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a b s t r a c t

The first terms of theWright–Fisher (WF) site frequency spectrum that follow the coalescent approxima-
tion are determined precisely, with a view to understanding the accuracy of the coalescent approximation
for large samples. The perturbing terms show that the probability of a single mutant in the sample
(singleton probability) is elevated in WF but the rest of the frequency spectrum is lowered. A part of
the perturbation can be attributed to a mismatch in rates of merger between WF and the coalescent.
The rest of it can be attributed to the difference in the way WF and the coalescent partition children
between parents. In particular, the number of children of a parent is approximately Poisson under WF
and approximately geometric under the coalescent. Whereas the mismatch in rates raises the probability
of singletons under WF, its offspring distribution being approximately Poisson lowers it. The two effects
are of opposite sense everywhere except at the tail of the frequency spectrum. TheWF frequency spectrum
begins to depart from that of the coalescent only for sample sizes that are comparable to the population
size. These conclusions are confirmed by a separate analysis that assumes the sample size n to be equal
to the population size N . Partly thanks to the canceling effects, the total variation distance of WF minus
coalescent is 0.12/logN for a population sized sample with n = N , which is only 1% for N = 2× 104. The
coalescent remains a good approximation for the site frequency spectrum of-large samples.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

An attractive aspect of genealogical analysis is that it begins
with current samples whose sequence data are directly measured.
Wright–Fisher (WF) and the coalescent are two theoretical models
used to make deductions about the genealogies of the current
samples (Durrett, 2008).

The coalescent was derived and justified by Kingman (1982a)
as an approximation of the WF model. Kingman’s analysis and
extensions by other authors (Möhle, 2000; Möhle and Sagitov,
2001) assume the current sample size n to be fixed as the haploid
population size N becomes large.

In view of the rapid increase in sample sizes in human genetics
(see Karczewski et al., 2016, for example), it is worth asking how
close the WF and coalescent models are for large samples. A key
property of the coalescent is that the genealogy is constructed en-
tirely using binary mergers. In earlier work (Melfi and Viswanath,
2018), we have shown that for sample sizes n = o

(
N1/3

)
, WF

genealogies involve only binary mergers with probability tending
to 1. A more precise result derived here states that if the sample
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size is given by n = αN1/3, the probability that the WF genealogy
involves only binary mergers is exp

(
−

α3

12

)
in the large N limit. To

understand the onset of the deviation ofWF from the coalescent, Fu
(2006) as well as Bhaskar et al. (2014) looked at triple mergers,
where three individuals merge into a common parent over a single
WF generation. Among other results, we show that if the sample
size is n = αN1/2, the expected number of triple mergers in the
WF genealogy is α2/6+

(
exp(−α2/2)− 1

)
/3. This last result is in

agreement with the N1/2 scaling deduced in Melfi and Viswanath
(2018).

With regard to sequence data, such results are perhaps too
exacting. Detailed agreement in the genealogy is essential to re-
produce the Kingman partition distribution (Kingman, 1982b) at
each step of the genealogy. However, summary statistics such as
the site frequency spectrum are not so refined. The site frequency
spectrum of a sample of size n, which may be directly obtained
from sequence data, consists of the probability that j of the samples
are mutants and n− j are ancestral, j = 1, . . . , n−1, at a base pair.
The site is assumed to be polymorphic with a single mutation at
some individual that is an ancestor of some but not all samples.

The site frequency spectrum has been widely used for making
demographic inferences (see Excoffier et al., 2013; Fu et al., 2013;
Griffiths and Tavaré, 1998; Gutenkunst et al., 2009; Kamm et al.,
2017; Keinan and Clark, 2012; Lukic and Hey, 2012; Wakeley and
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Hey, 1997, for example) and is therefore a good basis to understand
the difference between WF and the coalescent with regard to
sequence data. If the genealogy is given by the coalescent and if
µ is the mutation rate per site per generation, the probability that
j out of n samples are mutants is

1/j
Hn−1

, (1)

where Hn−1 = 1 + 1
2 + · · · +

1
n−1 is the harmonic number,1

assuming µ to be so small that µN is negligible and assuming
the sample to be polymorphic at the site. We will derive the first
perturbing terms that follow (1) under the assumption of WF
genealogy.

The elegant formula (1) for the probability of j mutants has a
long and complicated history. Fisher (1922) stated that the correla-
tion between heights of fathers and sons was 0.5 and attempted to
obtain aMendelian explanation of that correlation. Hewas thus led
to a consideration of ‘‘gene ratios’’, which is equivalent to counting
the number of mutants. He derived the numerator of (1) some
years later (Fisher, 1930). Wright (1931, p. 120) had contacted
Fisher earlier, noting (among other discrepancies) that he obtained
2N log(1.8N) for the size of the genealogy, whereas Fisher (1922)
had obtained

√
πN3/2.2 There can be little doubt that Fisher was

aided by Wright (1931) in coming up with the arguments that led
him to the numerator of (1) aswell as another resultwewill review
shortly.

The size of the genealogy under WF is equal to the number of
ancestors (with the current sample included)with 1, . . . , n−1 (but
not n) descendants in the sample; in other words, the number of
ancestors who would make the sample polymorphic if hit with a
mutation. The b-branch length of the genealogy is the number of
ancestors with exactly b descendants for b = 1, . . . , n−1. The size
of the genealogy and the b-branch length are defined analogously
for the coalescent, with the difference that the number of gener-
ations a lineage survives is no longer an integer. Ancestors of the
current sample will be referred to as ancestral samples. Ancestors
of the current sample in the same generation will be referred to as
an ancestral sample. An ancestral sample induces a partition of the
current sample, and for the coalescent, the partition follows the
Kingman partition distribution (Durrett, 2008; Kingman, 1982b;
Griffiths and Tavaré, 1998; Melfi and Viswanath, 2018).

Kimura (1955) (also see Kimura, 1964, p. 222) solved the dif-
fusion equation for gene frequencies. From that point, (1) can be
derived, although an argument connecting mutant frequencies in
the population to that in the sample (such as the argument in
Durrett, 2008, p. 51) would be needed. The first such argument
was given by Ewens (1972), who also introduced the ‘‘frequency
spectrum’’ terminology. A coalescent derivation of (1) was given
by Fu (1995), as a consequence of the expectations and variances
of b-branch lengths of the coalescent genealogy and was preceded
by the treatment of special cases (Fu and Li, 1993; Tajima, 1989).
A mathematically complete treatment, allowing for varying pop-
ulation sizes, is due to Griffiths and Tavaré (1998), Polanski et al.
(2003), and Polanski and Kimmel (2003). A concise and elegant
approach to the main ideas of Polanski et al. was obtained recently
by Waltoft and Hobolth (2018).

1 In sources such as Fu (1995), the harmonic number Hn−1 is denoted by an . The
notation we use is from Graham et al. (1994).
2 Wright’s result is the same as the modern coalescent estimate of the expected

size of the genealogy, with 1.8 being his approximation to eγ , where γ is Euler’s
constant. Wright’s 2N is the same as our N and his µ is the same as our 2µ. We
have modified his formulas accordingly.

