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The error made by a numerical method in approximating the solution of the initial value
problem x(¢) = f(t,x), x(0) = xg,t > 0, x(¢) € R9 varies with the time of integration.
The increase of the global error ||X(¢; 7)) — x(¢)||, where X(¢, h) is an approximation
derived by a numerical method with time step 4, with time ¢ determines the feasibility
of approximating the solution accurately for increasing . However, the best available
theoretical bounds involve the Lipshitz constant and are exponential in # for some problems
where the actual increase of global error is only linear in time.

Using techniques from Lyapunov’s theory of stability, we prove that the increase of
global errors is linear in time for trajectories of dynamical systems which fall into a
hyperbolic and attracting cycle or into a hyperbolic and attracting torus, with the flow on
the torus being quasi-periodic. The increase is linear for non-linear problems when certain
stability properties of the solution can be verified. The error analysis uses a conditioning
function E(t) associated with the exact solution, which captures the propagation and
accumulation of global errors.

1. Introduction

The exact solution of the initial value problem x () = f (¢, x), x(0) = xo,¢ = 0, x(¢) € R4
is rarely obtainable exactly by analytic methods. However, the instances where it can be
solved with sufficient accuracy by numerical methods, like Runge—Kutta, or backwards
differentiation are numerous. The success of the numerical methods depends upon the
rate of increase of the global error ||X(¢; k) — x(¢)| with ¢, where x(¢; h) denotes an
approximation to the exact solution derived using a numerical method with constant step
size of h. If the rate of increase is linear or polynomial of low degree in 7, the solution can
be approximated accurately for at least a moderately long period of time. However, if the
rate is exponential in ¢, accurate approximation of the solution for even moderately long
periods in ¢ is a hopeless task. The global error depends on the time step £ in proportion
to k" if the order of the numerical method is r. The exact solutions or trajectories are
denoted by x(#) or by x(¢; x¢), making the initial condition x(0) = x¢ explicit, and their
approximations are denoted by x(¢; k) or by X (t; xo; h).

The function E(t) below associated with the solution x(#) can be thought of as a
conditioning function which controls global errors. The function E(¢) is defined for ¢ > 0
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by

E(t) = sup , (L.1)

/ T ax(t)
v(s)ds
0 9x(s)
where the supremum is taken over all continuous functions v : [0, 1] = R? with [v(s)| <
1 for 0 < s < ¢. All vector norms in this paper are Euclidean norms and all matrix norms
are the corresponding induced norms. The Jacobian gifg in (1.1) is the sensitivity of x(¢)
with respect to small changes to x (s), and thus might be expected to control the propagation
of the local discretization error, or a small perturbation to the exact solution, made at time
s to time 7. Since local discretization errors are made at every time step, E (¢) is defined by
taking an integral which adds up to match the accumulation of errors. In (1.1), v(s) gives
the direction in R? of the discretization error made at time s. Taking the supremum ensures
that E () picks up the worst possibility for the accumulation of errors.
Theorem 2.1 shows that, given € > Oand T > O,

llx(#5 x0) — X(t; x0; Wl < (E(@) + €)Kh" (1.2)

for 0 < ¢ < T and sufficiently small 4, for a one-step method of order r. The one-step
method could be, for example, a Runge—Kutta method. The constant K is determined by
the local errors made by the numerical method. How small the time step has to be depends
upon f (¢, x) and the numerical method, as well as € and T'. It is clear from (1.2) that the
study of global errors can be reduced to a study of E(¢). The advantage is that £ (¢) behaves
like a conditioning function and is a mathematical property of the exact solution, which
therefore does not contain any detail of the numerical method. The function E (¢) has been
implicit in earlier work on global errors, especially in the work on asymptotic analysis
(asymptotic with 2 — 0) of global errors; see, for example, Henrici (1962), Henrici
(1963), Gragg (1965), and Stetter (1973). We consider the clear and explicit definition
of the conditioning function E (¢) to be one of the main contributions of this paper.

This work has two principal motivations. In their book (Stuart & Humphries, 1996,
p. 240), Stuart and Humphries derive the available general purpose error bound

lx(T; x0) — X(T; x0; B)|| < (X7 — 1)K ",

where L, the Lipshitz constant of f(z,x) in the region around the solution, is always
positive. They point out the futility of this bound for large 7' and fixed time step &, however
small 7 maybe, and go on to comment: It is essentially for this reason that the interaction
between the theories of dynamical systems and numerical analysis is an interesting and
important area of investigation. We replace (e“” — 1) by E(¢) as in (1.2) and then bound
E(¢) linearly in ¢ for some classes of problems, thus deriving error bounds valid for much
longer stretches of time. Indeed, it turns out that the talked about interaction between
numerical analysis and dynamical systems theory is very much part of this.

The other motivation is from the work on global errors of symplectic integrators
of Hamiltonian systems initiated by Calvo & Sanz-Serna (1993). They showed that the
increase of global errors of some periodic solutions of Hamiltonian systems, for example
the solution of the two-body Kepler problem, would be quadratic in time for the sort
of general purpose integrators considered here, but only linear in time for symplectic
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integrators. This was convincingly explained later by Cano & Sanz-Serna (1997) following
the papers (Calvo & Hairer, 1995) and (Estep & Stuart, 1995). These results have led to
renewed interest in the analysis of global errors. There is numerical evidence due to Quispel
& Dyt (1998) that the increase of errors is linear and not quadratic if symplectic or volume-
preserving solvers are used to integrate quasi-periodic trajectories of Hamiltonian systems.
Quasi-periodic trajectories wind around the Liouville tori of integrable Hamiltonian
systems and appear in the remarkable KAM theory. Quasi- periodic trajectories play a
far more important role in Hamiltonian dynamics than periodic trajectories. Thus, a proof
of linear increase of global errors of symplectic solvers on quasi-periodic trajectories
in Hamiltonian dynamics is desirable. We prove in Theorem 5.5 that the increase of
global errors is linear in time for stable quasi-periodic trajectories of dissipative dynamical
systems. This proof uses the normal hyperbolicity theory of Hirsh et al. (1977).

Sections 3 and 4 give examples to show that there is no direct connection between
Lyapunov stability and linear bounds for E (¢). Propositions 4.2 and 4.3 obtain constant and
linear upper bounds on E (¢) using the theory of inverse Lyapunov functions (Yoshizawa,
1966).

