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The Lindstedt–Poincaré
Technique as an Algorithm for
Computing Periodic Orbits∗

Divakar Viswanath†

Abstract. The Lindstedt–Poincaré technique in perturbation theory is used to calculate periodic or-
bits of perturbed differential equations. It uses a nearby periodic orbit of the unperturbed
differential equation as the first approximation. We derive a numerical algorithm based
upon this technique for computing periodic orbits of dynamical systems. The algorithm,
unlike the Lindstedt–Poincaré technique, does not require the dynamical system to be a
small perturbation of a solvable differential equation. This makes it more broadly applica-
ble. The algorithm is quadratically convergent. It works with equal facility, as examples
show, irrespective of whether the periodic orbit is attracting, or repelling, or a saddle. One
of the examples presents what is possibly the most accurate computation of Hill’s orbit of
lunation since its justly celebrated discovery in 1878.
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1. Introduction. Periodic orbits are everywhere in the study of differential equa-
tions. Keplerian motion under an inverse square law force is elliptic and periodic, and
the solution of the three-body problem that forms the foundation of the Hill–Brown
theory in celestial mechanics is also periodic [20]. Every area of science has its own
oscillatory phenomena and these are usually periodic solutions of differential equa-
tions. The focus of this paper is a fast and accurate algorithm for computing periodic
orbits.

The solution x(t) of the ordinary differential equation ẋ(t) = f(x), x ∈ Rd,
is a periodic orbit if x(t + T ) = x(t) for all real t. The number T is its period.
The unrestrictive assumption of twice continuous differentiability of f(x) suffices here
and in section 3. Usually f(x) is analytic. Periodicity of the orbit simplifies its
stability analysis, and it is generally sufficient to look at the linearization [12]. In the
linearization ẏ(t) = A(t)y, A(t) = ∂f(x)

∂x |x=x(t), A(t) is also periodic with period T .
Let Y (t), where Y (0) is the n×n identity matrix, be the fundamental solution of this
linear equation. All the n columns of Y (t) solve ẏ(t) = A(t)y. The matrix Y (T ) is
the monodromy of the periodic orbit.

The eigenvalues of the monodromy are invariant under a change of variables.
There is always an eigenvalue equal to 1 corresponding to perturbations along the
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orbit. The eigenvalues excluding 1 are called characteristic multipliers. If all the
characteristic multipliers are less than 1 in magnitude, the orbit will attract an open
neighborhood and is called attracting. If all are greater than 1 in magnitude, the orbit
will repel an open neighborhood and is called repelling. If some are greater and some
are less than 1, the orbit is a saddle. There is the additional possibility that some
of the characteristic multipliers might actually lie on the unit circle. Characteristic
multipliers and stability of periodic orbits are clearly discussed by Hale [12] and by
Robinson [19].

The monodromy and the characteristic multipliers determine to a large extent the
effectiveness of every algorithm for computing periodic orbits. A natural approach for
computing a periodic orbit is to pick a point close to the periodic orbit and follow the
trajectory from that point using an ODE solver. The trajectory will converge if the
periodic orbit is attracting. Following the trajectory backward in time will converge
if the periodic orbit is repelling. When the periodic orbit is a saddle, however, this
approach has no chance of success at all. Another issue is that following trajectories,
when the periodic orbit converges at all, it converges only linearly. Even if the trajec-
tory is followed exactly, the distance to the periodic orbit will decrease approximately
by a constant factor in one period. Thus, for example, if the distance to the periodic
orbit is 0.1 to begin with and the leading characteristic multiplier within the unit
circle has magnitude 0.8, the distance of the trajectory from the periodic orbit could
be 0.08, .064, .0512, etc., after successive periods. However, the tools for following
trajectories, ranging from Runge–Kutta solvers to multistep methods, are numerous
and very well developed, and it is worthwhile trying to use them. The third example
in section 4 uses a slight modification of this natural approach to get quadratic con-
vergence. Thus if this modification is used, the distance to the periodic orbit after
successive periods can decrease like 0.1, .01, .0001, .00000001,. . . . The advantage of
quadratic convergence over linear convergence is readily apparent.

The computer package AUTO written by Doedel and others [6] has been used
for finding periodic orbits. AUTO’s extensive capabilities include finding periodic
orbits, solving boundary value problems, computing local and global bifurcations,
and computing homoclinic orbits. It is also well documented. AUTO uses piecewise
polynomials and collocation at Gauss–Legendre points to compute periodic orbits.
The algorithm is superconvergent at mesh points.

Like AUTO, the algorithms proposed by Choe and Guckenheimer [1] and Guck-
enheimer and Meloon [10] treat the problem of finding a periodic orbit as a sort of
boundary value problem. The algorithms use automatic differentiation [8] to tightly
control the accuracy of the approximation to the periodic orbit. What follows is
a description of one of their algorithms. Assume that the desired periodic orbit of
ẋ(t) = f(x) is at the points x1, x2, . . . , xN−1 at times t1 < t2 < · · · < tN−1 and that
it returns to x1 for the first time at t = tN . Thus tN − t1 is its period. We won’t know
the points xi and ti initially, of course, but the algorithm assumes reasonable approx-
imations to begin with. Denote the time t map induced by the flow by φt : Rd → Rd.
Then for the periodic orbit,

φt2−t1(x1) = x2

...
φtN−tN−1(xN−1) = x1.