If the genealogy is given byWF, we show that the probability of
j mutants out of n is given by
1/j
Hn−1

−
1

6NHn−1(n− 1)
−

(j− 1)
6NHn−1(n− 1)(n− j)

+
1

6NHn−1j
−

n
12NH2

n−1j
+

n[j = 1]
12NHn−1

+ · · · ,

(2)

where [j = 1] is 1 if the assertion j = 1 is true and 0 otherwise
and where j = 1, . . . , n− 1. The result (2) is perturbative in that it
gives the N−1 terms but not the N−2 terms.

Themain point in calculating the first terms of the perturbation
series, shown in (2), is to understand the onset of deviations. Under
WF, children are split between parents according to the multino-
mial distribution. Under the coalescent, the split is uniform (Melfi
andViswanath, 2018). The uniform split is intuitively unreasonable
and appears implausible. For example, if two parents have ten
children the splits 9+1 and 5+5 are equally likely. The assumption
of at most a single binary merger per generation breaks down for
sample sizes that are as small as N1/3. Yet the first terms of the
perturbative series (2) show that the deviation in the site frequency
spectrum sets in only for sample sizes n that are order of the
population size N .

The first few terms in the perturbative series cannot be a good
approximation to the total deviation except for small n (however,
see Figs. 2 and 3). It is well-known that the first neglected term
in a power series often gives a good idea of the error. In the same
way, the 1

N terms in (2) give an idea of the various phenomena at
work in making theWF frequency spectrum differ from that of the
coalescent. As noted by earlier authors (Bhaskar et al., 2014; Fu,
2006; Wakeley and Takahashi, 2003), the WF frequency spectrum
elevates the probability of singletons (j = 1 mutants) and lowers
the probability of j mutants for each j > 1. Such a movement in
mutant probabilities may be verified explicitly from the last two
terms of (2), which are the only terms that increase with n. The
last two terms increase approximately linearly with sample size.
For population sized samples, (2) yields an estimate of 1/12HN−1
(or 1/12 logN) for the amount by which singleton probability is
raised under WF. Even with later terms in the perturbative series
not taken into account, that estimate is off only by a factor of 3/2.

In principle, better approximations can be obtained by calculat-
ing more terms of the perturbative series. However, the extension
of our method to calculate even the N−2 terms, which are pre-
sumably of the form n2/N2, appears difficult. Therefore, we give
a separate analysis of population sized samples with n = N , with
thework ofWakeley andTakahashi (2003) being our starting point.
Fisher (1930) gave an ingenious derivation of b-branch lengths of
WF genealogies with n = N , although some of his arguments are
not entirely clear.3 Wakeley and Takahashi (2003) gave a different
and more transparent argument for the b = 1 case, which we
extend to b > 1.

If pj and qj are two probability distributions over j =
1, . . . , n − 1, the total variation (TV) distance between them is
1
2

∑n−1
j=1

⏐⏐pj − qj
⏐⏐. The total variation distance is the maximum dif-

ference in probabilities of any possible event under the two distri-
butions (Brémaud, 1999, p. 126) and is therefore a quite robustway
to compare probability distributions. The total variation distance
between the frequency spectrums underWF and the coalescent for
a population sized sample with n = N is approximately
0.1204
HN−1

−
0.1124
H2

N−1
+ · · · ,

3 Specifically, in deriving the functional equation φ(ex−1)− φ(x) = 1− x, Fisher
(1930, p. 209) assumes silently that most mutations do not become fixed in the
population after assuming the probability of fixation to be 1/2 one paragraph back.
Thatmostmutations do not become fixedwas known toWright (1931), and Kimura
later proved the probability of a neutral mutation becoming fixed to be 1/N .
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with a slight change in the approximation for N > 6.8 × 105. For
N = 2× 104, the baseline assumption in human genetics (Durrett,
2008), the total variation distance is only around 1%.

Fu (2006) has connected the greater speed of mergers under
the coalescent to the elevation of singleton probability under WF.
As we will explain, the coalescent is indeed faster for n ≪ N1/2

but for n ≈ N , the picture is not so clear. We refer to the same
phenomenon as a mismatch in rates of merger to cover both cases.
Another difference between the models is in the way children are
partitioned between the parents (Melfi and Viswanath, 2018). In
particular, the offspring distribution is approximately Poisson for
WF but approximately geometric for the coalescent.

To disentangle the two effects,wedefine an intermediatemodel
called the discrete coalescent. In the discrete coalescent, the num-
ber of parents of a sample of sizenhas exactly the samedistribution
as in WF. However, once the number of parents is determined,
the children are split between the parents according to Kingman’s
partition distribution (Kingman, 1982b). The intermediate model
shows that the effect of the mismatch in rates is twice as great as
the effect of the difference in the way children are split between
parents. The two effects are of opposite sense and combine to cause
a reduction in overall error.

2. Poisson approximations to Wright–Fisher genealogies

In a backwardWF step, each haploid individual chooses one out
of N parents with equal probability and independently of all other
individuals in its generation. TheWF genealogy of a sample is built
up using backward WF steps. The coalescent (Kingman, 1982a)
may be thought of as a rate varying Poisson approximation of WF
genealogies.

Other Poisson approximationsmay be used to capturemore de-
tailed information about WF genealogies. The clumping heuristic
is a general method for deriving Poisson approximations (Aldous,
1989). Applications of the heuristic require greater sophistication
when the ‘‘clumps’’ are disconnected. In the case ofWF, the clumps
have a relatively simple form and the heuristic is not difficult to
apply.

For the most part, the following basic fact is all that we will
need. Suppose the probability of occurrence of an event (such as
a thunderstorm) in the interval (u, u+du) is λ(u) du. Then the total
number of occurrences of the event in the domain [a, b]has Poisson
distributionwith rateΛ =

∫ b
a λ(u) du. In particular, the probability

of k occurrences is Λk

k! e
−Λ. If an event is rare in every neighborhood,

the total number of occurrences is approximately Poisson with the
rate obtained by summing over the domain.

Let n be the number of samples and N the size of the parental
generation. If δ is the number of samples lost due to mergers in a
single backward WF step, the number of parental samples is n− δ

and we have

E δ = n− N + N
(
1−

1
N

)n

Var δ = N
((

1−
1
N

)n

−

(
1−

2
N

)n)
+ N2

((
1−

2
N

)n

−

(
1−

1
N

)2n
)

(3)

(Watterson, 1975). When n is fixed, E δ =
n(n−1)
2N −

(n
3

) 1
N2 +· · · and

Var δ−E δ = −2n3/3N2
+· · · , suggesting a Poisson approximation

for small n which turns out to be the Kingman coalescent. More
generally, if n = Na, where a ∈ [0, 1), we have E δ − Var δ =

O(N3a−2) = o (Na), suggesting a Poisson approximation to δ for
a < 1.

For i = 1, . . . , k, the ith sample has the same parent as the
k + 1st sample with probability 1/N , which is a rare event for
N ≫ 1. The accumulated rate is k/N . Thus, the probability the
k + 1st sample has the same parent as one of the prior samples
is approximately 1− exp(−k/N).