Section 5 gives yet another proof, different from the proofs in Stetter (1973) and Stuart
& Humphries (1996), that E(¢) is bounded by a constant for trajectories that fall into
a hyperbolic sink of a dynamical system x = f(x). The Hartman—Grobman theorem
(Robinson, 1995) says that such trajectories approach the sink at an exponential rate once
they are close to it. Therefore, small perturbations to the trajectory decay at an exponential
rate.

Theorem 5.2 proves that E(¢) is bounded linearly in ¢ for trajectories that fall
into an attracting, hyperbolic cycle of a dynamical system. Perturbations transverse to
the cycle approach the cycle at an exponential rate and perturbations along the cycle
are propagated without any expansion or contraction along the cycle. However, only
exponential contraction of perturbations towards the cycle is not enough to prove linear
increase of E(t). The result which is crucially needed is called convergence in phase and
gives that if xq is close enough to the cycle y, there is point p on y such that ||x(¢; xo) —
x(t; p)|l decreases exponentially as t — oo; thus xq tracks p with exponentially increasing
accuracy for increasing 7. Convergence in phase is not involved when approximating a
trajectory that falls into a sink because a sink is just one point. Theorem 5.5 bounds E(¢)
linearly for trajectories falling into a torus if the flow is stable and quasi-periodic on the
torus.

Trajectories of dissipative dynamical systems which are asymptotically stable as
t — oo, and not chaotic, usually fall into either a sink, an attracting hyperbolic cycle
or an attracting hyperbolic quasi-periodic torus. In the three main possibilities for stable
asymptotic behaviour in dissipative dynamical systems, the bounds on E(¢) in Section 5
match the increase of global errors observed numerically.

2. A model for discretization errors

The model of discretization error in this section closely imitates discretization errors
made by single-step methods with a constant step size. Stuart & Humphries (1996) model
discretization errors of single-step methods in a similar manner. A similar model has been
used by Stetter (1973). In this section, the exact solution of the initial value problem,
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x() = f(t,x), x(s) = xo,t > s, is denoted by x(¢; s, xg), or abbreviated to x(¢; xo)
or x(t)if s = 0.

Let «(h) be a continuous, strictly increasing function of z for 2 > 0. Assume also that
a(0) = 0. Then an approximation X (¢; xo; i) to x(¢; xo) is defined as follows:

Xo (05 x05 ) = X9
Xo(nh; xo; h) = x(nh; (n — Dh, X ((n — Dh; x0; ) + ha(h)v, n 21, (2.1

where v, € R can be any vector with |lv,|| < 1. In other words, an approximate solution
att = nh, n > 1 is obtained by exactly propagating the point x,((n — 1)h; xo; h) at
t = (n — 1)h under x(t) = f(t, x) until + = nh, and then adding the discretization error
or discontinuity ha (h)v,, where ||v,|| < 1. Fornh <t < (n + 1)h,

Xo(t; x0; h) = x(t; nh, Xy (nh; xo; h)). 2.2)

Since v, can be any vector with ||v,|| < 1, this actually defines a whole family of
approximate solutions which we denote by X, (xo; #). The exact solution x(¢) is the only
member of this family which is continuous. Figure 1 gives an example of an approximate
solution. Members of the family f(a (x0; h) are written as X (¢; xo; h), leaving « implicit,
and sometimes as X (¢; &), leaving the initial condition x(0) = xo implicit. Approximate
solutions where the initial condition is given at a point other than + = O are never
considered, obviously, without any loss of generality.

Single-step numerical methods are related to approximations from the family
X, (x0; h). Single-step methods can be thought of as propagating the solution exactly
between integer multiples of the time step and committing a discretization error of
K:h™ v, |lui| = 1, at the ith time step if the method is of order . We now assume
that the K; are bounded by a constant K which does not depend upon /4 or i. This can
be proven in some circumstances; see Stuart & Humphries (1996). Besides, if there is
no such K, the numerical method will not in practice behave as if it were of order r.
Thus, when the order of accuracy of the numerical method for approximating x (¢; xo) is
r, we can take «(h) = Kh". Then there will always be an approximation in the family
X, (x0; k) which is the same as that obtained by taking the numerically computed values at
t =nh,n=1,2,...,and interpolating in the intervals ¢t € [nh, (n + 1)h) by propagating
the numerically computed values at 1 = nh. However, the family X, (xo; k) contains
approximations other than the one obtained from the numerical method. As a result, the
bound (2.3) is usually not sharp for the X (¢; &) corresponding to a numerical method.

The following theorem relates E(t), defined in (1.1), to the errors ||x(t; h) —
x(#)]l. The conditioning function E(¢) is defined when f(f, x) is continuous in ¢ and
continuously differentiable in x. When additional assumptions about f(z, x) are needed
as in Theorem 2.1, they are stated explicitly.

THEOREM 2.1 Let E(¢) and the approximate solution X, (¢; xo; #) be associated with the
initial value problem x(t) = f (¢, x), x(0) = xg, x(t) € R?. Assume that f(t, x) is twice
continuously differentiable with respect to # and x. Assume that the solution x (¢) exists for
t > 0.Given T > 0 and € > 0 there exists iy > 0 such that i < hq implies

sup  ||X(#; x0; h) — x(t; x0) || < (E(t) + e)a(h) (2.3)
FeXq (xosh)
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FIG. 1. The thick lines show an exact solution of the equation x(#) = sin# + (cos #)x and an approximation to it
with & = 0-5 and «a(h) = 2h.

for 0 <t < T. The choice of hy depends on T, €, the initial value problem and «(h).
Further, E(t) cannot be replaced by a smaller number in the bound above because

SUp: 5 (o 1% (5 x05 ) — x(2; x0) ||
lim sup PieXy (i) — E@). (2.4)
h—0 a(h)

Proof. We denote x(kh; h), an approximation to x(kh), by Xz;. Let n = L%J. The proof
of the first part is organized into three steps corresponding to (2.5)—(2.7). We take & small
enough that all approximate solutions stay within é of the exact solution for 0 < ¢t < T,
ie. [|[x(t; h) — x(t)|| < 8. The construction to realize this is given in Stuart & Humphries
(1996), for example. Restrictions will be placed on § later.

To begin with consider

x(t) — x(t; h) = x(t) — x(t; nh, Xpp)
= (x(t) — x(t; (n — Dh, X(u—1yn)) + (x(t; nh, Xyp — ha(h)vy) — x(t; nh, Xup)).

