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a b s t r a c t

The Kingman coalescent is a commonly used model in genetics, which is often justified with reference to
the Wright-Fisher (WF) model. Current proofs of convergence of WF and other models to the Kingman
coalescent assume a constant sample size. However, sample sizes have become quite large in human
genetics. Therefore, we develop a convergence theory that allows the sample size to increase with
population size. If the haploid population size is N and the sample size is N1/3−ϵ , ϵ > 0, we prove that
Wright-Fisher genealogies involve at most a single binary merger in each generation with probability
converging to 1 in the limit of large N . Single binary merger or no merger in each generation of the
genealogy implies that the Kingman partition distribution is obtained exactly. If the sample size is N1/2−ϵ ,
Wright-Fisher genealogies may involve simultaneous binary mergers in a single generation but do not
involve triple mergers in the large N limit. The asymptotic theory is verified using numerical calculations.
Variable population sizes are handled algorithmically. It is found that even distant bottlenecks can
increase the probability of triple mergers as well as simultaneous binary mergers in WF genealogies.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

The Kingman coalescent (Kingman, 1982a, b) is a mathematical
model of the genealogy of n haploid samples. If k lineages are
present in some earlier generation, those lineages induce a parti-
tion of the n current samples into k. For convenience, we will refer
to lineages present in earlier generations as ancestral samples.1

One of Kingman’s motivations in deriving the coalescent (King-
man, 1982a, b, 2000) was to gain an understanding of the structure
of Ewens’ sampling formula (Ewens, 1972; Durrett, 2008). The
coalescent gives an almost instantaneous derivation of Ewen’s
sampling formula, and Ewens’ sampling formula is exact under the
coalescent approximation. The coalescent is perfectly memoryless
in the following sense: at every coalescence exactly two ancestral
samples are picked at random (without regard to the number or
inter-relationship of their descendants) and deemed to have a
common parent. That memoryless property is the chief reason for
its simplicity and usefulness.

TheWright-Fisher (WF) model says that if a haploid population
of size N1 produces N2 children in the next generation, the split
of the N2 children between N1 parents is multinomial (Durrett,
2008). In the backward in time genealogical process, the k samples
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(D. Viswanath).
1 The ‘‘ancestral sample’’ nomenclature is more intuitive for our purposes. How-

ever, in the context of the coalescent, the same concept is referred to as ‘‘lineage’’
or ‘‘ancestral lineage’’ (Griffiths, 2006; Griffiths and Tavaré, 1998; Tavaré, 1984).

in a generation choose parents from their parental generation
independently, with each individual of the parental generation
being equally likely to be chosen. The individuals of the parental
generation that turn out to be parents of any of the k samples
constitute the parental sample. Such a passage from a sample to
its parental sample will be referred to as a backward WF step. The
WF genealogy of a sample is a sequence of backwardWF steps until
an ancestral generation with a single ancestral sample is reached.

TheWFmodel assumes non-overlapping generations, and there
is no attempt to model pedigree relationships in WF (Wakeley
et al., 2012). Genealogies in WF as well as other exchangeable
models have been proven to converge to the Kingman coalescent
(Kingman, 1982b; Möhle, 2000; Möhle and Sagitov, 2001). These
proofs assume the sample size to be fixed and constant with
N → ∞, where N is the population size. Rapid progress in human
genetics has led to sample sizes that are greater than the baseline
assumption of an effective population size of N with N = 2 × 104

(Karczewski et al., 2016; Sudlow et al., 2015). Thus, there is a need
to advance convergence theory beyond the assumption of constant
sample size. The beginning of such a convergence theory is pre-
sented in this paper by considering the genealogical coalescence
process using Kingman’s model as well as the WF model.

Approximation of a single WF generation using the coales-
cent.If the sample size n is constant, N → ∞, and N generations
of WF are identified with a single unit of time in the Kingman
coalescent, WF genealogies converge to the Kingman coalescent
(Kingman, 1982a, b). For constant sample size n and large N , any
mergers in a single WF generation are single binary mergers with
probability converging to 1. However, if the sample size n is
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comparable to N , there will be simultaneous binary mergers as
well as triple mergers in a single WF generation (Aldous, 1989; Fu,
2006). A single WF generation corresponds to a time interval of
1/N in the Kingman coalescent. Because the Kingman coalescent
employs a continuous time Poisson process and sets the rate of
binary mergers equal to n(n−1)

2N , it may still be able to capture the
multiple mergers that occur in a single WF generation (Bhaskar et
al., 2014; Fu, 2006).

Nevertheless, the coalescent and WF will not produce identi-
cally distributed genealogies. There are two differences, and the
first difference lies in differing rates of coalescence. The rate at
which lineages disappear in a single generation is approximately
a function of n/N for both WF and Kingman but it is not the same
function (Fu, 2006, Fig. 3). However, the disparity between rates
can be mostly eliminated by making the population size N in the
Kingman coalescent an appropriate function of the sample size
n. In particular, suppose there are n samples in a WF generation
with parental population size equal to N . In Kingman, the parental
population size can be taken to be N ′ with

sWF

( n
N

)
= sK

( n
N ′

)
, (1)

where sWF and sK are functions depicted in Fig. 3 of Fu (2006).
Another difference between WF and the Kingman model for

large sample sizes n lies in generating partitions whose probability
distributions are different. This difference is noteworthy because
there is no obvious way to eliminate it. Suppose 10 samples in
a single generation are known to have one of two parents from
the previous generation, with both parents known to have at least
one child among the 10 samples. Under WF, the split of the 10
unlabeled children between the two labeled parents is binomial.
That means that 1 + 9, 5 + 5, and 9 + 1 splits have probabilities
equal to(10

1

)
210 − 2

= 1%,

(10
5

)
210 − 2

= 25%,

(10
9

)
210 − 2

= 1%,

respectively. If a single generation of WF is modeled using King-
man, the splits under the same conditionwould all haveprobability
equal to 1/9 (Durrett, 2008, page 13, Theorem 1.6) (Griffiths and
Tavaré, 1998). Thus, it is clear that although the Kingman coales-
cent can produce simultaneous binary mergers as well as multiple
mergers over a time interval corresponding to a single generation,
the partitions it produces will have a different distribution from
that of WF.

Convergence theory for sample sizes that increase withN . As
implied by the classic birthday problem and its variants (Aldous,
1989), some two individuals in a sample of size N1/2, assuming
a fixed population size of N , will have a common parent (binary
merger) with a probability of 1 − e−1/2 in the limit of large N .
In samples of size N1/2−ϵ , ϵ > 0, there are no common parents
in a typical generation in the limit of large N , and when there
are common parents, it is reasonable to assume that at most two
individuals have a common parent. However, when the sample
size is N2/3, some three samples will have a common parent (triple
merger) with a probability of 1 − e−1/6 in the limit of large N . For
sample sizes in-between N1/2 and N2/3, there will be simultaneous
binary mergers (between distinct pairs of samples) in a single
generation with high probability. By our convention, quadruple or
higher mergers also count as triple mergers.

In the Kingman coalescent, every coalescence is a single binary
merger. If the sample size is N1/3−ϵ , ϵ > 0, we prove that each
backward WF step involves at most a single binary merger with
probability converging to 1 in the limit of large N . Thus, for such
sample sizes, the distribution of partitions (with each part in the
partition being the subset of current samples descended from an
ancestral sample) will converge to the Kingman partition distribu-
tion.