Suppose the number of samples is n. The probability that the i+
1st sample merges with one of the prior samples is 1− exp(−i/N)
approximately, which is a rare event for i ≪ N . For n ≪ N , the
cumulative rate

∑n−1
i=1 (1 − exp(−i/N)) is the left hand Riemann

sum of the integral∫ n

1

(
1− e−

u
N

)
du = n− 1+ N

(
e−

n
N − e−

1
N

)
= n+ N(e−

n
N − 1)+ · · ·

Wemay correct for an error that occurs in replacing the sum by an
integral by taking λδ(n) = n + N(exp(−n/N) − 1) − n/2N . (The
sum is now approximated to order N−2 .)

For n ≪ N , δ approximately follows a Poisson distribution of
rate λδ(n). Thus, P(δ = k) ≈ exp(−λδ(n)) × λδ(n)k/k!. In fact,
Eδ = λδ(n) + ϵ, where ϵ = n2/2N2

+ · · · is of the same order
as the error in the Poisson approximation.

2.1. Non-binary mergers

If the sample size is small enough, mergers in any generation
are likely to be single binarymergers as in the Kingman coalescent.
As the sample size increases, multiple binary mergers may appear
with some likelihood and then triple mergers and so on Melfi and
Viswanath (2018).

The probability of something other than a binary merger condi-
tional on δ ≥ 1 is

1− e−λδ (n) − λδ(n)e−λδ (n)

1− e−λδ (n)
.

For n ≪ N1/2, λδ(n) = n2/2N is a good approximation. Let Λ22 (n)
be the accumulated rate of occurrence of a double binarymerger in
some generation of theWF genealogy of a sample of size n. Because
non-binary mergers at onset are double binary mergers (Melfi and
Viswanath, 2018), we have the cumulative rate of double binary
mergers (or non-binary mergers) to be

Λ22 (n) =
∫ n

0

1− e−x
2/2N
− (x2/2N)e−x

2/2N

1− e−x2/2N
dx

=

∫ n

0

ex
2/2N
− 1− x2/2N

ex2/2N − 1
dx

=
n3

12N
+ · · · , (4)

where the last step is fromapower series expansion of ex
2/2N . If n =

αN1/3, Λ22 (n) = α3/12 implying the probability of coalescence
with only binary mergers to be 1 − exp

(
−α3/12

)
(see Fig. 1) and

the probability of exactly k binary mergers in the genealogy to be
exp(−β)βk/k!, with β = α3/12.

2.2. Simultaneous binary mergers

The rate Λ2p (n) for p simultaneous binary mergers is obtained
similarly. A p-fold simultaneous binary merger occurs during a
single backward WF step conditional on δ ≥ 1 with probability

1−
∑p−1

k=0 exp(−λδ(n))λδ(n)k/k!
1− e−λδ (n)

=
λδ(n)p−1

p!
+ · · ·

=
1
p!

(
n2

2N

)p−1

+ · · ·
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Fig. 1. Plots verifying the approximations implied by (4) and (5). The exact numbers are from computer programs described in Bhaskar et al. (2014) andMelfi and Viswanath
(2018).

The accumulated rate over the entire genealogy is

Λ2p (n) =
1

p!(2N)p−1

∫ n

0
x2p−2 dx

=
n2p−1

(2p− 1)p!(2N)p−1
.

Thus, the correct scaling for the onset of p-fold binary mergers
is n = αN

p−1
2p−1 . The scaling was given in earlier work (Melfi and

Viswanath, 2018) but not the Poisson approximation.

2.3. Triple mergers

The reasoning for triple mergers is slightly different. We need
to first obtain the rate of triple mergers during a single backward
WF step. Consider them+ 1st sample. Each of the firstm samples
has the same parent as them+ 1st sample with probability 1/N , a
rare event. Thus, the number of samples out of the firstm that have
the same parent as the m + 1st sample is Poisson with rate m/N .
The probability that two of them have the same parent as m + 1,
causing a triple merger, is
1
2!

(m
N

)2
e−m/N

approximately. Therefore, the accumulated rate of triple mergers
over a single generation is

λ3(n) =
1
2

∫ n

0

( x
N

)2
e−x/N dx

=
n3 exp(−n/N)

4N2 + · · ·

Triple mergers are a rare event for n ≪ N2/3. However, when
accumulating the rate of triple mergers over the entire genealogy,
it is essential to account for the WF genealogy skipping some
sample sizes.

The expected δ when the sample size is n, given that δ ≥ 1, is
λδ(n)/(1− exp(−λδ(n))). Thus, for m ≤ n, we take the probability
thatm is reached to be (1− exp(−λδ(m))) /λδ(m).

For the accumulated rate of triple mergers, we obtain

Λ3(n) =
∫ n

0
λ3(x)

1− exp(−λδ(x))
λδ(x)

dx

Wemay set n = αN1/2 and then use the approximation λδ(n) =
n2/2N to obtain

Λ3(n) =
α2

6
+

e−α2/2
− 1

3
. (5)

We may then use the Poisson distribution and approximate the
expected number of triple mergers in the genealogy as Λ3(n)
(see Fig. 1) or calculate the probability of k triple mergers in the

WF genealogy of the sample. For example, if n = αN1/2, the
expected number of triple mergers in the genealogy is α2/6 +
exp(−α2/2)/3−1/3 in the limit of largeN . TheN1/2 scaling of triple
mergers was determined in earlier work (Melfi and Viswanath,
2018).

3. Perturbative analysis of the WF site frequency spectrum

Themanner inwhich coalescent andWF genealogies differ may
be inferred from (4), (5), and other similar results. Such differences
in genealogy are a part of modeling and are not directly observable
from sequence data. The question becomes to what extent the
genealogical differences show up in sequence data.

In this section, we will outline the main ideas in obtaining the
WF frequency spectrum. The leading term of course is the coales-
cent answer, which is 1/jHn−1. Wewill calculate the followingN−1
terms.

The first perturbing terms, which we calculate, suggest that the
correct scaling for the divergence of WF frequency spectrum from
that of the coalescent is n = αN . Although not a proof, the sugges-
tion is almost surely correct and we verify it from another angle
later. The scaling for the onset of simultaneous binarymergers and
triple mergers is N1/3 and N1/2 (from (4) and (5)). The fact that
the divergence in the frequency spectrum sets in for much larger
samples means that the frequency spectrum is not very sensitive
to multiple mergers in the genealogy.

If the WF genealogy of a sample of size n progresses through
sample sizes as in

n→ n− 1→ · · · → 2→ 1

without skipping any sample size in-between n and 1, we denote
that no-skip event by S0. If the WF genealogy skips from a sample
size of m + 2 to m, omitting m + 1, we denote such a skip-to-m
event by Sm for m = n− 2, . . . , 1. The sample size of m+ 1 is the
only omission in Sm.

Other patterns of skipping are possible. However, the probabil-
ity of such events is O(N−2). For an O(N−1) calculation, we only
need to consider S0 and Sm.

TheWF frequency spectrum is calculated under the assumption
of exactly one mutation in the genealogy of the sample. Therefore,
we define the event Sµ

0 to be S0 and exactly one mutation in the
genealogy of the sample. The event Sµ

m is defined analogously.

3.1. Coalescent propagators

The general approach to derive the WF frequency spectrum is
to first determine the probability that a mutation occurs in the
genealogy when the sample size ism form = n, . . . , 2. That would
mean that 1 out of m ancestral samples is a mutant at some point
in the genealogy. That probability is then propagated to the current
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sample size of n. We begin by studying propagation under the
coalescent.