The first equality follows from (2.2). By (2.1), x(nh; (n — 1)h, X(u—1)n) = Xun — ha(h)vy,
and the equality’s two sides are added and subtracted from the right-hand side of the first
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equality to obtain the second equality. By similar manipulations, the sum below telescopes.

x(t) = x(t; h) = x(t) — x(t5 h, Xp)
+ x(t; 2h, Xop — ha(h)vy) — x(t; 2h, Xop)
+ x(t; nh, Xpn — ha(h)v,) — x(t; nh, Xpp).

Let My, 8"(' kh x(t:kh.£) | . Take the kth term in the sum, which telescopes as Myho (h)vy +
ek, using a Taylor serles approximation. The differentiability assumptions on f imply
that x (z; s, x5) is twice continuously differentiable in x; (Hale, 1969). Therefore, | ex| <
C1h*a(h)?, where the constant C; depends on the § neighbourhood around the solution in
0 <t < T. The terms of the sum which were expanded are rewritten to obtain

x(t) — x(t; h) = ha(h)(Mvi + - - - + Myv,) + Ei, 2.5

where E£1 = e] + --- + ¢, and consequently [|E{| < Cinh%a®(h) < C1Tha?(h).
Derivation of (2.5) is similar to the proof of the Alexseev—Grobner lemma in Hairer (1980)
and to calculations by Iserles & Soderlind (1993).

Let N = SGHE| = HO - Let (Mg — Nove = e} Since x (15 5, x,) s
twice contlnuously dlfferentlable in xg, ||My — Ni|| < C8 for some constant C, which
depends on the § neighbourhood around the solution in 0 < ¢ < T. Since |Jvg] < 1,

lle Il < C28. The Mys in (2.5) are replaced by Nis to get
x(t) — x(t; h) = ha(h)(Nivy + - -+ + Nyvp) + E1 + Eo, (2.6)

where Ey = ha(h)(e] + - - - + ¢),) and consequently || Ez|| < Conha(h) < CoTa(h)s.
Letov : [0,¢] — Rd be the discontinuous function with v(0) = 0, v(kh) = v, and
v(s) = v(kh) forkh <s < (k+ 1)h.In

BN+ -+ + Nyop) =/ W) 55 ds + n(h)

o 9x(s)

In(h)|| = O (uniformly in ¢ for 0 < ¢ < T) as h — 0 because the vs are bounded in the
norm by 1 and the Jacobian under the integral is continuous in s. We pick a continuous
function v(s) using Lusin’s theorem (Rudin, 1987) which differs from v(s) on a set of
measure less than 4. Then

ox(t) . _ T 3x(t) y
/0 Bx(s)v() s = /0 8x(s)v(s)ds—}—e,

where ||e Csh for a constant C3 taken to be the supremum of the norm of the Jacobian
in the compact region 0 < s < ¢t < T. We replace X" | N;v; in (2.6) by an integral as
above to get

//”

x(t) — X(t; h) —a(h)/ — (s)ds+E1 + Ey 4 Ez + a(h)n(h), Q.7

where E3 = a(h)e” and consequently | E3|| < Czha(h).



GLOBAL ERRORS OF NUMERICAL ODE SOLVERS 393

For a proof of (2.3), we take norms of all terms in (2.7) to get

)
lx(®) —x@; W < a(h) H/ ax(l) v(s)ds|| + [1E1] + | E2ll + 1 E3]l + a () In()|l
o 0x(s)
NE + I E20l + | E5ll

< <E(t) + + ||U(h)||)0l(h)~

a(h)
By (2.5)—(2.7), the first factor is bounded above by (E(¢) + €1), where €; = C»T4, in the
limit 7 — 0. We can take § < ﬁ for example, and pick an A to complete the proof
of (2.3). Although C5 in (2.6) depends on §, the C> which is fixed for a certain § works for
all smaller §s.

For a proof of (2.4), which is the second part, we observe that (2.3) implies that the
lim sup is less than or equal to E(¢). It is sufficient to prove the inequality in the other
direction. Let v : [0, #] — R? be a continuous function with ||v(s)|| < 1. Given A > 0,
we construct approximate solutions by taking vy = v(kh). The sum A(Njvy + - - - Nyvp)
approximates the Riemann integral fot g;‘g))v(s) ds with an error ' (h), |5’ (h)|| — 0, as
h — 0. We can use the integral in place of the sum hE[’le,- v; in (2.6) and argue as in the
previous paragraph to conclude that

SUP: 7 cxnem 1X (5 X035 h) — x (25 x0) |
lim sup X€Xa (xoih) > ‘
h—0 a(h)

b

t
/ ax(t)v(s) ds
o 0x(s)

for any continuous v with [|[v(s)|| < 1. Taking a supremum over all v, it follows that the
lim sup on the left in (2.4) is greater than or equal to E(¢).

3. E(t) of linear systems

The relationship between E(t) and stability properties of the exact solution for linear
systems of the form y(z) = A(t)y, y(0) = yyg is easy to derive. However, the relationship
is not as simple as one might wish. There are both asymptotically stable examples
with exponentially increasing E(¢) and unstable examples with linearly bounded E ().
However, Propositions 3.3 and 3.4 give conditions for E(¢) to be bounded by a constant or
to be linearly bounded.

We assume A(t) € R4 to be continuous in 7 in the linear initial value problem y(t) =
A(t)y, y(0) = yo. If Y (¢) is the principal fundamental matrix of this linear problem, then

y(t) = Y (t)yo for any yo (Hale, 1969). The Jacobian gjg; in (1.1), the definition of E(¢),

isequal to Y (1)Y ~1(s). The E(¢) of a linear initial value problem does not depend upon
the initial condition yy.
For scalar linear systems y(t) = a(t)y, a(t) € R, we have the following lemma.

LEMMA 3.1 The E(¢) of the solution of y(t) = a(t)y, y(0) = yp,is given by
t
E(1) =e$® / e 80 ds,
0

where g(t) = fé a(r)dr.
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Proof. The fundamental matrix, which is scalar in this situation, is given by Y (r) = e$).
Since Y (¢) is always positive, the optimal choice of v(s) in (1.1) is v(s) = 1.

The following definitions of stability were put forward by Lyapunov (1949).