It has been suggested that simultaneous binary mergers may
cause less divergence from summary statistics such as the sam-
ple frequency spectrum than triple and higher multiple mergers
(Bhaskar et al., 2014; Davies et al., 2007). We prove a result (Corol-
lary 2) that may partially support that suggestion. In addition, we
prove thatWF genealogies do not involve triplemergers for sample
sizes of N1/2−ϵ . In fact, our results are more detailed. For example,
we prove that for sample sizes of N2/5−ϵ each backward WF step
in the genealogy has either zero, one, or two binary mergers with
probability converging to 1 for large N . That result is in turn
extended to allow c or fewer binary mergers with c = 3, 4, . . ..

We develop algorithms to compute the probability that the
genealogy of a sample involves at most a single binary merger in
each backwardWF step and the probability that there are no triple
mergers. Numerical computations using these algorithms show
that the asymptotic theory applies to even N = 103.

The algorithms can handle demographic histories with vary-
ing population sizes. Thus, we are able to apply the algorithms
to different models of human demography. It is found that
even distant bottlenecks can increase the likelihood of WF ge-
nealogies with simultaneous binary mergers or triple mergers. A
Python/C implementation of the algorithms we derive is posted at
github.com/melfiand/lsample.

Convergence of theWF sample frequency spectrum. Suppose
a sample of size n is polymorphic at a certain nucleotide location.
Under the Kingman model and in the limit of zero mutation rate,
the probability that k out of n samples are mutants is equal to

1/k
1 +

1
2 + · · · +

1
n−1

for k = 1, . . . , n − 1 (Durrett, 2008; Griffiths and Tavaré, 1998).
We prove that the WF sample frequency spectrum converges to
the same distribution for samples of size N1/3−ϵ or smaller in the
limit of large N and zero mutation rate.

The N1/3 cut-off is almost certainly too pessimistic. A summary
statistic such as the sample frequency spectrum partitions the
sample into only two sets – samples which have been hit with a
mutation and samples which have not been hit with a mutation
– under the assumption that the probability of two mutations in
the genealogical tree is negligible. In contrast, convergence to the
Kingman partition distribution requires partition distributions to
match at every level of the genealogical tree. Our proof of conver-
gence assumes all mergers to be single binary mergers and there-
fore relies on convergence to the Kingman partition distribution as
an intermediate step.

The sample frequency spectrum is used in demographic infer-
ence and other applications (Gravel et al., 2011; Keinan et al., 2007;
Tennessen et al., 2012). Because of its pertinence to applications,
the departure of the WF sample frequency spectrum from that
of the coalescent has attracted attention. Wakeley and Takahashi
(2003) observed (relying on the earlier work of Fisher) that if the
sample size is n = Nx, where N is the parental population size,
the number of parents after a single backward WF step is equal
to N(1 − e−x) in expectation (with a standard deviation that is
proportional to

√
N). If 2Nτ1(x) is the size of the external branches

in the genealogical tree (in our terminology, the external branch
size is equal to the sum of the number of current samples and the
number of ancestral samples with exactly one descendant), Wake-
ley and Takahashi (2003) derived a recurrence for τ1(x). From that
recurrence, they deduced that the probability of a single mutant in
a population sized sample (for which n = N) exceeds its Kingman
value by 12.05% in the limit of large N . The departure from the
Kingman value for the probability of k mutants decreases rapidly
with k. These results have been confirmed by Bhaskar et al. (2014).

Fu (2006) derived an exact coalescent forWF. LikeWakeley and
Takahashi (2003), he found the main effect of large sample sizes
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on the sample frequency spectrum ofWF relative to the coalescent
to be due to greater external branch lengths. He also showed the
Kingman coalescent to be faster than WF for large samples, while
noting that simultaneous binary mergers were dominant even for
sample sizes large enough to cause triplemergerswith appreciable
probability.

Whereas Fu (2006) used computer simulations of the exact WF
coalescent to study the sample frequency spectrum, Bhaskar et al.
(2014) derived exact recurrences for the sample frequency spec-
trum as well as the expected number of triple mergers and other
genealogical quantities. The algorithms of Bhaskar et al. (2014) are
applicable to demographic histories with varying population sizes.
Rapid population expansion aswell as large sample effects increase
the probability of single mutants.

In part of the literature on large samples, the focus is on
rates of coalescence and the number of ancestral samples as a
function of the ancestral generation, with the Kingman model
assumed. Tavaré (1984) obtained formulas for the size of the an-
cestral sample (number of lineages) as a function of the ancestral
generation, assuming fixed population size. Griffiths and Tavaré
(1998) obtained formulas that allowed the population size to vary.
These formulas employ a sum whose terms alternate in sign and
are inaccurate when the sample size is large, even assuming the
coalescent approximation. Thus, Griffiths (2006) obtained asymp-
totic approximations that are better numerically for large samples.
Other authors (Chen and Chen, 2013; Polanski and Kimmel, 2003;
Polanski et al., 2017) have extended this work to handle coales-
cence and inter-coalescence times. In particular, Chen et al. (2015)
have observed that the number of segregating sites, an important
statistic introduced by Watterson (1975) and which marked the
shift from infinite alleles to the infinite sitesmodel (Durrett, 2008),
appears to be more robust under the coalescent approximation
than the sample frequency spectrum for large sample sizes. With
regard to the sample frequency spectrum, the difficulties due to
alternating signs can be handled using a recurrence of Tavaré
(1984) as shown by Bhaskar et al. (2014).

2. Convergence theory for sample sizes that increase with N

The coalescent consists of two independent stochastic pro-
cesses (Kingman, 1982b). Let [n]denote the set {1, 2, . . . , n}, which
is the current sample. A partition of the set [n] is a set of nonempty
subsets of [n] that are pairwise disjoint and whose union is the
set [n]. In Kingman’s coalescent, the partition {A1, . . . , Ak} of [n]
is initialized to {{1} , . . . , {n}} with k = n. At each step, two sets
Ai and Aj are chosen, with each of the possible k(k − 1)/2 choices
equally likely, and the two sets are replaced by their union Ai ∪ Aj.
This stochastic process, which governs the evolution of partitions
of [n], has been called the jump chain (Kingman, 1982b). A partition
of [n] with k parts signifies an ancestral sample (in some earlier
generation) of size k, with each ancestral sample denoted by the
set of its descendants in the current sample. The merging of two
partitions corresponds to two ancestral samples having a common
parent so that the number of ancestral samples is reduced by 1.

The other part of the coalescent is the so-called death process
(Kingman, 1982b), which governs the timing of the coalescence
events. The death process is a continuous time Poisson process of
varying rate, with the rate being k(k − 1)/2 when the number of
ancestral samples is k. The connection to theWFmodel is made by
equating a unit of time in the death processwithN WFgenerations.

The jump chain and the death process are independent, and the
death chain does not play any role in the convergence to the King-
man partition distribution. The death process governs the rates of
coalescence,which can be adjusted independently, as shown in (1).

The following theorem of Kingman (1982b) characterizes the
jump chain completely via the Kingman partition distribution and
does not depend upon the death chain:

Theorem 1. Suppose that the coalescent is run until the partition of
[n] consists of exactly k sets. If

⏐⏐Aj
⏐⏐ = nj is the cardinality of Aj, the

probability that the partition into k sets is {A1, . . . , Ak} is equal to

(n − k)!k!(k − 1)!
n!(n − 1)!

n1!n2! . . . nk!.