Suppose an ancestral sample of size m has i ≥ 1 mutants and
(m − i) non-mutants. The genealogy from the current sample of
size n to the ancestral sample of size m is assumed to involve
only binary mergers, with no mutations in-between. As we will
presently show, the probability that the current sample has j ≥ i
mutants is given by

(j− 1)(i−1)

(i− 1)!
.
(m− 1)i(n−m)j−i

(n− 1)j
, (6)

where ji is the falling power j(j − 1) . . . (j − i + 1) (Graham et al.,
1994). We adopt the convention that j0 is 1, even for j = 0.

The Kingman partition distribution may be used to obtain (6).
However, we will give a more direct argument. Suppose an an-
cestral sample of size m has i mutants. Suppose that an ancestral
sample of sizem+1 is related to it through a single binary merger.
Then the probability that the sample of m + 1 has i + 1 mutants
is i/m because each sample out of m is equally like to ‘‘split’’ and
one of the i mutants will split with probability i/m. Similarly, the
probability that the sample of m+ 1 has imutants is (m− i)/m (in
this case, one of the m− i non-mutants has to split).

From here, we can write down the probability that a sample of
n has j mutants when it is descended through binary splits from a
sample of sizem with i mutants to be(
n−m
j− i

)
((m− i) . . . (n− j− 1)) (i . . . (j− 1))

m . . . n− 1
.

The argument for this expression is as follows. There aren−m splits
from n to m. The binomial coefficient chooses j − i of those splits
to be ones that increase the number of mutants. The denominator
of the fraction in the expression steps from the sample size ofm to
the sample size of n − 1 because those are the sample sizes that
split. The numerator has the factor (m− i) . . . (n− j−1) to account
for splits of non-mutants. The other factor i . . . (j− 1) accounts for
splits of mutants. The above expression is simplified to obtain (6).

When i = 1, (6) reduces to

(n−m)j−1

(n− 1)j
(m− 1), (7)

a useful special case. Setting j = 1, we find the probability of
a single mutant in the sample of n given a single mutant in the
ancestral sample to be
m− 1
n− 1

, (8)

which is another useful special case.

3.2. WF propagators

Suppose next that a sample of size n is descended from a sample
of size m with i mutants through a single backward WF step. It
is assumed that there are no mutations during this descent. The
probability of jmutants in the current sample is then given by(
n
j

)({
j
i

}
i!
)({

n− j
m− i

}
(m− i)!

)/{
n
m

}
m!. (9)

That is because in the current sample, we can choose j individuals
to be mutants in

(n
j

)
ways. That being done, the j mutants in the

current sample can be assigned to imutants in the parental sample,
with each parent receiving at least one child, in

{
j
i

}
i! ways: the

j samples can be partitioned into i in
{
j
i

}
ways and then can be

permuted in i! ways. The last bracketed factor in the numerator

is the number of ways to assign (n− j) not mutants to (m− i) non-
mutants in the parental sample. The denominator is the number of
ways to assign n children tom parents, with each parent receiving
at least one child.

The Stirling numbers (of the second kind)
{
n
1

}
,
{

n
n− 1

}
, and{

n
n− 2

}
are given by 1, n(n− 1)/2, and n(n− 1)(n− 2)(3n− 5)/24,

respectively (Graham et al., 1994). Using (9) along with those
formulas,we obtain the probabilities that a sample of sizem+2 has
i, i+1, i+2mutantswhen it is descended froman ancestral sample
of size m, with i of them being mutants, in a single WF generation
to be
(m− i)(m− i+ 1)

m(m+ 1)
−

2i(m− i)
m(m+ 1)(3m+ 1)

, (10a)

2i(m− i)
m(m+ 1)

+
4i(m− i)

m(m+ 1)(3m+ 1)
, (10b)

i(i+ 1)
m(m+ 1)

−
2i(m− i)

m(m+ 1)(3m+ 1)
, (10c)

respectively.
Suppose that a sample of size m + 2 changes into a parental

sample of size m under a single backward WF step. Given that the
parental sample ofm has only a single mutant, the probability that
the sample of sizem+ 2 has only a single mutant is
m− 1
m+ 1

−
2(m− 1)

m(m+ 1)(3m+ 1)
, (11)

which is obtained by setting i = 1 in (10a). Comparing against
(8), we find that skipping a step under WF reduces the factor that
propagates the probability of a single mutant.

3.3. Probability of mutation at m

What is the probability of a mutation event at m assuming
that the sample size m is visited? Consider the following picture:

m
p

1− p

The picture is showing that an ancestral sample size of m remains
m under a backward WF step with probability 1 − p and exits to
a lower sample size with probability p. Neglecting µ2 terms, the
probability that a sample of sizem will be hit with a mutation is
∞∑
k=0

k(mµ)p(1− p)k,

where k is the number of returns fromm to m.
Thus, withµ2 terms neglected, the probability of being hit with

a mutation at m is equal to mµ/p. We may take

p = 1−
m−1∏
k=1

(
1−

k
N

)
=

m(m− 1)
2N

−
m(m− 1)(m− 2)(3m− 1)

24N2 + · · ·

by ignoring terms after N−2. We get the probability of being hit
with a mutation atm to be

(2Nµ)

(
1

m− 1
+

(m− 2)(3m− 1)
12N(m− 1)

+ O(N−2)
)
+ O(µ2).

Neglecting µ2 and N−2 terms, we denote the probability of being
hit with a mutation atm by

(2Nµ)

(
1

m− 1
+

µm

12N

)
, (12)



86 A. Melfi, D. Viswanath / Theoretical Population Biology 124 (2018) 81–92

where µm = (m− 2)(3m− 1)/(m− 1)+ O(N−1).
In fact, because we are neglecting µ2 terms, (12) gives the

probability that there is a single mutation in the entire genealogy
with that mutation occurring when the ancestral sample size ism.

3.4. Probability that m+ 2 skips to m

Suppose the ancestral sample size is m + 2. What is the prob-
ability that the ancestral sample size skips over m + 1 and goes
directly tom under WF? The ancestral sample size could skip over
bothm+ 1 andm, but because we are neglecting N−2 terms, those
possibilities may be ignored.

The probability that a backward WF applied to a sample of size
m+ 2 results in a sample of sizem, conditioned on a merger, is(

1
N2

(m+2
3

)
+

3
N2

(m+2
4

))
(1− 1/N) . . . (1− (m− 1)/N)

1− (1− 1/N) . . . (1− (m+ 1)/N)
.

There are
(m+2

3

)
possible triplemergers and 3

(m+2
4

)
possible double

binary mergers. The first factor in the numerator accounts for the
probabilities of those. In both a triple merger and a double binary
merger, a total of m parents must be chosen distinctly, which
occurswith probability (1−1/N) . . . (1−(m−1)/N). That accounts
for the second factor in the numerator. The denominator is the
probability that the number of parents of m + 2 samples is fewer
than m+ 2 in a single backward WF step.

Simplifying the above expression, we obtain the probability of
skipping tom as

m(3m+ 1)
12N

, (13)

with N−2 terms neglected. If sm = m(3m+ 1), this probability can
be taken to be sm/12N .