DEFINITION 1 The solution x(¢; xo) of x(t) = f(¢, x), x(0) = xo is stable if, given any
€ > 0, there exists a § > 0 such that ||x(/) — xo|| < & implies ||x(¢; x(/)) — x(t; x9)|| < € for
t > 0. In fact, stability implies that given € > 0, there exists a §(t) > O for every 7 > 0
such that [|x(t; x5) — x(7; x0)[| < 8(r) implies that || x(z; x) — x(; x0)|| < € fort > 7.
Here we must emphasize that §(t) can depend on t.

DEFINITION 2 The solution x(¢; xo) is asymptotically stable if given € > 0 there exists
a 8(r) > O for every T > 0 such that ||x, — x(z; x0)|| < 8(r) implies not only that
llx(#; T, x.) — x(t; x0)|| < € for r > 7 but also that ||x(¢; T, x.) — x(¢; x0)|| — O as
t — o0.

Implicit in the definitions is an assumption about the existence of solutions which
begin near the solution x (¢; xp). Obviously, asymptotic stability implies stability. For the
scalar, linear problem y(f) = a(t)y, y(0) = yo, a necessary and sufficient condition for
asymptotic stability is g(t) — —oo as t — 0o, where g(t) = fot a(s) ds. However, the
following examples show that both these concepts of stability are insufficient for bounding
E(1).

EXAMPLE 3.1 Given arate r(¢), we consider a continuously differentiable function g(z),
t >0, g(0) = 0, such that

1. g(t) < —tforallr >0,
2. e8® [Xe=8W ds > r(k) fork = 1,2,3, ...

For the linear system, we take a(r) = g’(¢). The first condition ensures asymptotic stability
of the solution, and the second condition implies E (k) > r (k) for positive integers k. Such
a g(t) is easy to construct. We take g(k) = —k fork = 0,1,2,....Fork —1 < t <k,
k > 1, we define g(¢) so that g(¢) < —t and

k
f e 89 ds > r(k) e~
k—1

This can be carried out for any continuous r(¢), for example r (t) = €’.

EXAMPLE 3.2 On the other hand, there are unstable solutions with linearly bounded E(¢).
Consider the scalar, linear system y(t) = t%y, t > 0. For this ODE, y(¢) = (1 + t)*y(0)
implying instability of the solution for @ > 0. Yet, for 0 < o < 1, E(¢), which is (1 —
)T+ D)%+ —1),is linearly bounded. For o = 1, E(¢) is (1 4+ ¢) log(1 + 1).

EXAMPLE 3.3 In Example 3.1, |a(¢)| is unbounded. Even asymptotic stability of y(¢) =
a(t)y,t > 0 and the boundedness of |a(¢)| do not imply a linear bound for E(¢). We sketch
the construction of a g(¢) to show this. First we take g1(t) = —¢ and g»(r) = —2¢. We
take g(1) = g2(¢) for 0 < ¢ < 11, and let g(¢) increase monotonically until g(#) = g1(f2)
for o > 11, and then let g(¢) decrease monotonically until g(#3) = g2(#3) for 13 > 1. We
repeat the same construction from #3 onwards with #4, t5, and #¢ in place of ¢, f,, #3, and so
on. The construction may be arranged so that
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1. if g(r) = g1(7) then g(t) = g2(¢t) for fit <t < for for any fixed 0 < f1 <
<1
2. la(?)| = |g’(t)] is bounded.

It is easy to check that E(r) > e /222t — ¢2/17), for 1 such that g(r) = g1(v).
Therefore, for f> > 1/2, E(t) increases exponentially. The linear system in this example
has a negative Lyapunov exponent of —1.

The definitions of uniform stability and uniform asymptotic stability that follow seem
to have been introduced by Malkin (1956). Theorems which deduce the stability of a non-
linear system from its linearization usually (always?) assume the linear first approximation
to be uniformly stable or uniformly asymptotically stable. The uniformity assumptions are
not always explicitly stated, for example in Bellman (1953). In these cases, the A(¢) in
y(t) = A(t)y is either constant or periodic, which means that stability implies uniform
stability and asymptotic stability implies uniform asymptotic stability.

DEFINITION 3 The solution x(#; xo) of x(t) = f(t, x) is uniformly stable if for every
€ > 0 there exists a § > 0 such that ||x(t; x0) — x.|| < 8 for T > 0 implies ||lx(#; x0) —
x(t; v, x| <efort > 1.

DEFINITION 4 The solution x(¢; xq) is uniformly asymptotically stable if it is uniformly
stable and the choice of § in the previous definition can be made in such a way that
llx(t; x0) — x(t; T, x.)| — 0as T — oo in a uniform way, i.e. given € > 0 there
exists T, such that ||x(f; xo) — x(#; 7, x)|| < € forall ¢ > 7 + T, and x| satisfying
llx(z: x0) — x| < 8.

LEMMA 3.2 For the initial value problem x(¢) = f(¢, x), x(0) = xo

t
E®) g/ 0x(©) ‘ ds
0

ax(s)

Proof. Follows from (1.1).

For linear systems y () = A(t)y, the stability properties of the solution and its E () do
not depend upon the initial condition at # = 0. Assuming the initial condition to be given
att = 0, we may talk about the linear system itself as being uniformly stable or uniformly
asymptotically stable, or as having a linear E ().

PROPOSITION 3.3 If the linear system y(f) = A(¢)y is uniformly stable, its E(t) is
linearly bounded, i.e. E(¢) < Kt for some K > 0and 0 < ¢ < oo.

Proof. Uniform stability of the linear system is equivalent to boundedness of
1Y) Y~L(s)| for t > s > 0 (Hale, 1969; Yoshizawa, 1966). If |Y(1)Y " 1(s)| < K
fort > s > 0, then Lemma 3.2 implies E(t) < Kt.

PROPOSITION 3.4 If the linear system y(¢t) = A(#)y is uniformly asymptotically stable,
its E(¢) is bounded by a constant, i.e. E(f) < K forsome K > 0and 0 < ¢ < oo.
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Proof. Uniform asymptotic stability of the linear system is equivalent to || Y (/)Y ~1(s)| <
Me U= forv > 0, M > 0and ¢ > s > 0 (Hale, 1969; Yoshizawa, 1966). Again, we
use Lemma 3.2 to complete the proof.