All theorems and corollaries stated in this section are proved
in the Appendix. The numbering in this section is the same as
in the Appendix. For the above theorem, the Appendix gives a
combinatorial proof of the Kingman partition distribution in the
spirit of Griffiths and Lessard (2005). Kingman’s proof is recursive
(Kingman, 1982b; Durrett, 2008).

Simultaneous binary mergers in backwardWF steps may cause
less deviation because they can be produced by the coalescentwith
appreciable probability, as shown by the following corollary:

Corollary 2. Suppose the set {{1} , . . . , {n}} undergoes k coalescences
resulting in a partition into n−k sets. The probability q(k, n) that each
set in the resulting partition is of size 1 or 2 is given by q(k, n) =

(n−k)k

(n−1)k
. If 3k ≤ n and k ≥ 2, we have exp

(
−

k2
2n

)
≥ q(k, n) ≥

exp
(
−

7k2
n

)
≥ 1 −

7k2
n .

In this corollary, the falling power n(n − 1) . . . (n − k + 1) is
denoted nk as recommended by Knuth (Graham et al., 1994; Knuth,
1997). The corollary implies that k simultaneous binary mergers
are produced with probability close to 1 as a result of k steps of the
jump chain if k is much less than

√
n, where n is the sample size.

Therefore, we will look at bounds on n in terms of the population
size N that allow only single binary mergers in the WF genealogy
of the sample (with high probability) as well as bounds that allow
simultaneous binary mergers.

For a constant population size equal toN , the following theorem
gives sample sizes that ensure that each backward WF step in the
genealogy has at most a single binary merger:

Theorem 4. The WF genealogy of a sample of size N1/3−ϵ , ϵ > 0, in-
volves at most a single binary merger per generation with probability
converging to 1 in the limit of large N.

This theorem does not consider rates of coalescence. The the-
orem only claims that the probability that there are either simul-
taneous binary mergers or triple mergers in the WF genealogy of
the sample goes to zero for large N for sample sizes smaller than
N1/3−ϵ . However, for such sample sizes, the rates of mergers in
WF genealogies agree with the rates of the coalescent (the death
process) asymptotically, as will become clear from the statement
and proof of a theoremabout the sample frequency spectrumgiven
later.

In light of Theorem 1, suppose we look for a bound on the
sample size that ensures that every backward WF step consists of
either zero, one, or twobinarymergers.We thenhave the following
theorem:

Theorem 9. Each backward WF step in the genealogy of a sample
of size N2/5−ϵ , ϵ > 0, has zero, one, or two binary mergers with
probability converging to 1 for large N.

For another interpretation of this theorem, we may define the
mod-2 coalescent in analogy with the Kingman coalescent. In an
ancestral sample of size k, themod-2 coalescent picks 4 individuals
at random, divides them into two pairs, andmerges both pairs. The
merger can be thought of as a union of sets, with each set being the
set of descendants present in the current sample of an individual
in the ancestral sample. It is equivalent to ancestral individuals in
both pairs finding common parents, the parents of the two pairs
being distinct. The above theorem may then be interpreted as
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saying that the WF coalescent of samples of size N2/5−ϵ or less is
a mixture of the coalescent and the mod-2 coalescent, with the
proportion of the mixture varying with sample size.

More generally, we may allow c simultaneous binary mergers
rather than just 2. We have the following theorem:

Theorem 9 (General Case). The probability that each backward WF
step in the genealogy of a sample of size N

c
2c+1 −ϵ , ϵ > 0, consists

only of binary mergers, with the number of binary mergers in any
generation being one of 0, 1, . . . , c, converges to 1 in the limit of
large N.

It is clear from this theorem that triple mergers may occur for
sample sizes of the orderN1/2 or higher. IfN is large and the sample
size is smaller than N1/2−ϵ , it follows that all mergers in backward
WF steps are simultaneous binary mergers.

Let f̃ (k, n) be the probability that k out of n samples are mu-
tants conditional on exactly one mutation in the genealogy of the
sample. Let Hn denote the harmonic number 1 +

1
2 + · · · +

1
n . The

coalescent implies f̃ (k, n) =
1/k

Hn−1
for k = 1, . . . , n − 1 in the limit

of zero mutation rate as noted in the introduction. The following
theorem shows that theWF sample frequency spectrum converges
to that of the coalescent for sample sizes smaller than N1/3−ϵ:

Theorem 13. Let fWF (k, n) be the probability that k out of n samples
are mutants conditional on exactly one mutation in theWF genealogy
of the sample. Then the total variation distance

1
2

n−1∑
k=1

⏐⏐⏐⏐fWF (k, n) −
1/k
Hn−1

⏐⏐⏐⏐ → 0

for n ≤ N1/3−ϵ, ϵ > 0, in the limit of zero mutation and large N.

3. Algorithms for varying population sizes

For any sample size n > 2 and finite N , the probability that
the WF genealogy of the sample includes simultaneous binary
mergers or triple mergers is strictly greater than zero. Indeed, the
probability of such events in a single backward WF step is strictly
greater than zero. However, by Theorem 4, the probability that the
WF genealogy includes only single binary mergers converges to
1 in the limit N → ∞ if n ≤ N1/3−ϵ , where N is the constant
population size.

In this section, we derive an algorithm that calculates the prob-
ability that the WF genealogy involves only single binary mergers.
We derive another algorithm that calculates the probability that
the genealogy of a sample of size n does not involve even a single
triple merger. Both algorithms allow variable population sizes and
may also be used to verify some of the asymptotic results.

Let p(0, n,N) be the probability that a sample of size n does not
undergo any merger in a single Wright-Fisher step. Then

p(0, n,N) =

(
1 −

1
N

)(
1 −

2
N

)
. . .

(
1 −

n − 1
N

)
,

withN the population size of the parental generation. Let p(k, n,N)
be the probability of exactly k binarymergers and no triplemergers
in a backward WF step with parental population size equal to 2N .
Then

p(k, n,N) =

(
n
2k

)
(2k − 1)(2k − 3) . . . 3.1

(
1
N

)k

×

(
1 −

1
N

)
· · ·

(
1 −

n − k − 1
N

)
for 0 ≤ 2k ≤ n. The formula is valid for n > N . The formulamay be
justified as follows. First, we may choose 2k samples to participate

in k simultaneous binary mergers in
( n
2k

)
ways. To group the 2k

samples into k pairs, the first of the chosen samples may be paired
in (2k − 1) ways, the first of the remaining 2k − 2 samples may be
paired in 2k−3ways, and so on. Thus, the total number of pairings
is (2k − 1)(2k − 3) . . . 3.1. For each pair, the probability that the
two samples in the pair have a common parent is 1

N . The remaining
factors in the formula give the probability that the k pairs as well
as the remaining n − 2k samples have n − k distinct parents.

Probability of at most a single binary merger in any generation

For the current generation fromwhich a sample of n is taken,we
assume t = 0. Let N(t) be the haploid population size t ancestral
generations ago. To calculate the probability that theWF genealogy
of the sample has at most a single binarymerger in any generation,
the quantity φn(k, t), k ∈ [n] is defined as follows: the probability
that the ancestral sample is of size k at ancestral generation t
with all mergers in prior backward WF steps being single binary
mergers is φn(k, t). The allowed values for k are k = 1, . . . ,N(t) for
t > 0. When k = 0, however, φn(k, t) has a special interpretation:
φn(0, t) is the probability that the WF genealogy from the current
generation to ancestral generation t includes something other than
a single binary merger in some generation. When t = 0, the
algorithm is initialized using φn(n, 0) = 1 and φn(k, 0) = 0 for
k ̸= n, and in particular, φn(k, 0) = 0 for 0 ≤ k ≤ n − 1.