3.5. The event Sµ

0 and P
(
j
⏐⏐Sµ

0

)
From (13), it follows that the probability of S0, which visits

each ancestral sample size in {1, . . . , n} is Πn−2
m=1(1 − sm/12N).

Using (12), the probability of a single mutation in the genealogy is
(2Nµ)

(∑n
m=2(1/(m− 1)+ µm/12N)

)
, with µ2 terms ignored and

with N−2 terms ignored in the coefficient of 2Nµ. The summation
overm = 2, . . . , n sums over the probability of the singlemutation
occurring when the ancestral sample size is one of 2, . . . , n.

Thus, the probability of Sµ

0 is Πn−2
m=1(1 − sm/12N) × (2Nµ)(∑n

m=2(1/(m− 1)+ µm/12N)
)
. Simplifying and omitting N−2

terms in the coefficient of 2Nµ, we get P(Sµ

0 ) = (2Nµ)W0+O(µ2)
with

W0 = Hn−1 −
Hn−1

12N

n−2∑
m=1

m(3m+ 1)+
1

12N

n∑
m=2

µm

= Hn−1 −
Hn−1n(n2

− 4n+ 5)
12N

+
(n− 1)(3n− 2)

24N
(14)

and with N−2 terms neglected inW0. The last step in (14) is gotten
after a routine simplification. At this point, we can think of P(Sµ

0 )
as proportional to the weightW0.

Let Mm be the event that a mutation occurs in the genealogy
of the sample of size n when the ancestral sample size is m. From
(12), we know that the probability that a mutation occurs at m
but nowhere else in the genealogy is proportional to 1/(m − 1) +
µm/12N . Therefore,

P
(
Mm

⏐⏐⏐Sµ

0

)
=

1
m−1 +

µm
12N

Hn−1 +
1

12N

∑n
m=2 µm

,

where the denominator is obtained by summing over m =

2, . . . , n. The right hand side above can be simplified to obtain

P
(
Mm

⏐⏐Sµ

0

)
=

1
(m− 1)Hn−1

+
3m− 4
12NHn−1

−
(n− 1)(3n− 2)
24NH2

n−1(m− 1)
+ · · ·

with N−2 terms ignored and in the limit µ→ 0.
The number of mutants in the current sample of size n is always

denoted by j. The next step is to calculate P(j
⏐⏐Mm, Sµ

0 ). For j = 1,
we can use (8) to propagate a single mutant from an ancestral
sample of size m to the current sample of size n and get

P
(
j = 1

⏐⏐⏐Mm, Sµ

0

)
=

m− 1
n− 1

.

More generally, the probability P(j
⏐⏐Mm, Sµ

0 ), where j stands for
j mutants in the current sample of n, is given by (7). By writing
(3m− 4)(m− 1) as 3(m− 1)2 − (m− 1), we obtain

P(j
⏐⏐Mm, Sµ

0 )P(Mm
⏐⏐Sµ

0 )

=
(n−m)j−1

Hn−1(n− 1)j
+

(m− 1)2(n−m)j−1

4NHn−1(n− 1)j
−

(m− 1)(n−m)j−1

12NHn−1(n− 1)j

−
(n− 1)(3n− 2)(n−m)j−1

24NH2
n−1(n− 1)j

,

with N−2 terms ignored and in the limit µ→ 0. We then have

P(j
⏐⏐Sµ

0 ) =
n∑

m=2

P(j
⏐⏐Mm, Sµ

0 )P(Mm
⏐⏐Sµ

0 )

=
1

Hn−1j
+

n(2n− j)
j(j+ 1)(j+ 2)

−
n

12NHn−1j(j+ 1)

−
(n− 1)(3n− 2)

24NH2
n−1j

after simplification, with N−2 terms ignored and in the limit µ→

0. The simplification is effected using the following identities:
n∑

m=2

(n−m)j−1 = (n− 1)j/j,

n∑
m=2

(m− 1)(n−m)j−1 = n(n− 1)j/j(j+ 1),

n∑
m=2

(m− 1)2(n−m)j−1 = n(2n− j)(n− 1)j/j(j+ 1)(j+ 2),

for j = 1, 2, . . . , each of which is easily proved by induction on
n. Another method of proof is to begin with the difference identity
(n+ 1)j − nj

= jnj.

The event Sµ
m and P

(
j
⏐⏐Sµ

m
)

From (13), P(Sm), which is the probability the genealogy skips
from sample size m+ 2 tom, is

m(3m+ 1)
12N

×

∏
ℓ∈{1...n−2}−{m,m+1}

(
1−

ℓ(3ℓ+ 1)
12N

)
or simplym(3m+ 1)/12N with N−2 terms neglected.

Because P(Sm) leads with an N−1 term, we may simplify (12)
and take the probability that a mutation hits when the ancestral
sample size is ℓ to be (2Nµ)/(ℓ − 1). It follows that P

(
Sµ
m
)
=

(2Nµ)Wm + O(µ2)

Wm =
m(3m+ 1)

12N

(
Hn−1 −

1
m

)
. (15)
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with N−2 terms neglected in Wm. At this point, we can take P(Sµ
m)

to be proportional toWm.
To calculate P(j

⏐⏐Sµ
m), we use a shortcut that greatly simplifies

the algebra. Under the condition Sµ
m and by (12) (with the µm/12N

term ignored becauseWm leadswith aN−1 term), the probability of
amutation at ℓ is proportional to 1/(ℓ−1) for ℓ ∈ {2, . . . , n}−{m+
1}. Therefore the probability of amutation at ℓ under the condition
Sµ
m is equal to

1/(ℓ− 1)
Hn−1 − 1/m

,

in the limitµ→ 0 andwithN−1 terms ignored. Now for the short-
cut, suppose we can ignore the WF corrections to the propagators,
namely, the latter terms in the WF propagators (10a), (10b), and
(10c).We can thenobtain the probability of jmutants in the current
sample of n to be

1
Hn−1 − 1/m

∑
ℓ∈{2,...,n}−{m+1}

1
(ℓ− 1)

×
(ℓ− 1)(n− ℓ)j−1

(n− 1)j
,

where the single mutant at ℓ is propagated to n using the coales-
cent propagator (7) before summing over ℓ. This expression can be
simplified to get

1
Hn−1 − 1/m

(
1
j
−

(n−m− 1)j−1

(n− 1)j

)
, (16)

which is the probability of j mutants except for the corrections
given by the latter terms in the WF propagators (10a)–(10c).

