. (3.6)

3.2 Condition analysis and numerical stability

If p is a power series, |p| denotes the power series with coefficients replaced by their absolute values.
Let p and q be power series with constant terms equal to 1 and

pq= 1.

If p is perturbed to p+Δp, where the constant term of Δp is 0, suppose that q gets perturbed to q+Δq.
We have

(p+Δp)(q+Δq)= 1.

It follows that

pΔq=−qΔp−ΔpΔq,

Δq=−q2Δp− qΔpΔq,

|Δq|� |q2Δp| + |qΔp||Δq|,
(1− |qΔp|)|Δq|� |q2Δp|.

All the coefficients of the power series 1/(1− |qΔp|) are positive. Therefore, we may multiply by that
power series to get the bound

|Δq|� |q2Δp|
1− |qΔp| �

|q2||Δp|
1− |q||Δp| . (3.7)

We may take |Δp| to be
∞∑

j=1

u|pj|xj, (3.8)

where u is the unit round-off, to obtain a bound on each entry of q using (3.7). Here, it is significant that
the constant term of Δp is zero. The conditioning bound (3.7), with |Δp| given by (3.8), is sharp up to
first-order for each coefficient of Δq with a suitable choice of the signs of the coefficients of |Δp|.
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Armed with this conditioning bound, we may consider the numerical stability of the inversion of
power series using the recurrence (3.1). Theorem 3.1 states that

|Ĉn − Cn|� (I − |T−1
n |En)

−1|T−1
n Cn|En.

From the definitions of Cn and T−1
n in (3.2) as well as that of En in (3.3), we obtain

|Cn − Ĉn|� 2(n+ 1)|q2||Δp|
1− 2(n+ 1)|q||Δp| .

Here, we have used γk < γn+1 for k � n and γn+1 � 2(n+ 1)u, which assumes (n+ 1)u < 1/2. This
bound differs from the conditioning bound (3.7) for each coefficient by only a polynomial factor in n.
Therefore, inversion of power series using back-substitution is numerically stable.

3.3 Discussion of Stewart’s lower bound for the least singular value

Figure 3 shows that the bounds of Sections 3.1 and 3.2 do quite well on four different examples.
The bounds themselves were computed using extended precision of 100 digits. The actual relative error
was computed by comparing the double precision answers with extended precision answers. For inver-
sion of cosine, 1/ cos x in Fig. 3(b), the odd terms were ignored. It may be noted that the inverse cosine
series is one of the ways of defining Euler numbers. In the ‘randn’ series, each bi in p(x)= 1+∑∞i=1 bixi

is an independent standard normal variable.
Error bounds for inversion of triangular matrices are similar to that of Theorem 3.1. However, they

often overestimate the error greatly (Wilkinson, 1961). In particular, for many triangular matrices the
relative error in the inverse appears independent of the condition number. Here, we discuss the work of
Stewart (1997) and connect it to the inversion of power series.

Consider the upper triangular matrix (
R r
0 δ

)
. (3.9)

If σ is its smallest singular value, suppose σ � βδ, where β ∈ [0, 1] must hold. If β is not too tiny, the
matrix is rank-revealing in the sense of Stewart. The last row of this matrix may be rescaled to obtain(

R r
0 1

)
,

whose least singular value is denoted by ρ̂. If the least singular value of R is ρ, Stewart (1997) has
proved that

ρ̂ � βρ√
β2 + ρ2

.

This bound may be interpreted as follows. If the matrix (3.9) is rank-revealing with a β that is not too
tiny, any significant fall in the least singular value when we move from R to that matrix must be due
to the smallness of δ. The smallness of δ can be easily eliminated by rescaling the last row to get a
matrix whose condition number ρ̂ is only moderately smaller than ρ, the condition number of R. On the
other hand, if the best possible β is quite tiny, it may mean that the ill-conditioning of the matrix (3.9)
is hidden within the correlations between rows in a way that may not be eliminated so easily. If each
one of the principal submatrices of a matrix is rank-revealing, any ill-conditioning is almost entirely
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(a) (b)

(c) (d)

Fig. 3. Rounding error bounds and actual rounding errors for four examples. The bound of Theorem 3.1 is on absolute error.
That bound is converted to a bound on relative error and labelled as ‘bound (3.6)’ in each of the plots. Likewise, the bound of
(3.7), with |Δp| given by (3.8), is converted to a bound on relative error and labelled as ‘bound (3.7)’ in each of the plots. Each
plot graphs relative error in the nth coefficient vs. n.

removed by rescaling rows explaining Wilkinson’s observation that rounding errors that arise during
back-substitution are far smaller than bounds implied by the condition number of the triangular matrix.

Many triangular matrices are not rank-revealing. For example, random triangular matrices are not
rank-revealing with probability 1 as proved in Viswanath & Trefethen (1998). However, Stewart (1997)
argues intuitively that the triangular matrices that arise in Gaussian elimination and QR factorization
with pivoting are likely to be rank-revealing. His argument is that if a matrix is rank deficient, Gaussian
elimination and QR will break down with a 0 on the diagonal. If it is nearly rank deficient, continuity
suggests that a very small entry must appear on the diagonal indicating its rank deficiency and especially
so if pivoting is employed. Thus, the rank-revealing property of pivoted Gaussian elimination and QR
factorization, if rigorously established, would explain why the triangular matrices that arise during piv-
oted Gaussian elimination and QR factorization do not have tiny βs.
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To connect Stewart’s analysis to power series, we shall assume that p(x)= 1+∑ bixi has a radius
of convergence R equal to 1. Any finite radius of convergence can be turned into 1 by the change of
variables x← x/R. Assuming R= 1, the matrix Tn of (3.2) is rank-revealing if and only if its least
singular value is O(1). The least singular value of Tn is O(1) if and only if the greatest singular value
of T−1

n is O(1), which is true if and only if the entries ci of T−1
n in (3.2) are O(1). Since ci are the

coefficients of the power series of 1/p(x), we have that Tn is rank-revealing in the sense of Stewart if
and only if the radius of convergence of 1/p(x) is 1 or greater.

If the equation p(z)= 0 has a solution with |z|< 1 in the complex plane, the matrix Tn will not
be rank-revealing. The example of Fig. 3(d), p(z)= 1+ log(1+ z) has a zero at z= 1− 1/e and the
corresponding matrix Tn is not rank-revealing. If in fact the radius of converge of p(z) is 1 and there is
no zero with |z|< 1, the matrix Tn will be rank-revealing, but its condition number will be O(1). Within
the scope of the analysis given by Stewart, the situation where the actual relative errors are much smaller
than the conditioning bound appears unlikely. The good agreement between the bounds and the actual
errors in Fig. 3 is the rule rather than the exception.

4. Conclusions

In this article, we have considered the inversion of power series with particular attention to the special
case of inverting polynomials. Essential background is provided by the classic work of Wilkinson (1961)
on inversion of triangular systems.

We found and explicated a subtle numerical instability that arises when factors corresponding to
known roots are deflated from polynomials. This instability has occurred in the computation of spectral
differentiation matrices. The suggestion that polynomial root finding algorithms such as Jenkins–Traub
may be more accurate without the deflation step merits further investigation.

The rounding error analysis and the condition analysis of power series inversion imply numerical
stability. In addition, the error bounds that result from the analysis are not unduly pessimistic, as happens
for certain other triangular systems.
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