Suppose the data at time t is φn(k, t) with k ∈ [n]∪{0}. The crux
of the algorithm is to generate data at time t+1, and the recurrence

φn(k, t + 1) =

ℓ=k+1∑
ℓ=k

φn(ℓ, t)p(ℓ− k, ℓ,N(t + 1)) (2)

does that for k = 1, . . . ,min(n,N(t + 1)). If the size of the
ancestral sample in generation t + 1 is k, the ancestral sample
size in generation t must be either ℓ = k or ℓ = k + 1 because
simultaneous binary mergers and triple mergers are precluded by
the definition of φn(k, t + 1). The two possibilities are disjoint, and
the recurrence sums over the two possibilities. The recurrence for
φn(k, t) is similar in structure to Eq. (3) in the appendix of Bhaskar
et al. (2014).2 The recurrences for genealogical quantities (as well
as for the sample frequency spectrum viewed from a genealogical
perspective) generally have a similar form (Tavaré, 1984).

The quantity φn(0, t + 1), which has a special interpretation, is
calculated using

φn(0, t + 1) = 1 − φn(1, t + 1) − · · · − φn(n∗, t + 1),

where n∗
= min(n,N(t + 1)).

The algorithm is terminated at the tth ancestral generation if
φn(0, t) + φn(1, t) > 1 − 10−4. At termination, the probability
that the sample has either coalesced to a single ancestral sample
or some backward WF step involves a merger other than a single
binary merger is greater than 0.9999.

The probability of a simultaneous binary merger or a triple
merger between ancestral generations t and t + 1 conditioned on
at most a single binary merger in any backward WF step from 0 to
t is
φn(0, t + 1) − φn(0, t)

1 − φn(0, t)
. (3)

This formula is used to visualize the effect of bottlenecks.

2 An alternative version of Eq. (3) of Bhaskar et al. (2014) is as follows.
In their notation, the recurrence can be written as EM (t)

n,k =
∑n

m=1p
(t)
n,m(

EM (t+1)
m,k + mf (n,m, k)

)
, where f (n,m, k) =

(nk)
{

n−k
m−1

}
m

{
n
m

} is the probability that

a given bin has exactly k balls when n balls are assigned to m bins randomly,
conditioned on each bin receiving at least one ball.
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(a) Only single binary mergers allowed. (b) No triple mergers allowed.

Fig. 1. Probability of coalescence underWFwith atmost a single binarymerger per generation and, alternatively, with no triplemerger in any generation for various constant
population sizes. In each plot, the sample sizes at which the probability is 5%, 50%, and 95% are shown as solid circles. The dashed lines are linear fits.

Probability of no triple merger

The algorithm to calculate the probability of no triple merger
in the WF genealogy of a sample of size n is similar. The quantity
ψn(k, t), k ∈ Z+, is defined as follows: ψn(k, t) is the probability
that the ancestral sample is of size k in ancestral generation t with
no triple mergers between generation 0 and ancestral generation
t . As before, the definition of ψn(0, t) is special: ψn(0, t) is the
probability of a triple merger in theWF genealogy between gener-
ation 0 and ancestral generation t . Again as before, the algorithm is
initialized using ψn(n, 0) = 1 and ψn(k, 0) = 0 for 0 ≤ k ≤ n − 1.

Suppose the data at time t is ψn(k, t) with k ∈ [n] ∪ {0}. The
recurrence

ψn(k, t + 1) =

ℓ=min(n,N(t),2k)∑
ℓ=k

ψn(ℓ, t)p(ℓ− k, ℓ,N(t + 1)) (4)

calculates data at t + 1 for k = 1, . . . ,min(n,N(t + 1)). If the
ancestral sample size at t + 1 is k, the ancestral sample size at
t , which is denoted by ℓ, must be at least k. It can be at most 2k
because any backwardWF step thatwhittles down a sample of size
greater than 2k to k must involve a triple merger. In addition, ℓ
cannot exceed n or N(t). The recurrence is obtained by summing
over all possibilities for ℓ. As before,

ψn(0, t + 1) = 1 − ψn(1, t + 1) − · · · − ψn(n, t + 1),

and we stop calculating when ψn(0, t) + ψn(1, t) > 1 − 10−4.
The probability that there is a triplemerger in the backwardWF

step from t and t + 1 conditioned on no triple merger from 0 to t
is
ψn(0, t + 1) − ψn(0, t)

1 − ψn(0, t)
. (5)

Like (3), this formula is also used to visualize the effect of bottle-
necks.

This algorithm (and analogously the earlier algorithm) can be
sped up by ignoringψn(k, t) ifψn(k, t) < ϵtol for an ϵtol that is small.
As it is, the algorithmwould maintain the probabilitiesψn(k, t) for
k ∈ [n] ∪ {0} typically. As t increases, a probability such asψn(n, t)
becomes quite small but can still remain positive. Holding on to
such tiny numbers makes the algorithm quite expensive for large
sample sizes. If probabilities smaller than ϵtol are ignored, there is
a rapid reduction in the sample sizes that are tracked at ancestral
generation t in the initial stages of the algorithm if n is large. The
total contribution of ψn(ℓ, t) to probabilities in all later stages is
bounded by ψn(ℓ, t) because the recurrence sums over disjoint
possibilities. Suppose all probabilities smaller than ϵtol are ignored.

The total probability ignored is then bounded by ϵtolnG, where n is
the sample size and G is the total number of generations. We use
ϵtol = 10−120 so that the ignored probability is vanishingly small
even with n = G = 1020.

4. Verification and visualization

The algorithms for calculating the probabilities of at most a
single binary merger in any generation of the WF genealogy and
of no triple merger in any generation enable a direct verification of
the asymptotic theory. Fig. 1 shows calculations for various popu-
lation sizes. For each population size, the sample sizes at which the
probabilities of coalescence with only single binary mergers (plot
(a)) or with no triple mergers (plot (b)) are 5%, 50%, and 95% are
shown.

Evidently, a higher sample size implies a higher probability of
triple mergers and of more than a single binary merger in some
generation in the WF genealogy of the sample. Sample sizes for
which probabilities of coalescence with only single binarymergers
are 5%, 50%, and 95% may be fitted as

3.55 × N0.33, 2.31 × N0.32, 1.19 × N0.31,

respectively. The quality of the fit is quite good for N as small as
1000. The exponents are close to 1/3 as predicted by the asymp-
totic theory.

The linear fits for the no triple merger case are in even better
agreement with the asymptotic theory. In this case, the sample
sizes for which the probabilities of no triple merger are 5%, 50%,
and 95% are

4.23 × N0.50, 2.11 × N0.50, 0.65 × N0.49,

respectively. The exponents are close to 1/2 as predicted by the
asymptotic theory. To increase the probability of WF coalescence
with no triple merger from 5% to 95% the sample size needs to be
decreased by a factor of six approximately.

Both algorithms allow for variable population sizes. The four
demographic models of human population we consider are the
same as in Bhaskar et al. (2014). These models are:

• Constant populationwithN = 2×104, which is the baseline
assumption in human genetics (Durrett, 2008).