We will now calculate the corrections separately. Let M2...m
denote M2 ∪ · · · ∪ Mm, in words, the event where a mutation
occurs when the ancestral sample size is 2, . . . ,m. The probability
that a mutation strikes when the sample size is ℓ is proportional to
1/(ℓ− 1). Therefore,

P
(
M2...m

⏐⏐⏐Sµ
m

)
=

Hm−1

Hn−1 − 1/m
,

with all N−1 and µ terms ignored. The latter terms in the WF
propagators (10a), (10b), and (10c) will be activated only when the
condition M2...m holds in addition to Sµ

m.
Conditioning on M2...m and Sµ

m, the frequency spectrum of an-
cestral sample of sizem is given by

1/iHm−1

for the probability of i mutants, i = 1, . . . ,m − 1 (in the limit
µ → 0 and with N−1 terms neglected). To obtain the correction,
this frequency spectrummust first be propagated tom+2 samples
using the latter terms of theWF propagators (10a), (10b), and (10c)
because the condition Sµ

m stipulates a skip from sample sizem+ 2
to sample size m. Propagating the probabilities to m + 2, we get
the corrections to the probability of imutants in a sample ofm+ 2
under the conditions M2...m and Sµ

m to be

−2(m− 1)
Hm−1m(m+ 1)(3m+ 1)

for i = 1,

2m
Hm−1m(m+ 1)(3m+ 1)

for i = 2,

−2
Hm−1m(m+ 1)(3m+ 1)

for i = m+ 1,

and zero for all other i ∈ {1, . . . ,m+1}−{1, 2,m+1}. Multiplying
these numberswith the coalescent propagator (6)withm← m+2
and i ← 1, 2,m + 1, respectively, we get the corrections to
the probability of j mutants in the current sample of n under the

conditions M2...m and Sµ
m to be

−2(m− 1)(n−m− 2)j−1

Hm−1m(3m+ 1)(n− 1)j
,

2(j− 1)m(n−m− 2)j−2

Hm−1(3m+ 1)(n− 1)j
,

−2(j− 1)m(n−m− 2)j−m−1

Hm−1m(3m+ 1)(n− 1)j
.

Multiplying these terms byP(M2...m
⏐⏐Sµ

m) and adding to (16), we get

P(j
⏐⏐Sµ

m) =
1

Hn−1 − 1/m

(
1
j
−

(n−m− 1)j−1

(n− 1)j

)
−

2(m− 1)(n−m− 2)j−1

(Hn−1 − 1/m)m(3m+ 1)(n− 1)j

+
2(j− 1)m(n−m− 2)j−2

(Hn−1 − 1/m)(3m+ 1)(n− 1)j

−
2(j− 1)m(n−m− 2)j−m−1

Hm−1m(3m+ 1)(n− 1)j
,

in the limit µ→ 0 and with N−1 terms ignored.

3.6. WF sample frequency spectrum

The sum
∑n−2

m=1WmP(j
⏐⏐Sµ

m) may be simplified to get

(n− 2)(n− 1)2

12Nj
+

(3n− 2)[j = 1]
12N

−
n

12Nj(j+ 1)

−
n(2n− j)

4Nj(j+ 1)(j+ 2)

−
(n− j− 2)(n− j− 1)

6Nj(j+ 1)(n− 1)
+

(2n− j− 1)[j ≥ 2]
6Nj(j+ 1)

−
(j− 1)

6N(n− 1)(n− j)
,

(17)

where the second line accounts for WF corrections to the coales-
cent propagators. The simplification uses the identities

n−2∑
m=1

(n−m− 2)j−1 = (n− 2)j
/
j for j = 1, 2, . . .

n−2∑
m=1

(m− 1)(n−m− 2)j−1 = (n− 2)j+1
/
j(j+ 1) for j = 1, 2, . . .

n−2∑
m=1

m2(n−m− 2)j−2 = (2n− j− 1)(n− 1)j/
(j− 1)j(j+ 1) for j = 2, 3, . . .

n−2∑
m=1

(j− 1)m(n−m− 2)j−m−1 = (j− 1)(n− 2)j−2 for j = 1, 2, . . .

In the last identity, ab is assumed to be 1 if b ≤ 0. All these identities
may be verified by induction on n.

The WF frequency spectrum (2) is obtained by simplifying

W0P(j
⏐⏐Sµ

0 )+
∑n−2

m=1 WmP(j
⏐⏐Sµ

m)

W0 +
∑n−2

m=1 Wm
. (18)

If we look at the sequence of steps building up to this point, the
difference in the way WF and the coalescent partition children
between parents first comes up in the latter term of (11) as well
as (10a), (10b), (10c). Those terms propagate to the second line of
(17).
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Fig. 2. (a) and (b) WF minus coalescent computed using (2) minus (1) (theory) is compared with a computation using the program of Bhaskar et al. (2014) (exact). (c) and
(d) (2) minus (1) minus (19) (rates) is compared with (19) (partitions).

Thus the N−1 terms in the WF frequency spectrum (2) due
to differences in partitioning between WF and the coalescent are
given by

−
(n− j− 2)(n− j− 1)
6NHn−1(n− 1)j(j+ 1)

+
(2n− j− 1)[j ≥ 2]
6NHn−1j(j+ 1)

−
j− 1

6NHn−1(n− 1)(n− j)
. (19)

Evaluating with j = 1 and retaining only the dominant term, we
get −n/12NHn−1 to be the effect on singleton probability of the
difference in partitioning distributions. Evaluating (2) with j = 1
and retaining only the dominant term,weobtainn/12NHn−1 as the
amount by which the WF singleton probability exceeds that of the
coalescent. Therefore, the effect of themismatch in rates of merger
must be n/6NHn−1.

Fig. 2 shows that the WF singleton probabilities are elevated
and the rest of the frequency spectrum is depressed, as may be
inferred from the last two terms of (2). The figure also illustrates
the correction due to rates being twice as high as the correction due
to differences in theway children are partitioned between parents.

Because j = 1 singletonprobabilities are elevatedunderWFand
other probabilities are lowered, we may obtain the total variation
distance between WF and the coalescent by simply taking the
difference in j = 1 probabilities. Thus, the perturbative estimate
for the total variation distance between the WF frequency spec-
trum and that of the coalescent is n/12NHn−1. This estimate is
qualitatively correct even for n = N , and even quantitatively it
is not unreasonable, being about 2/3rds of a better estimate we
will presently derive. Fig. 3 shows that the total variation distance
increases with n and decreases with N .

If the number of samples is n = 3, the exact WF frequency
spectrum is given by
2N − 1
3N − 2

,
N − 1
3N − 2

.

If n = 4, the exact WF frequency spectrum is given by

2
(
9N3
− 20N2

+ 16N − 4
)

33N3 − 82N2 + 73N − 22
,

3
(
N2
− 2N + 1

)
11N2 − 20N + 11

,

2 (N − 1)
(
3N2
− 6N + 4

)
(3N − 2)

(
11N2 − 20N + 11

) .
The perturbative WF frequency spectrum (2) may be checked
against these exact answers.

4. Population sized samples

Suppose the sample size is n = αN . For an individual among the
parental population of N , the probability that any given sample is
a child is 1/N , a rare event. The accumulated probability over the
sample of size αN is α. Therefore, by the Poisson clumping heuris-
tic, wemay approximate the number of children of an individual in
the parental generation by the Poisson distributionwith rateα. The
probability that an individual has k children among theαN samples
is approximately exp(−α)αk/k!. The generating function

∑
∞

k=0pkx
k

with pk = exp(−α)αk/k! is exp(α(x− 1)).
The only individuals in the parental generation that appear in

the genealogy are ones who have at least one child among the
samples. Therefore, it is natural to look at the Poisson distribution
under the condition of having one child. Under that condition,
the probability of having k children is pk/(1 − exp(−α)) and the
generating function is (exp(αx)− 1)/(exp(α)− 1).