Proposition 3.3 implies that E(¢) for the solution of y(z) = Ay, y(0) = yg is linearly
bounded if all the eigenvalues of A have negative or zero real parts, and the ones with zero
real part are simple. If all the eigenvalues of A have strictly negative real parts then E (¢) is
bounded by a constant by Proposition 3.4. The necessary stability properties of y(t) = Ay
are verified in numerous places.

4. E(¢) of non-linear systems

This section gives two approaches to the analysis of E(#) of non-linear systems. The
conditioning function E(¢) is defined using the Jacobian g;“((;;, which is determined by
the linear first approximation or the linearization or the equation of first variation of the
non-linear initial value problem x () = f(¢, x), x(0) = xo. One approach is to look at the
linearization (Proposition 4.1). The other approach is to directly make stability assumptions
on the solution of the non-linear problem (Theorems 4.2 and 4.3). The two approaches
correspond to Lyapunov’s method of first approximation and Lyapunov’s direct method,

respectively.

PROPOSITION 4.1 Let f(t, x) have continuous first-order partial derivatives with respect
to ¢t and x. The E(¢) of the solution x(#; x¢) of the initial value problem x () = f(¢, x),
x(0) = xg and the E(¢) of its linearization y(r) = A(¢)y, y(0) = yo, where A(t) =

af (@, x)
5 lxmr(rixg) AT€ the same.

Proof. Let Y (¢) be the fundamental matrix of the linear equation y(r) = A(¢)y. Then

gi‘gg in (1.1) is equal to Y (r)Y ~!(s); for a proof see Hale (1969). The Jacobian 358

corresponding to the linearization is also equal to Y ()Y ().

By Proposition 4.1, the solution of a non-linear initial value problem and the
linearization around it have the same E(¢). However, the solution of the non-linear
problem and its linearization can have very different stability properties; for an example
see (Bellman, 1953, p. 87). This difference arises because, in bounding global errors, the
ho in Theorem 2.1 is allowed to depend upon T, the length of integration. In definitions of
stability, in contrast, all perturbations smaller than a certain magnitude must stay “close”
to the unperturbed solution until = oo.

We introduce a technique for error analysis of numerical approximations to non-linear
problems which uses Lyapunov functions. But first we show an example to point out some
difficulties in bounding the E(¢) of non-linear initial value problems by making stability
assumptions on the solution.

EXAMPLE 4.1 Consider the zero solution of x(f) = x—e’x3, x(0) = 0,7 > 0.Its E(¢), by
Propositions 3.3 and 4.1, is ¢’ — 1. But we show that the zero solution is actually uniformly
asymptotically stable. It is even exponentially asymptotically stable.

Figure 2 is the portrait of trajectories of (r) = x — e’x>. The portrait for x < 0 is
a reflection about x = 0. Thus, we can restrict ourselves to trajectories which are always
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FIG. 2. The portrait of trajectories of x () = x — ¢’ x3. All solutions tend towards the curve X (1) = e~!/2.

in the upper half-plane. Every point (¢, x) with x > e™*/?

downwards.

We now verify uniform stability of the zero solution using the last observation. Given
€ > 0, we choose 7. large enough that e /> < €. By continuity properties, we can choose
ad > 0sothatif r < 7. and x; < §, the trajectory through (7, x;) stays below € until z.
The maximum possible height (along x) of a trajectory beginning at (7, x;), T > t. and
x; < 8 is bounded by the larger of e~*/2 and |x.|. Since e"*/?> < € and § < e, uniform
stability is verified.

The verification of uniform asymptotic stability will be sketchy. It is based on the
following facts:

is on a trajectory that is pointed

1. the solution of X(r) = x —e’x>, x(0) = xq tends to zero as r — oo for 0 < xo < 1;
2. further, x(¢; xg) < x(t; 1) fort > 0,0 < x9 < 1
3. and, 0 < x(t + 7; 75 x0) < x(7; 0; xg) forany x9 > 0,7 > 0,7 > 0.

The proof of item 1 involves a bit of elementary work which is done at the end. Item 2 is
trivial. For item 3, we think of x(¢; 0, xo) as the solution of x(f) = x — e¢'x3, x(0) = xo,
and of x(t + ; 7, x0) = z() as the solution of z(t) = z — e'17z3, 2(0) = xp, and use a
differential inequality (Hartman, 1973, p. 27).

Now let T, be such that ||x(z; xo)|| < € fort > T, and xg = 1. Then ||x(t+7; T, x0)| <
e forany t > 0,1 > T, and |xg| < 1. Thus, the zero solution is uniformly asymptotically
stable.

To prove item 1, it is enough to verify that the solution with the initial condition
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x(0) = 1 satisfies x(t) < 2e~'/2 for t > 0. This is obvious from the portrait of
trajectories: every trajectory that cuts the curve x = 2e~//? is in the downward direction;
therefore any trajectory that starts below that curve has to stay below it for + > 0. In
fact, x(t) < 2e~"/2 for the trajectory with x(0) = 1 implies that the zero solution is
exponentially asymptotically stable, according to Yoshizawa’s definition of exponential
asymptotic stability (Yoshizawa, 1966).

The next two theorems are non-linear analogues of Propositions 3.3 and 3.4. The proofs
rely on the theory of Lyapunov functions. Following the theorems is a comment about
why Example 4.1 has an exponentially increasing E(¢) in spite of being exponentially
asymptotically stable.

Within the proofs of Theorems 4.2 and 4.3, the non-linear initial value problem x (¢) =
f(t,x), x(0) = xq is replaced by the zero solution of z(¢r) = F(t, z), z(0) = 0, where
F(t,2) = f(t,z+ x(t; x9)) — f(t, x(¢; x0)). This reduction is standard in stability theory
and goes back to Lyapunov. The reduced equation controls the propagation of perturbations
and is called the perturbed equation. The original solution and the zero solution of the
perturbed equation have exactly the same linearizations and hence the same E(¢). One can
move back and forth between the approximate solutions of the perturbed equation and the
approximate solutions of the original initial value problem for any «(k) by adding and
subtracting x (¢; xo). Replacement with the perturbed equation allows the employment of
results from stability theory in the proofs without modification.