• Constant population with N(t) = 2 × 104 except for two
bottlenecks: the first being 620 < t ≤ 720 with N(t) =

1000 and the second being 4620 < t ≤ 4720 with N(t) =

300, which is a drop-off by nearly a factor of 100. Thismodel
is based on Keinan et al. (2007).
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(a) Only single binary mergers allowed. (b) No triple mergers allowed.

Fig. 2. Probabilities of at most a single binary merger in any generation of the WF genealogy and, alternatively, of no triple merger in any generation for four demographic
models and various sample sizes.

• Exponential decay for 0 ≤ t ≤ 920 from N(0) = 7 × 104 to
N(920) = 2 × 103, followed by N(t) = 4000 for 920 < t ≤

2000, followed by N(t) = 30,000 for 2000 < t ≤ 5900, and
N(t) = 13,000 for t > 5900. This model is based on Gravel
et al. (2011). This model features a single exponential and is
labeled exp1 in Fig. 2.

• Exponential decay for 0 ≤ t ≤ 214 from N(0) = 106 to
N(214) = 2 × 104, exponential decay for 214 ≤ t ≤ 920
with N(920) = 2050, N(t) = 4000 for 920 < t ≤ 2000,
N(t) = 3 × 104 for 2000 < t ≤ 5900, and N(t) = 13,000
for t > 5900. This model features two exponentials and
is therefore labeled exp2 in Fig. 2. This model is based on
Tennessen et al. (2012).

Fig. 2 shows that the probabilities of triple mergers and of some-
thing other than single binary mergers in WF genealogies increase
noticeably because of bottlenecks.

Figs. 3 and 4 give a more explicit visualization of the effect of
bottlenecks. In Fig. 3b, the distribution of possible ancestral sample
sizes, conditioned on at most a single binary merger in prior gen-
erations, noticeably shifts downwards when the first bottleneck is
encountered. The conditional probability of something other than a
simultaneous binarymerger or a triplemerger in the backwardWF
step from t to t+1, as given by (3), spikes at the first bottleneck. At
the second bottleneck, there is no such prominent spike. However,
the distribution of possible ancestral sample sizes, allowing only
single binary mergers, noticeably shifts downwards at the second
bottleneck, even though the bottleneck ismore than4500 ancestral
generations away and the sample size is only 100.

Our interpretation of the phenomena in Fig. 3(c) and (d) is as
follows. In both cases, the heat-maps of φn(k, t) show evidence
of an inflection point. In these models with exponential decay in
ancestral population sizes, there is less pressure on the sample
to shrink initially. However, the exponential decay appears to
eliminate that effect at the inflection point. In both plots, the spike
in the conditional probability given by (3) appears to be located
near the inflection point.

In Fig. 4, the same phenomena are in evidence. Some of the
phenomena are a little more prominent here. For example, a small
spike in the conditional probability given by (5) is visible even at
the second bottleneck in part (b) of the figure.

5. Discussion

The roots of the Kingman coalescent may be found in the work
of Ewens (1972) and Watterson (1975). It was derived (Kingman,

1982a, b) at a time when a whole genomewas yet to be sequenced
and sample sizes did not go much beyond 10. Thus, it was natural
to prove its convergence assuming the sample size to be fixed and
small.

Data sets with more than 104 samples are now publicly avail-
able (Karczewski et al., 2016; Sudlow et al., 2015). Thus, it is
essential to consider a convergence theory that does not fix the
sample size, as we have done here.

The convergence theorywe have developed is with reference to
the Kingman partition distribution (see Theorem 1). If the current
sample size is n and the ancestral sample is of size k, the ancestral
sample induces a partition of the set [n] into k subsets, the dis-
tribution of which is given by the Kingman partition distribution.
The Kingman partition distribution, therefore, captures the struc-
ture of the genealogical tree in complete detail, except for inter-
coalescence times which are determined independently.

Statistics that are used in analyzing sequence data are consid-
erably less refined. For example, the sample frequency spectrum
partitions the current sample into only two sets. We have proved
that the WF sample frequency spectrum converges to that of the
coalescent for samples of size N1/3−ϵ or smaller. However, theN1/3

bound on sample sizes is probably far from sharp because the proof
proceeds via the Kingman partition distribution. A separate anal-
ysis of summary statistics such as the sample frequency spectrum
would therefore be desirable.
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Appendix

This appendix gives proofs of theorems that were stated in
the text. Statements of theorems are repeated in the interest of
readability.

Theorem 1 (Kingman, 1982b). Suppose that the coalescent is run
until the partition of [n] consists of exactly k sets. If

⏐⏐Aj
⏐⏐ = nj is

the cardinality of Aj, the probability that the partition into k sets is
{A1, . . . , Ak} is equal to

(n − k)!k!(k − 1)!
n!(n − 1)!

n1!n2! . . . nk!.
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(a) Constant N . (b) Double Bottleneck.

(c) Exp1. (d) Exp2.

Fig. 3. The upper panels in (a) through (d) are heat-maps of probabilities φn(k, t), with black being 1 andwhite 0. The green line is a graph of 1.19×N(t)0.31 . The lower panels
in (a) through (d) graph the conditional probability given by (3). The plots (a) through (d) correspond to four different demographic models. The sample size is n = 100 in
all the plots.

Proof. Because each coalescence is a union of two disjoint subsets
of [n], the coalescent process can be depicted as a forest of binary
trees with each vertex a subset of [n] and with the leaves being
{1} , . . . {n}. If disjoint subsets S1 and S2 coalesce, then S1 ∪ S2
occurs as a vertex with S1 and S2 as its two children. Coalescences
deeper into the ancestry are placed higher to capture the ordering
of events. The leaves are lowest, and no two interior vertices occur
at the sameheight. Because theKingman coalescent ismemoryless,
every coalescent tree with the same root is generated with the
same probability.

The number of coalescent trees with root A1 and with their n1
leaves being equal to {j} for j ∈ A1 is equal to n1!(n1−1)!

2n1−1 . That is
because the first union is any one of n1(n1 − 1)/2 possibilities, the
second union any one of (n1 − 1)(n1 − 2)/2 possibilities, and so
on. The total number of coalescence events in any of these trees
is n1 − 1. Likewise, the number of coalescent trees with root Aj is
nj!(nj−1)!

2nj−1 and the number of coalescence events in any of these trees
is nj − 1.

The total number of forests with roots equal to A1, . . . , Ak is
equal to

k∏
j=1

nj!(nj − 1)!
2nj−1 .

Although the order of coalescence events within a single tree is
determined, the order of events between different trees is not
determined. Because the number of coalescence events in a tree
with root Aj is nj − 1, the coalescence events corresponding to any

given forest can be ordered in(∑k
j=1(nj − 1)

)
!∏k

j=1(nj − 1)!
=

(n − k)!∏k
j=1(nj − 1)!

ways. Thus, the total number of sequences of n − k coalescence
events resulting in a forest with roots A1, . . . , Ak is equal to
(n−k)!
2n−k

∏k
j=1nj!. Each sequence of (n−k) coalescence events is equally

likely by the memoryless property of the coalescent, and the total
number of sequences of length n − k is equal to n!(n−1)!

2n−kk!(k−1)!
, which

implies the stated theorem. □

Corollary 2. Suppose the set {{1} , . . . , {n}} undergoes k coalescences
resulting in a partition of [n] into n − k sets. The probability q(k, n)
that each set in the resulting partition is of size 1 or 2 is given by
q(k, n) =

(n−k)k

(n−1)k
. If 3k ≤ n and k ≥ 2, we have exp

(
−

k2
2n

)
≥

q(k, n) ≥ exp
(
−

7k2
n

)
≥ 1 −

7k2
n .