Let G1(αN) = g1(α)N be the expected b-branch length with
b = 1 of the WF genealogy of a sample of size αN . By (3), the
expected number of parents isN(1−exp(−α)). Thus, wemaywrite

g1(α)N = Nα + fNg1(1− exp(−α))
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Fig. 3. Total variation distance betweenWF frequency spectrum (Bhaskar et al., 2014) and that of the coalescent given by (1) (without correction) or with correction as given
by (2).

because the current samples Nα all contribute to the 1-branch
length and with the understanding that f is the probability that a
branch with a single descendant in the genealogy of the parental
sample of size (1 − exp(−α))N remains a branch with a single
descendant in the genealogy of the current sample of size αN . That
probability f is the same as the probability of a parent having a
single child, which is α/(exp(α)− 1). Therefore, we have

g1(α) = α +
α

exp(α)− 1
g1 (1− exp(−α)) , (20)

which is a result of Wakeley and Takahashi (2003) derived essen-
tially using their arguments.

The generating function for the number of children of a parents
is approximately(
exp(αx)− 1
exp(α)− 1

)a

. (21)

The coefficient of xb in (exp(αx)− 1)a/(exp(α)− 1)a is given by

(−1)aαb

(exp(α)− 1)ab!

a∑
j=0

(
a
j

)
(−1)jjb.

Using (Graham et al., 1994, (6.19), p. 265) to evaluate the sum, the
probability that a parents have b children is found to be

αba!
(exp(α)− 1)ab!

{
b
a

}
(22)

for b = a, a + 1, . . . Here
{
b
a

}
is a Stirling number of the second

kind (Graham et al., 1994). Using the same argument as above
and taking the b-branch length with αN samples to be Gb(αN) =
Ngb(α), we get the recurrence

gb(α) =
b∑

a=1

ga(1− exp(−α))×
αba!

(exp(α)− 1)ab!

{
b
a

}
(23)

for b = 2, 3, . . .
By solving the recurrences for gb(α) and taking α = 1, we can

obtain approximations to the WF frequency spectrum with n = N
and compare it to (1), which is the coalescent frequency spectrum.
However, we seek to separate the difference into a part due to the
mismatch in rates of mergers and a part due to the difference in
the way children are partitioned among parents.

To do so, we turn to the discrete coalescent, which is a model
intermediate between the coalescent and WF. To obtain the man-
ner in which αN children are split between βN parents under the
discrete coalescent, which uses the Kingman partition distribution,
wemay fix an orange at the left most position and permute βN−1
identical oranges andαN−βN identical apples after it. The number

Table 1
The expected b-branch length of theWF genealogy of n = N samples is (2/b+ϵb)N .
For the discrete coalescent, whose merger rates match WF but which partitions
children between parents like the coalescent, it is (2/b+ ϵ̃b)N .

b ϵb ϵ̃b

1 0.240917257 0.418035261
2 −0.046223840 −0.100136471
3 0.005196946 −0.032826669
4 0.001095702 −0.017086273
5 −0.000238278 −0.011181848
6 −0.000114882 −0.008036411
7 −0.000004091 −0.006053860

of children of the ith parent can be taken to be the number of apples
between the ith and i + 1st orange plus one (thus counting the
ith orange) (Durrett, 2008; Griffiths and Tavaré, 1998; Melfi and
Viswanath, 2018).

The probability that a parent has k children is approximately
γ (1 − γ )k, with γ = β/α = (1 − exp(−α))/α for a sample
of size αN . The generating function of this geometric distribution
is γ x/(1− (1− γ )x). The generating function for the number of
children of a parents is approximately (γ x/(1− (1− γ )x))a. By
extracting the coefficient of xb, we find the probability of a parents
having b children under the discrete coalescent to be(
b− 1
a− 1

)
γ a(1− γ )b−a

approximately.
If G̃b(αN) denotes the b-branch length of the discrete coalescent

genealogy of αN samples, wemay set G̃b(αN) = Ng̃b(α) and obtain
the recurrences

g̃1(α) = α +
1− exp(−α)

α
g̃1 (1− exp(−α))

g̃b(α) =
b∑

a=1

g̃a(1− exp(−α))×
(
b− 1
a− 1

)
γ a(1− γ )b−a, (24)

where b = 2, 3, . . .
In the Appendix, we show how to solve (20), (23) and (24)

accurately using Chebyshev polynomials. For the coalescent, the
expected b-branch length for a sample of size n = N is 2N/b.
Therefore, we set gb(1) = (2/b + ϵb)N and g̃b(1) = (2/b + ϵ̃b)N
and report ϵb and ϵ̃b in Table 1.

The first column of the table agrees very well with Fisher (1922,
p. 214). To obtain the total size of the WF genealogy of n = N
samples, we use
N−1∑
b=1

Gb(N) = N

(
2HN−1 +

N−1∑
b=1

ϵb

)
= N (2HN−1 +∆) .
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Weestimate∆ to be 0.200645075 by summing ϵb over 1 ≤ b ≤ 20.
The size of the discrete coalescent genealogy is the same as that of
WF genealogy by definition. Our value for ∆ agrees with Fisher’s
except in the last decimal place.

The probability of j mutants in the WF spectrum of n = N
samples is estimated to be

Gb(N)
N(2HN−1 +∆)

=
1

jHN−1
+

ϵjHN−1 −∆/j
HN−1 (2HN−1 +∆)

.

The estimated probability of j = 1 under WF exceeds 1/jHN−1
because ϵ1 > ∆. For j = 3, the term ϵjHN−1 − ∆/j is negative
as long as N < 6.8× 105 but flips sign around N = 6.8× 105. For
j = 4, ϵjHN−1 − ∆/j turns positive only around N = 1020. Thus,
withminor caveats, theWF frequency spectrum is elevated at j = 1
but depressed slightly for j > 1.

We can approximate the total variation distance between WF
and coalescent frequency spectrums for n = N as

ϵjHN−1 −∆/j
HN−1 (2HN−1 +∆)

=
0.1204
logN

−
0.1819
(logN)2

+ · · · , (25)

a result that is a direct consequence of Fisher (1922). The first plot
of Fig. 4 shows this estimate to be quite good. The figure also shows
g1(α) is quite accurate for even N = 100 and small α, although
g4(α) has visible errors for N = 100.

From Table 1, it is evident that the excess of the discrete coales-
cent’s jmutant probability over that of the coalescent

ϵ̃jHN−1 −∆/j
HN−1 (2HN−1 +∆)

is positive for j = 1 and negative for j > 1. The discrete coalescent
and the coalescent differ only with respect to their rates of merger.
Both of them follow the Kingman partition distribution. The effect
due to difference in the rates of merger alone is twice as great
because ϵ̃1 is nearly twice ϵ1.

When n ≪ N1/2, we can say that the coalescent is faster than
WF (Fu, 2006) because n(n − 1)/2N ≥ Eδ (see Appendix). How-
ever, when n ≫ N1/2, there can be several mergers in the same
generation and rates of merger cannot be compared so directly.
Although, the coalescent beginswith a higher rate it adjusts its rate
downwards with every binary merger.