The Lyapunov functions V (¢, z) are always assumed to be continuous in ¢ and locally
Lipshitz in z. V[D (¢, z) is the rate of increase of V (¢, z) along a solution of z(¢) = F(¢, z)
which goes through (z, z). More precisely, if z(t 4 t; t, z) is such a solution, then

V(t S, z(t S t, -V,
Vit 2) = limsup LT 2 H 8L D) 7 VE D
§—0t )

If Vi(t,2) < aV(t,z) then V(r 4+ 8,z(t + 8;2,1)) < eV (¢, z), and if Vit,z2) <0
then V(t + 8, z(t + 6;z,1)) < V(t, 2); these two facts can be inferred from differential
inequalities (Hartman, 1973).

The function F (¢, z) is uniformly Lipshitz with respect to z in a neighbourhood of zero
if ||F(t,z1) — F(t,z2)|| < L||lz1 — z2]|, for a constant L > 0 and any z; with ||z1|| < r,
lz2l < r where r > 0; L is the same constant for any ¢ > 0. Similarly, f(z, x) is
uniformly Lipshitz with respect to x in a neighbourhood of the solution x(#; x¢) if and
only if F(¢t,z) = f(t,z+ x(t; x90)) — f (¢, x(¢; x0)) is uniformly Lipshitz with respect to
z around zero.

THEOREM 4.2 Let f(t, x) be uniformly Lipshitz in x in a neighbourhood of the solution
of the initial value problem x(r) = f(¢,x), x(0) = xo. Assume that the solution is
exponentially stable in the sense that

lx (23 5, x(s) + 8) — x(; x0) | < K e =05

for ||5]] <r,s 2 0,t > s,c>0and K > 0. Then E(¢) of the solution x(#; xg) is bounded
above by a constant.
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Proof. As explained in the paragraphs preceding the theorem, the E (¢) of the zero solution
of the perturbed problem z(r) = F(t, z) is equal to the E () of x(¢; xp). The proof applies
to the perturbed equation and its zero solution.

Stability assumptions in the theorem imply existence of the Lyapunov function with
the following properties (Yoshizawa (1966, p. 97), Hale (1969)):

1. Izl € V(t,z) < C|z|l, where C > 0 is a constant;
2. [V(t,z1) = V(t, z2)| < Lllz1 — 221l
3. Vp(t,2) < —qcV(t,z) forsome 0 < g < 1.

The domain of V(¢,z)ist > Oand || z|| < r forr > 0.

We take i < hg small enough that all approximate solutions Z(¢; &) to the perturbed
problem stay within a radius r of zero. Because of item 3, V (¢, Z(¢; h)) decreases at least
by a factor e """ along the approximate solution when ¢ increases from k to (k + 1)h; on
that interval of ¢ the approximate solution follows the exact solution until the discontinuity
att = (k + 1)h. The discontinuity can cause an increase in V (¢, z) of at most L times its
magnitude by item 2. Therefore,

V(kh; z(kh; h)) < e_thV((k — Dh,z((k — 1)h; h)) + Lha(h),
fork=1,2,...,nand
V(t,2(t; b)) < e MV (nh, Z(nh; b)),

where i, =t — nh. Combining these inequalities, we get

N 1— e—nqch
St —qchy -
Vit B ) <e La(h)( " )

< Ka(h).

That the K above can be a constant independent of 2 and n can be deduced from basic
calculus using & < hg. By item 1, ||z(¢; h)|| < Ca(h). Equation (2.4) of Theorem 2.1
implies a constant upper bound for E(¢).

The difficulty in proving Theorem 4.2 directly using the norm ||-|| is that when K > 1
the discretization error might actually be amplified by a factor greater than 1 over any
given time step. Since we have to make the worst possible assumption at every time step,
the final bound on E () obtained this way will actually be exponential in + when K > 1.
The proof of Theorem 4.2 uses a carefully constructed Lyapunov function to get around
this difficulty.

THEOREM 4.3 Assume as in the previous theorem that f (¢, x) is uniformly Lipshitz with
respect to x in a neighbourhood of x(¢; xo). If the solution x(¢; xg) of x(t) = f(¢, x) is
uniformly asymptotically stable, then E(t) < Kt for some constant K.

Proof. Stability assumptions in this theorem imply the existence of a Lyapunov function
with the following properties for the pertubed equation: (Hale (1969, Theorem 4.2,
Chapter X) and Yoshizawa (1966))
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Szl < V@R, 2);

V(0 =0;

. Vi(t,2) <0, where V,.(t, z) is defined as in the previous proof;
.|Vt z1) — V(, 22)| < K||z1 — z2|| for some constant K > 0.

UJ!\.)»—A

~

The domain of definition of V (t, z) is the same as in the previous proof.
The proof is similar to that of Theorem 4.2, but this time

V(kh,Z(kh; h)) < V({(k — 1Dh,z((k — Dh; h)) + Kha(h)
fork=0,1,... ,n—1and
V(t,7(t; h)) < V(nh, Z(nh; h)).

Combining these inequalities, we have V (¢, z(t; h)) < Kta(h). As before, ||Z(t; h)| <
Kto(h), which this time implies that E(t) < Kt.

The uniform Lipshitz assumption on f(¢, x) is crucial in Theorems 4.2 and 4.3.
Example 4.1, which is uniformly asymptotically stable, does not satisfy the uniform
Lipshitz assumption and has an E(f) which increases exponentially. We do not know if
Theorem 4.3 is still true if the assumption of uniform asymptotic stability is weakened to
just uniform stability. If such a theorem were true, its wider applicability might be of use.
Table 1 summarizes Sections 3 and 4.

5. Three applications to dynamical systems

We give three examples to illustrate the applicability of our methods for bounding the
accumulation of global error. All three examples exploit stability theory of perturbed linear
systems in Chapter III, Section 2, of Hale (1969).

5.1 Hyperbolic sinks of C'T¢ dynamical systems

Let p be a fixed point of a C! dynamical system x(f) = f(x); ie. let f(p) = 0. Then
p is a hyperbolic sink, if all the eigenvalues of % |x:p have strictly negative real parts.
The following theorem can be derived using Chapter 6 of Stuart & Humpbhries (1996); it is
originally due to Stetter (1973). We give the theorem here because our method of proof is
different.

THEOREM 5.1 Let x(t; xo) be a trajectory of the dynamical system x(¢) = f(x), f €
C1t€(R?), which falls into a hyperbolic sink p ast — oo. Then its E(¢) is bounded above
by a constant.