Proof. The probability q(k, n) is zero if 2k ≥ n + 1 because a
partition of size 3 or more is inevitable after so many coalescences.
The formula for q(k, n) is easily verified in this case.

Now suppose 2k ≤ n. If a partition into n − k sets has only sets
of sizes 1 and 2, the number of sets of sizes 1 and 2must be (n−2k)
and k, respectively. The number of such partitions is equal to(

n
2k

)
(2k)!
2kk!

.
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(a) Constant N . (b) Double Bottleneck.

(c) Exp1. (d) Exp2.

Fig. 4. The upper panels in (a) through (d) are heat-maps of probabilities ψn(k, t), with black being 1 and white 0. The green line graphs 0.65 × N(t)0.49 . The lower panels
in (a) through (d) graph the conditional probability given by (5). As before, (a) through (d) correspond to four different demographic models with sample size n = 100.

By Theorem 1, the probability of each partition is equal to

k!(n − k)!(n − k − 1)!
n!(n − 1)!

2k.

The proof of the formula for q(k, n) is completed bymultiplying the
two numbers and simplifying.

The stated bounds for q(k, n) follow from calculations that are
elementary but a little tedious.

Let p = q(k, n). To bound p, note that log(1 − α) = −α +

α2
∫ 1

0
−(1−t)
(1−αt)2

dt for |α| < 1. If α ∈ [0, 1
2 ], we may deduce that

log(1 − α) = −α − uα2 (6)

for some u ∈ [
1
2 , 1]. By similar arguments based on the Euler

summation formula,

1
m

+
1

m + 1
+ · · · +

1
n − 1

= log
( n
m

)
+ u

(
1
m

−
1
n

)
(7)

and

1
m2 +

1
(m + 1)2

+ · · · +
1

(n − 1)2

=

(
1
m

−
1
n

)
+ u

(
1
m2 −

1
n2

)
, (8)

form, n ∈ Z+, m < n, and some u ∈ [0, 1].

From the formula for q(k, n) and (6), we have

log p =

k−1∑
j=1

log
(
1 −

k
n − j

)

= −

k−1∑
j=1

k
(n − j)

− u
k−1∑
j=1

k2

(n − j)2

for some u ∈ [
1
2 , 1]. The application of (6) is justified because

3k ≤ n implies k/(n − k + 1) < 1/2. Applying (7) and (8), we
get

log p = −k log
(

n
n − k + 1

)
− u1k

(
1

n − k + 1
−

1
n

)
− u2k2

(
1

n − k + 1
−

1
n

)
− u3k2

(
1

(n − k + 1)2
−

1
n2

)
for some u1 ∈ [0, 1], u2 ∈ [

1
2 , 1], and u3 ∈ [0, 1].

Thus,

log p ≥ k log
(
1 −

k − 1
n

)
−

k
n − k + 1

− k2
(

1
n − k + 1

+
1

(n − k + 1)2

)
≥ −

k(k − 1)
n

−
k(k − 1)2

n2 −
k

n − k + 1
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− k2
(

1
n − k + 1

+
1

(n − k + 1)2

)
≥ −

k2

n
−

k3

n2 −
3k
2n

− k2
(

3
2n

+
9

4n2

)
≥ −

7k2

n
,

where the second inequality is obtained using (6). We then have
p ≥ exp(−7k2/n) ≥ 1 − 7k2/n, proving the lower bound.

To prove the upper bound, argue as follows:

log p ≤ k log
(
1 −

k − 1
n

)
−

k2

2

(
1

n − k + 1
−

1
n

)
≤ −

k(k − 1)
n

−
k2

2(n − k + 1)
+

k2

2n

= −
k2

2n
+

k
n

−
k2

2(n − k + 1)

≤ −
k2

2n
,

where the second inequality uses log(1 − x) ≤ −x for x ∈ (0, 1).
The last inequality requires k ≥ 2. □

Lemma 3. Consider the application of a single backward WF step to
a sample of size n with parental population of size N. Let pd be the
conditional probability that there is a single binary merger given that
there is some merger. Then

pd ≥ 1 −
(n − 2)(n − 1)

2N
.

Proof. Let A12 be the event that samples 1 and 2 merge under the
backward WF step, more specifically 1 and 2 have the same WF
parent. Obviously, P(A12) =

1
N .

Let A(t)
12 be the event that 1 and 2merge and that one of the other

(n − 2) samples has the same parent as 1 and 2, implying a triple
merger or worse. We have A(t)

12 = ∪
n
j=3A12j, where A12j is the event

where 1, 2, and j have the same parent. Because P(A12j) =
1
N2 , we

have P(A(t)
12) ≤

(n−2)
N2 .

Let A(d)
12 be the event that 1 and 2 merge and that there is some

other pair that merges, implying two binary mergers or worse. We
have A(d)

12 = ∪j,kA12,jk, where A12,jk is the event that 1, 2 as well as
j, k have the same parent. The union is over 2 < j < k ≤ n. Because
P(A12,jk) =

1
N ×

N−1
N ×

1
N ≤

1
N2 , we have P(A(d)

12 ) ≤
(n−2

2

) 1
N2 .

If Ã12 is the event that 1, 2 merge and there is no other merger,
Ã12 = A12 − A(t)

12 − A(d)
12 . Therefore,

P(Ã12) ≥
1
N

−
(n − 2)

N2 −

(
n − 2
2

)
1
N2

=
1
N

(
1 −

(n − 2)(n − 1)
2N

)
.

The probability that there is a single binary merger during a back-
ward Wright-Fisher step is equal to

(n
2

)
P(Ã12).

If C is the event that there is some merger, C = ∪j,kAjk, union
over 1 ≤ j < k ≤ n. Therefore, P(C) ≤

(n
2

) 1
N . The lower bound for

pd in the lemma is obtained by simplifying(n
2

)
P(Ã12)(n
2

) 1
N

. □

Theorem 4. Each backward WF step in the genealogy of a sample
of size N1/3−ϵ , ϵ > 0, includes at most a single binary merger with
probability converging to 1 as N → ∞.

Proof. Let D be the event that a sample of size n undergoes
more than a single binary merger in some backward WF step in
its genealogy. Let Dk be the event that the ancestral sample size is
equal to k in some generation but the ancestral sample size is never
k − 1. Evidently, P(D) ≤

∑n
k=3P(Dk).

By Lemma 3,

P(Dk) = P
(
ancestral sample never of size k − 1

⏐⏐sample of size k
)

× P (ancestral sample is of size k in some generation)

≤
(k − 2)(k − 1)

2N
.

Therefore,

P(D) ≤

n∑
k=3

(k − 3)(k − 1)
2N

≤
n3

2N
.

If n = N1/3−ϵ , P(D) ≤ N−3ϵ/2, which converges to zero asN → ∞.
In the complement of D, every merger in a backward WF step is a
single binary merger. □

LetDn be the event that there aremore than two binarymergers
or a triple merger or worse when a backwardWF step is applied to
a sample of size n. Then

P
(
Dn

⏐⏐1 and 2 merge
)

≤
n − 2
N

+

(
n − 2
3

)
1
N2 + 3

(
n − 2
4

)
1
N2 ,

where the first term accounts for any of the samples 3 through
n having the same parent as 1 and 2, the second term accounts
for triple mergers with a parent other than that of 1 or 2, and the
third term accounts for the possibility that there are two or more
additional binary mergers. This bound simplifies to

P
(
Dn

⏐⏐1 and 2 collide
)

≤
n
N

+
n4

4N2 .