During a single backward WF step a sample size of n = αN
changes on an average tom = (1− exp(−α))N . On an average the
coalescent takes 2N(1/m− 1/n) generations to go from n samples
tom. In fact, 2((1− exp(−α))−1 − α−1) = 1+ α/6+ · · · > 1 (see
Appendix), and the coalescent is actually slower.

However, the 1-branch length of the coalescent in going from n
samples to m is equal to 2N(n−m)/(n− 1). It may be shown that
2N(n−m)/(n− 1) < Nα when n = Nα andm = N(1− exp(−α))
(see Appendix). Therefore, although the coalescentmay take a little
more than a generation to go from n samples to m, its 1-branch
length is lower as a consequence of repeated binary mergers over
slightly more than a generation.

5. Discussion

WF deviates from the assumptions of the coalescent for even
small sample sizes. Simultaneous binary mergers appear in WF
genealogies for sample sizes of only αN1/3 with appreciable prob-
ability. Triple mergers appear for samples sizes of αN1/2.

However, the effect of such deviations on the site frequency
spectrum is minimal. Deviations in the site frequency spectrum
set in only for sample sizes αN . Even for population sized samples
the deviation is only around 1%. The effect is so small because the
coalescent is self-correcting. The rate of mergers under the coales-
cent is faster, but the coalescent lowers the ratewith everymerger.
The coalescent limits itself to binary mergers. As a result, the

offspring distribution under the coalescent is geometric, whereas
it is Poisson under WF. The geometric and Poisson distributions
are not far enough apart to cause a major effect. In addition, the
effect of differing offspring distributions partly cancels the effect
of differing rates of merger.

Population substructure is perhaps the major reason to look
for more sophisticated models than the coalescent (Durrett, 2008;
Wakeley, 2009). Skewed offspring distributions are another rea-
son (Eldon and Wakeley, 2006; Matuszewski et al., 2018). In the
setting of skewed offspring distributions, it is known that the
skew has to be comparable to the population size for deviations
to show up (Eldon and Wakeley, 2006). Thus, in that setting too,
the coalescent is a robust model.

It is known that increasing skewness of offspring distribution
raises the probability of singletons and lowers the probabilities
of j mutants for j > 1 (Eldon and Wakeley, 2006). The Poisson
offspring distribution of WF has a lower variance than the geo-
metric offspring distribution of the coalescent (see Appendix). Our
finding that the effect of differing offspring distributions is to lower
the singleton probability under WF is consistent with this point of
view.

As far as the single site frequency spectrum is concerned, the
coalescent appears to be a robust and reliable model relative to
WF, and it will perhaps remain so until the SNP determination
errors fall below a percent. However, what if multiple sites are
considered, possibly allowing for recombination between sites?
Our conjecture is that the total variation distance between WF
and the coalescent will still be of the order C/logN for population
sized samples. However, the constant C may increase with the
number of sites. In that regard, we mention the availability of
software to efficiently simulateWF genealogies under very general
conditions (Palamara, 2016).
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Appendix

In this appendix, we explain how to solve (20), (23), and (24)
using Chebyshev polynomials. In addition, a few elementary in-
equalities used in the text are proved.

For convenience, we restate the recurrence for g1:

g1(α) = α +
α

exp(α)− 1
g1 (1− exp(−α)) .

Begin with g1(α) = C0+C1α+C2α
2
+C3α

3
+· · · and expand each

term of the recurrence to obtain all terms up to the α3 term. We
then obtain

C0 + C1α + C2α
2
+ C3α

3
= C0 + (1− C0/2+ C1) α

+ (C0/12− C1 + C2) α2

+ (C1/2− 3C2/2+ C3)α3.

If follows that g1(α) = 2 + α/6 + α2/18 + · · · as in Wakeley
and Takahashi (2003). Using the same method, we get g2(α) =
1− α2/36+ O(α3) and gb(α) = 2/b+ O(α3) for b > 2.

To solve the recurrence for g1(α), we set g1(α) = 2 + α/6 +
α2/18+ g1(α). The resulting recurrence of g1(α) is

g1(α) = α − 2− α/6− α2/18

+
α

exp(α)− 1
(2+ β/6+ β2/18+ g1(β)),

where β = 1 − exp(−α). It is solved by iteration at each of 32
Chebyshev points in α ∈ [0, 1]. The function g1(α) may then be
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Fig. 4. The first plot demonstrates the accuracy of (25). The next two plots examine the accuracy of gb(α). In all cases, the exact computations use the computer program
of Bhaskar et al. (2014).

obtained with 10+ digits of accuracy at any α ∈ [0, 1] using the
barycentric Lagrange interpolant (Trefethen, 2013). The functions
gb(α), with b = 2, 3, . . . , 20 are calculated using the samemethod.

For the functions g̃b(α), b = 1, . . . , 20, we begin with g̃1(α) =
2+α/3+ 2α2/27+ g̃1(α), g̃2(α) = 1−α/18− 19α2/432+ g̃2(α),
and g̃b(α) = 2/b−α/3b(b+ 1)−α2/18b(b+ 1)(b+ 2)+ g̃b(α) for
b > 2. The rest of the method is the same.
The inequality n(n− 1)/2 ≥ Eδ

To verify that n(n− 1)/2 ≥ Eδ = n− N + N(1− 1/N)n, set

(1− 1/N)n = 1− n/N + n(n− 1)/2N2
− r/6N3

and use the Lagrange formof the Taylor series remainder to deduce
r > 0.

The inequality 2((1− exp(−α))−1 − α−1) > 1

The inequality 2((1− exp(−α))−1 − α−1) > 1 is equivalent to

eα >
eα
− 1
2
+

eα
− 1
α

,

which is proved by verifying that the series for the left hand side
majorizes the series for the right hand side.

The inequality 2N(n−m)/(n− 1) < Nα

To show that 2N(n − m)/(n − 1) < Nα when n = Nα and
m = N(1 − exp(−α)), first observe the inequality follows from
2(1 − m/n) < α for N large. Now 2(1 − m/n) < α is equivalent
to e−α < 1 − α + α2/2, which can be verified using the Lagrange
form of the Taylor series remainder.

The inequality σG > σP

Suppose the sample size is αN with the parental population
size being N as usual. Conditional on an individual of the parental
generation being a parent of one of the samples and assuming N
large, its number of children (among the samples) is given by the
generating function (exp(αx)− 1)/(exp(α)− 1). It follows that the
expectation of the number of children is α and the variance is

σP =
α

1− exp(−α)
+

α2

1− exp(−α)
−

α2

(1− exp(−α))2
.

If the αN children are split among their parents according to the
Kingman partition distribution, the generating function for the
number of children is γ x/(1−(1−γ )x) with γ = (1−exp(−α))/α.
The expectation is again α and the variance is

σG =
α

1− exp(−α)
+

α2

(1− exp(−α))2
− 2.

One may verify that σG > σP by plotting a graph. Alternatively,

σG − σP =
α2

(exp(α)− 1)2

(
2eα (e

α
+ 1)
2

− 2
(
eα
− 1
α

)2
)

must be positive because the power series of both eα and (eα
+1)/2

majorize the power series of (eα
− 1)/α.

Intuitively, we expect σG > σP because the geometric distribu-
tion has exponential decay, whereas the Poisson distribution has
super-exponential decay.
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