Proof. Let A = a’;gf) [x=p. All the eigenvalues of A are in the left half-plane and

consequently the linear system y(#) = Ay is uniformly asymptotically stable. By Robinson
(1995, p. 150), there is a neighbourhood Uy of p such that xg € Uy implies

llx(t; x0) — pll < ce™™
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TABLE 1

Summary of part of Sections 5 and 6. The second column is the stability assumption about
the solution; the last column says what is known about the conditioning function E(t)
corresponding to such a solution

Asymptotic stability

E(t) can increase exponentially
even if ||A(?)|| is bounded; Exam-
ple 3.3

Linear Uniform stability E(t) must be linearly bounded,;
Problems Proposition 3.3
Uniform asymptotic stability E(¢) must be bounded by a constant;
Proposition 3.4
Uniform stability E(t) can increase exponentially
Uniform stability with uniform Lip- Not known if E(#) must be linearly
shitz assumption bounded
Uniform asymptotic stability E(t) can increase exponentially;
Example 4.1
Non-linear Uniform asymptotic stability with  E(¢) must be linearly bounded; The-
problems uniform Lipshitz assumption orem 4.3

Exponential stability as in Theo-
rem 4.2

Exponential stability as in The-
orem 4.2 with uniform Lipshitz
assumption

Not known if E(f) must be linearly
bounded

E(¢) must be bounded by a constant;
Theorem 4.2

for constants a > 0, ¢ > 0, and for ¢t > 0. If x¢ is not in Uy, x(; xo) enters Ug and stays in
Uy after finite time. Therefore, ||x(t; x0) — pll < ce~% holds as long as xq is in the basin
of attraction of p, although ¢ and a may have to be adjusted depending upon xg.

Let B(t)

af (x) af (x)

af x)

o l=xx0)— g5 lx=p= 55

lx=x(t;xo)—A. The linearization of

x(t; xo) is given by y(¢) = (A + B(1))y. Since f € C'*¢,

of (x)

IB®I| =

< |x(t; x0) — plIf
< //efeat

Cc

’

of (x)

ax |x:x(t;x0)_ 9x |x:p

where ¢’ and ¢” are constants independent of 7. The first inequality above follows from
C '€ Holder continuity of f since the trajectory x(¢; xo) stays within a compact region of
R¢. The second inequality follows from the inequality in the previous paragraph.

By Hale (1969, Theorem I11.2.3), the linear system y(¢) = (A 4+ B(t))y is uniformly
asymptotically stable. Propositions 3.3 and 4.1 imply E(¢) is bounded by a constant.
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5.2 Hyperbolic, attracting cycles of C't€ dynamical systems

Let x(¢), t > 0 be a periodic orbit of the c! dynamical system x(f) = f(x) in RY. Let
T > 0 beits period so that x(r + T) = x(¢). We denote the set of points on this orbit by y.

The characteristic multipliers of the cycle y can be defined in two ways. One is to pick
a point p € y, take a cross-section )’ at p, define a Poincaré map for X, and then define
the characteristic multipliers as the (d — 1) eigenvalues of the linearization of the Poincaré
map at p. The other way is to consider the linear first approximation y(z) = A(#)y on the
cycle y. Obviously, A(t + T) = A(¢) for t > 0. The Floquet numbers of this linear system
can also be used to define characteristic multipliers. For a lucid account of these matters,
see Robinson (1995).

The cycle y is hyperbolic and attracting if all its characteristic multipliers are strictly
less than 1 in magnitude.

THEOREM 5.2 Let x(1; xo), ¢ > 0 be an orbit of a C!™¢ dynamical system % (1) = f(x)
in RY which falls into a hyperbolic, attracting cycle y as t — oc. Then its E (¢) is linearly
bounded from above.

LEMMA 5.3 Assume xg € y so that x(¢; xo) is a periodic orbit. Let its linearization be
y(t) = A(t)y, t = 0.If y is hyperbolic and attracting, y(f) = A(¢)y is uniformly stable,
and the E () associated with x (¢; x¢) is linearly bounded.

Proof. Uniform stability of y(r) = A(#)y is an easy consequence of the characteristic
multipliers of y being strictly less than 1; see Chapter VI of Hale (1969). The linear bound
on E(t) follows from Propositions 3.4 and 4.1.

Lemma 5.3 is contained in a different form in the work of Cano & Sanz-Serna (1997).
However, Theorem 5.2 goes beyond Lemma 5.3 in a significant way. In practice, it is highly
unlikely that xg itself is on the cycle y, but it is often easy to find xo so that x(¢; xo) falls
into a cycle y.

The following lemma is Theorem II1.2.2 of Hale (1969). Its proof, which we omit, is
short and simple, and illustrative of an important technique in stability theory.

LEMMA 5.4 Assume the linear system y(t) = A(t)y, t > 0 is uniformly stable. Also
assume that B(¢), t > 0 is continuous with f0°°||B(t)|| dt < oo. Then the linear system
y(t) = (A(t) + B(t))y is also uniformly stable.

Proof (Proof of Theorem 5.2). By Hartman (1973, p. 254), there exists a point x;, € y such
that

llx (75 x0) — x(t; x| < ce™, (5.1

for constants a > 0, ¢ > 0 and for ¢+ > 0. This is called convergence in phase (Robinson,
1995). ‘
Let y(t) = A(t)y, where A(t) = of be the first approximation along x (¢; xo).

ax lx=x(t;x3)°
By Lemma 5.3, this linear system is uniformly stable.
Let y(t) = (A(t)+B(t))y, where A(t)+B(t) = % r=x (i)’ be the first approximation
along x(z; xo). The estimate (5.1) for convergence in phase implies

IBOI < c"e™,
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for € > 0 and constants a > 0 and ¢” > 0, as in the proof of Theorem 5.2. This is because
both x(7; xo) and x(z; x;)) approach each other exponentially in a compact region of R4,
and f(x)is C'*€.

By Lemma 5.4, y(t) = (A(t) + B(t))y is also uniformly stable.

Since A(t) + B(t) gives the linearization of x(¢; xo), the proof is completed using
Propositions 3.3 and 4.1.

5.3 Normally contracting manifolds with quasiperiodic flows

The notation ¢, for the flow induced on R? by x(t) = f(x) is standard in dynamical
systems literature. With that notation x(¢; xo) = ¢;xo. Let V be a compact C! manifold
which is invariant under this flow. We consider the situation when the flow on V is
differentiably conjugate to the quasiperiodic flow on a torus, and V' is normally hyperbolic
and contracting, or briefly, normally contracting. We now explain the two italicized
concepts in this paragraph.