This is an almost correct bound for the conditional probability of
Dn given any merger, as we may expect from the high degree of
symmetry. The argument below makes the idea rigorous by using
more detailed conditioning.

The event Cj,k, which we presently define and with respect to
which we will condition later, pertains to a single backward WF
step. The sample size is assumed to be n.

• Samples 1 through j − 1 have unique parents and do not
merge with any sample.

• The parent of sample j differs from the parents of samples
j + 1, . . . , k − 1.

• Samples j and k have the same parent.

Lemma 5. Let p1 be the conditional probability given Cj,k that some
sample has the same parent as j and k. We have

p1 ≤
n − k

N − j + 1
≤

n
N − n

.

Proof. None of the samples [k] − {j, k} are allowed to have the
same parent as j and k subject to the condition Cj,k. Subject to the
condition Cj,k, samples k+1, . . . , n can have any ofN−j+1 parents
(the j − 1 parents of 1, . . . , j − 1 are excluded). The probability of
ending up with the same parent as j and k is thus 1

N−j+1 for each of
those n − k samples, which proves the lemma. □

Lemma 6. Let p2 be the conditional probability given Cj,k that some
three samples have the same parent and that parent is distinct from
the parent of j and k. We have

p2 ≤
n3

6(N − n)2
.
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Proof. The three samples of this lemma cannot belong to [j] ∪ {k}.
Thus, the three samples must be chosen out of a set of cardinality
n − (j + 1), which can be done in(
n − (j + 1)

3

)
ways. For any such choice, the probability of a triple merger given
Cj,k is

N − j
N − j + 1

×
1

N − j + 1
×

1
N − j + 1

≤
1

(N − n)2
.

The first factor accounts for the first member of the triple having
to choose a parent other than those of [j], and 1/(N − j + 1) is
the probability that the second or third member chooses the same
parent as the first, subject to Cj,k. Here, we have assumed that all
three merging samples are chosen from k + 1, . . . , n. However,
the same bound may be verified when one or more of the three
is chosen from j + 1, . . . , k − 1. Therefore,

p2 ≤

(
n − (j + 1)

3

)
1

(N − n)2
≤

n3

6(N − n)2
,

as claimed in the lemma. □

Lemma7. Let p3 be the conditional probability given Cj,k that for each
of c ormore pairs, the twomembers of the pair have a common parent
with that parent being distinct from the parents of all other pairs as
well as the parent of j and k. We have

p3 ≤
n2c

2cc!(N − n)c
.

Proof. The c pairsmust be chosen out of the samples [n]−[j]−{k}.
That means n − (j + 1) choices for each member of a pair and the
samples which form c pairs can be chosen in(
n − (j + 1)

2c

)
.

Having chosen the 2c samples, they can be paired in

(2c − 1)(2c − 3) . . . 5.3.1 =
(2c)!
2cc!

ways because the first of the chosen samples can be paired in 2c−1
ways following which the second of the remaining samples can
be paired in 2c − 3 ways and so on. Having formed the pairs, the
probability given Cj,k that each pair has a common parent distinct
from that of other pairs as well as j and k is

(N − j)
(N − j + 1)2

×
(N − j − 1)
(N − j + 1)2

× · · · ×
(N − j − c + 1)
(N − j + 1)2

≤
1

(N − n)c
.

Here, we have assumed that all 2c samples that are paired are
chosen from k + 1, . . . , n. The same bound may be verified when
one or more of the samples is from j + 1, . . . , k − 1. Therefore,

p3 ≤

(
n − (j + 1)

2c

)
×

(2c)!
2cc!

×
1

(N − n)c
≤

n2c

2cc!(N − n)c
,

as claimed in the lemma. □

Lemma 8. Let Dn denote the event that there are c + 1 or more
binary mergers with distinct parents or some triple merger in a single
backward WF step applied to a sample of size n. Then

P
(
Dn

⏐⏐Cj,k) ≤
n

N − n
+

n3

6(N − n)2
+

n2c

2cc!(N − n)c
.

Proof. The event Dn ∩ Cj,k implies one of the following:

• Some sample has the same parent as j and k.
• Some three samples have a common parent distinct from the

parent of j and k.
• There are c or more binarymergers in addition to themerger

between j and k.

Therefore, P(Dn|Cj,k) ≤ p1 + p2 + p3 proving the lemma. □

Theorem 9. Each backward WF step in the genealogy of a sample of
size N

c
2c+1 −ϵ , ϵ > 0, includes at most c simultaneous binary mergers

and no triple merger with probability converging to 1 in the limit of
large N.

Proof. Let Dℓ be the event that the ancestral sample size is ℓ and
a backward WF step results in either a triple merger or more than
c binary mergers. From the previous lemma,

P(Dℓ|Cj,k) ≤
ℓ

N − ℓ
+

ℓ3

6(N − ℓ)2
+

ℓ2c

2cc!(N − ℓ)c
.

Let Cℓ denote the event that a merger has occurred in a backward
WF step with a sample size of ℓ. Evidently, Cℓ is the disjoint union
of the events Cj,k over 1 ≤ j < k ≤ ℓ, with the event Cj,k asserting
the first merger in lexicographic order is between sample j and k.
Therefore,

P
(
Dℓ

⏐⏐Cℓ) =

∑
1≤j<k≤ℓ

P
(
Dℓ

⏐⏐Cj,k)P (
Cj,k

⏐⏐Cℓ)
≤

ℓ

N − ℓ
+

ℓ3

6(N − ℓ)2
+

ℓ2c

2cc!(N − ℓ)c
.

Let D be the event that a sample of size n undergoes either a
triple merger or more than c binary mergers in some generation
before coalescing to a single ancestor under WF. Then

P (D) ≤

n∑
ℓ=3

P
(
Dℓ

⏐⏐Cℓ)
≤

(n + 1)2

2(N − n)
+

(n + 1)4

24(N − n)3
+

n2c+1

2cc!(N − n)c
.

The proof is completed by substituting n = N
c

2c+1 −ϵ and verifying
the N → ∞ limit to be zero. □

We now turn to the sample frequency spectrum under WF.
Unlike the approach in Griffiths and Tavaré (1998) and Bhaskar et
al. (2014), our approach does not look at the internal structure of
the genealogical tree.

Let Mn denote the condition that the genealogy of a sample
of size n involves exactly one mutation under either Kingman or
WF. Let Bn denote the condition that each backward WF step in
the genealogy of a sample of size n involves at most single binary
mergers.

Let q(n, 2N) denote the probability of a single binarymerger in a
backwardWF step applied to a sample of size n under the condition
that there are no simultaneous binary mergers or triple mergers.
Then

q(n,N) =
1 −

(
1 −

1
N

)
· · ·

(
1 −

n−1
N

)
1 − cn,N

,

where cn,N is the probability that a sample of size n either has
a triple with a common parent (triple merger) or two pairs each
with a common parent (simultaneous binary merger). Bounds for
q(n,N) will be given later. The probability of a mutation event
in a single backward WF step is assumed to be nµ. Given that
either a mutation event or a coalescence event has occurred, the
probability that it is a mutation is equal to

nµ
nµ+ q(n,N)

.
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The probability it is a coalescence is equal to
q(n, 2N)

nµ+ q(n,N)
.

We are making the usual assumption that the sample cannot be
hit with both a mutation and a merger in the same generation.
The assumption could beunreasonable for large samples. However,
we limit ourselves to samples of size N1/3−ϵ or less. In addition,
the condition Mn limits the total number of mutations in the
genealogy of the sample to one, which makes the assumption
reasonable even for large N .

The probability that a mutation strikes when the WF ancestral
sample size is k but notwhen the sample size belongs to [n]−{1, k}
is equal to

n∏
j=2

q(j,N)
jµ+ q(j,N)

×
kµ

kµ+ q(k,N)
.

Therefore, conditioned on Mn ∩ Bn, the probability that mutation
strikes a sample of size n before any coalescence event is equal to

nµ
nµ+q(n,N)∑n
j=2

jµ
jµ+q(j,N)

.

We take the limit µ → 0 to get

µn =

n
q(n,N)∑n
j=2

j
q(j,N)

.

Thus,µn is the probability that amutation is the first event to strike
a sample of size n conditioned on Mn ∩ Bn in the limit of zero
mutation.

Let f (j, n) be the probability that j out of n samples are mutants
under the condition Mn ∩ Bn. The recurrence for f (j, n) is

f (j, n) = µn[j = 1] + (1 − µn)
(
f (j, n − 1)

(
1 −

j
n − 1

)
+ f (j − 1, n − 1)

j − 1
n − 1

)
. (9)

In this recurrence, we have used Knuth’s notation (Graham et al.,
1994; Knuth, 1997) by which [j = 1] evaluates to 1 if j = 1 and 0
otherwise.

To obtain the classical formula for the sample frequency spec-
trum, replace µn by

µ̃n =

1
n−1∑n
j=2

1
j−1

,

which is obtained by taking q(j,N) = j(j − 1)/2N following
the Kingman model and assuming Mn. The exact solution of the
recurrence

f̃ (j, n) = µ̃n[j = 1] + (1 − µ̃n)
(
f̃ (j, n − 1)

(
1 −

j
n − 1

)
+ f̃ (j − 1, n − 1)

j − 1
n − 1

)
(10)

is given by

f̃ (j, n) =

1
j∑n−1

j=1
1
j

for j = 1, . . . , n − 1.

Lemma 10. For n <
√
N, n(n−1)

2N

(
1 −

n2
2N

)
≤ q(n,N) ≤

n(n−1)
2N(

1 +
n4

N2

)
.

Proof. The proof of Lemma3 shows thatP(Ã12) ≥
1
N

(
1 −

n2
2N

)
. The

probability cn,N of a simultaneous binary merger or a triple merger
is bounded by

cn,N ≤

(
n
3

)
1
N2 + 3

(
n
4

)
1
N2

≤
n4

3N2 .

The lower bound follows from q(n,N) =
n(n−1)

2 P
(
Ã12

)
/(1 −

cn,N ) ≥
n(n−1)

2 P
(
Ã12

)
. The upper bound follows from

q(n,N) =
n(n − 1)

2
P

(
Ã12

)
≤

n(n − 1)/(2N)
1 − cn,N

≤
n(n − 1)/(2N)
1 − n4/(3N2)

≤
n(n − 1)

2n

(
1 +

n4

N2

)
.

The last inequality requires n4 < 2N2 which follows from n <√
N . □

Lemma 11. For n <
√
N, we have

µ̃n

(
1 −

n2

2N

)(
1 −

n4

N

)
≤ µn ≤ µ̃n

(
1 +

n2

N

)(
1 +

n4

N2

)
.

Proof. If we use the definition of µn and write

µn =

n
q(n,2N)∑n
j=2

j
q(j,2N)

=

1
n−1 (1 − sn)∑n
j=2

1
j−1 (1 − sj)

after taking q(j,N) =
j(j−1)
2N (1 − sj), then by the previous lemma

sj ∈ [−j4/N2, j2/2N].
To obtain the lower bound in the lemma, use sj ≥ −

j4

N2 ≥

−n4/N2 in the denominator, use sn ≤ n2/2N in the numerator,
and simplify using

(
1 + n4/N2

)−1
> 1 −

n4

N2 .
To obtain the upper bound in the lemma, use sn ≥ −

n4

N2 in the

numerator, use n2
2N ≥

j2
2N ≥ sj in the denominator, and simplify

using
(
1 −

n2
2N

)−1
<

(
1 +

n2
N

)
for n2 < N . □

Lemma 12. If n ≤ N1/3−ϵ , then

lim
N→∞

1
2

n−1∑
j=1

⏐⏐⏐f (j, n) − f̃ (j, n)
⏐⏐⏐ = 0.

Proof. Note that |ab − ãb̃| ≤
⏐⏐a − ã

⏐⏐ |b| + |b − b̃|
⏐⏐ã⏐⏐. Subtracting

(9) and (10), we get⏐⏐⏐f (j, n) − f̃ (j, n)
⏐⏐⏐ ≤ |µ̃n − µn|

(
f (j, n − 1)

(
1 −

j
n − 1

)
+ f (j − 1, n − 1)

(
j − 1
n − 1

))
+ µ̃n

⏐⏐⏐f (j, n − 1) − f̃ (j, n − 1)
⏐⏐⏐ (1 −

j
n − 1

)
+ µ̃n

⏐⏐⏐f (j − 1, n − 1) − f̃ (j − 1, n − 1)
⏐⏐⏐ ( j − 1

n − 1

)
for j = 2, . . . , n − 1. For j = 1, there is an additional |µn − µ̃n|

term.



A. Melfi, D. Viswanath / Theoretical Population Biology 121 (2018) 60–71 71

Summing these inequalities, we have
n−1∑
j=1

⏐⏐⏐f (j, n) − f̃ (j, n)
⏐⏐⏐

≤ 3 |µn − µ̃n| + µ̃n

n−1∑
j=1

⏐⏐⏐f (j, n − 1) − f̃ (j, n − 1)
⏐⏐⏐ .

The factor 3 in the above inequality follows because
n−1∑
j=1

(
f (j, n − 1)

(
1 −

j
n − 1

)
+ f (j − 1, n − 1)

(
j − 1
n − 1

))

≤

n−1∑
j=1

f (j, n − 1) + f (j − 1, n − 1)

≤ 2.

The 2 is changed to 3 to allow for an additional |µn − µ̃n| in the
j = 1 case. Because µ̃n < 1 for n > 2 and f (j, n) ≡ f̃ (j, n) for n = 2,
we have
n−1∑
j=1

⏐⏐⏐f (j, n) − f̃ (j, n)
⏐⏐⏐ ≤ 3

n∑
k=3

|µk − µ̃k| .

The proof is noweasily completed by an application of the previous
lemma. □

Theorem 13. Let fWF (k, n) be the probability that k out of n samples
are mutants conditional on exactly one mutation in theWF genealogy
of the sample. Then the total variation distance

1
2

n−1∑
k=1

⏐⏐⏐⏐fWF (k, n) −
1/k
Hn−1

⏐⏐⏐⏐ → 0

for n ≤ N1/3−ϵ, ϵ > 0, in the limit of zero mutation and large N.

Proof. By Theorem 4, the probability that any backward WF
step produces a simultaneous binary merger or a triple merger
converges to zero as N → ∞. Thus, we may assume the condition
Bn in the limit of large N and invoke the previous lemma and infer
this theorem. □
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