A torus T" is the product of n copies of the circle S!. If the angle on the ith circle
is parameterized by 6;, a quasiperiodic flow on T" is of the form 6;(¢t) = (6;(0) + «;t)
mod 2. The flow is periodic if the ¢; are all mutually commensurable. We denote this
flow by .

When we say that the flow ¢ is differentiably conjugate to the quasiperiodic flow on
a torus, we mean that there exists a C! homeomorphism /# : V. — T" such that h(¢;x) =
Yi(hx) forx € Vandr > 0.

To define normal contractivity (Hirsh et al., 1977; Robinson, 1995), we associate a
direct sum decomposition Ty @ N, of R? with every x in V. In this splitting 7} is the
tangent space of V at x, and N,, the normal space, varies continuously with x. If the N,
can be chosen so that

dy _
H <ce ™M,

IIy,—|N
N"'Bx’ X

where y = ¢, x, the matrix inside the norm is the restriction of the derivative g—i to act from
N, to Ny, ¢ > 0, and u > 0, then V is normally contracting. Usually, the definition of
normal contractivity comes with another assumption which says contraction in the normal
direction dominates any contraction on the manifold V. But since we have assumed that the
flow on V is differentiably conjugate to quasiperiodic flow on a torus, this other assumption
can be dropped.

Obviously, the tangent spaces Ty are invariant under the derivative map ag’f. It is
actually possible to choose N, so that they too are invariant under the derivative map
(Hirsh et al., 1977; Robinson, 1995). We take this to be the case. So the derivative map

99X maps Ty to Ty, and Ny t0 N, .

dx
THEOREM 5.5 Let x(¢; xo) be a trajectory of the C'*¢ flow x(r) = f(x) which falls
into a normally contracting and invariant manifold V. Assume that the flow on V is
differentiably conjugate to the quasiperiodic flow on a torus. Then the E(¢) of x(z; xo)
is linearly bounded.

Theorem 5.5 generalizes Theorem 5.2. Its proof is exactly analogous. We begin with a
lemma about trajectories that begin on V.
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LEMMA 5.6 Let xo € V so that x(¢; xo) stays on V for ¢t > 0. We make the same
assumptions about V as in Theorem 5.5. Then the linearization y(t) = A(t)y along x (¢; x¢)
is uniformly stable, and the E () of x(¢; xo) is linearly bounded.

Proof. The principal fundamental matrix of the linearization in the lemma is given by
Y(t) = dgb—)’go, which is the derivative map. Therefore, it is enough if we show that || dgj)’cx |
is bounded by a constant for any x € V and ¢ > 0.

We already know that the maps induced by the derivative map between tangent spaces
and between normal spaces are bounded in the norm because of differentiable conjugacy to
flow on a torus and normal contractivity, respectively. Since the tangent spaces and normal
spaces are both invariant under the derivative map, it is enough if we show that the angle
between T and N, (in the sense of the CS decomposition) is bounded away from 0. That

this angle is bounded away from O is implied by the compactness of V.

The proof of Theorem 5.5 can be completed exactly as the proof of Theorem 5.2 using
the following result about convergence in phase.

THEOREM 5.7 As in Theorem 5.5, let x(z; xo) be a trajectory of the C! flow % (1) = f(x)
which falls into a normally contracting and invariant manifold V, and let the flow on V
be differentiably conjugate to the quasi-periodic flow on a torus. Then there exists x, € V
such that

llx(t; x0) — x(t; x) || < ce™,

for positive constants ¢ and a, and ¢ > 0.

Proof. This theorem can be deduced from Theorem 4.1 and the remark following its proof
in Hirsh et al. (1977). See in particular part (a) of that theorem about stable manifolds and
part (g) about conjugacy to linearized flows.

6. Conclusion

Below are some remarks about multi-step methods and variable time stepping, and a brief
discussion of one-sided Lipshitz conditions.

(i) Multi-step methods and variable time stepping. The model for discretization errors in
Section 2 is adapted to single-step methods with constant step sizes. For linear multi-
step methods with constant step sizes, we believe the accumulation of global error
can be worse but not better (after excluding some trivial cases) than indicated by
E(1).

In most problems where variable time stepping is used, it works out as follows.
There are some regions of the solution where the residual error of numerical
approximations is large and the numerical methods take short time steps. In other
regions of the solution, the time steps are longer. But as the tolerance for error
control is increased, the time steps are refined roughly proportionally. For example,
decreasing the tolerance for the absolute local error by a factor of 2"*! will cause
both the longer and shorter time steps to be roughly halved, if the numerical method
is of order r. When variable time stepping behaves in this way, E (t) will provide a
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good indication of the increase of global errors. The roughly proportional refinement
of time steps would also imply that the ratio of the biggest time step to the smallest
time step is bounded. This is true usually but not always (Stoffer & Nipp, 1991;
Stuart, 1997).

(ii) One-sided Lipshitz conditions. There is an approach to global error analysis of the
linear system y(¢#) = A(¢)y using one-sided Lipshitz conditions. Since || y)|? =
yT(1)y(1), we have

d 2
% =y AT O+ Ay

If A(¢) is the maximum eigenvalue of AT () + A(z), then

dlly|
w <Ol 1%

Thus, upper bounds for || y(¢)||, and hence for || Y (¢)|| where Y (¢) is the principal
fundamental matrix of the linear system, can be written down in terms of A(¢). These
can be plugged into Lemma 3.2 to get bounds on E (#) and hence the accumulation
of global error. For a detailed account, see Hairer (1980).

In our view, one-sided Lipshitz conditions are basically a way to get a handle on
stability by looking at the evolution of the norm of y(¢). This is a far less general
approach to stability than the two methods of Lyapunov we have used. It is also of
far lesser applicability; we do not see a way to derive any of the results in Section 5
using one-sided Lipshitz conditions.

In conclusion, the main contributions of this paper are the analysis of global errors in
terms of E(¢) defined in (1.1), the linear and constant uppper bounds on the accumulation
of global errors using the theory of inverse Lyapunov functions in Section 4, and the linear
upper bounds on the accumulation of global error for stable trajectories of dynamical
systems which are asymptotically periodic or quasi-periodic.
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