Guckenheimer and Meloon [8] treated this as a set of nonlinear equations to be solved
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for ti and xi beginning with a reasonable approximation. Some additional constraints,
which are mostly intuitive, need to be imposed. They use automatic differentiation
in two ways. The first use is as an accurate ODE solver for computing the maps
φti+1−ti . The second use is to obtain the Jacobians of the maps, which are needed to
apply Newton’s method. There are other variants of this forward multiple shooting
algorithm: one is a symmetric multiple shooting algorithm and another is based on
Hermite interpolation.

Before making further comments, we establish an analogy. The problem of finding
periodic orbits is certainly harder than the problem of finding fixed points of a given
flow. The problem of finding fixed points, on the other hand, is exactly the same
as the extensively investigated problem of solving the system of nonlinear equations
f(x) = 0. It is widely believed that this last problem is unsolvable in general without
a sufficiently good starting approximation. See, for example, the comments about
global optimization in [3]. Therefore, the necessity of good approximations to xi and
ti must not be considered a limitation of the Guckenheimer–Meloon algorithm. A good
starting approximation is an inevitable requirement of any algorithm for computing
periodic orbits. The monodromy matrix of the periodic orbit plays the same role as
the Jacobian of f(x) at the fixed point or zero.

Wisely, Guckenheimer and Meloon [8] emphasized accuracy over speed. The
algorithm derived in section 2 is quadratically convergent. Section 3 gives a proof of
quadratic convergence. Examples in section 4 demonstrate that the convergence in
practice is quadratic and very smooth. The analogy with zero finding for nonlinear
systems makes it clear that quadratic convergence is as good as can be expected.
Guckenheimer and Meloon included a proof of convergence but did not discuss the
rate of convergence. Doedel proved convergence of a collocation method in [4].

The algorithm for computing periodic orbits in section 2 is a polyphony of three
themes: the Lindstedt–Poincaré technique from perturbation theory, Newton’s method
for solving nonlinear systems, and Fourier interpolation. The basis of Newton’s
method is the linearization of the nonlinear system of equations. In section 2, we
linearize the differential equation around an approximate periodic orbit. The author
[24] has used a similar approach to analyze the accumulation of global errors while
solving initial value problems using Runge–Kutta-type methods. Indeed, the proof
of the convergence theorem in section 3 is quite similar to the proof of Theorem 2.1
in [24]. Fourier interpolation is a natural choice for periodic orbits, but as the third
example in section 4 shows, of the three themes, this is the most dispensable.

The Duffing oscillator has emerged as the favorite starting point for introducing
the Lindstedt–Poincaré technique. Section 2 follows this tradition. The concluding
section 5 comments on computing bifurcations.

Lau, Cheung and Wu [15] and Ling and Wu [16] independently proposed harmonic
balance methods for computing periodic orbits. Their methods use Fourier series as
ours do. The main part of the computation in harmonic balance methods is the
solution of a linear system of dimension nd, where the differential equation is d-
dimensional and the Fourier series are of width n. The linear systems are dense
because of the global nature of Fourier interpolation, and the O(n3) cost of solving
those systems becomes prohibitive for large n. Computation of periodic orbits with
accuracy comparable to machine precision has not been demonstrated using harmonic
balance methods as far as we know. In a proper implementation [25], the cost of our
algorithm depends on n like O(n log n).

For computing periodic orbits and bifurcations, AUTO [6] has proved itself over
nearly two decades of use. Doedel [5] surveys the large body of work that has gone into
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this package. AUTO’s algorithm and the Guckenheimer–Meloon algorithms [10] are
adaptive. Since the linear systems that they form are sparse, the cost of solution is only
linear in the number of mesh points in one case and in the number of shooting points
in the other. Their adaptivity makes them superior choices for computing periodic
orbits that combine slow and rapid variation in different regions. When a periodic
orbit is analytic, its Fourier coefficients decrease exponentially fast, making its Fourier
representation compact. For such periodic orbits, our algorithm will be advantageous.
Another feature of our algorithm is the ease with which global constraints on the
periodic orbit can be enforced as shown by the coupled Josephson junctions example
in section 4.

2. An Algorithm for Computing Periodic Orbits. The Duffing oscillator gov-
erned by q̈ = −q− εq3 is a small perturbation of the linear oscillator. With p = q̇, its
Hamiltonian is p2/2 + q2/2 + εq4/4. In q − p phase space, the flow is along the level
curves of this Hamiltonian. Therefore, every trajectory of the Duffing equation is a
periodic orbit. However, not all periodic orbits of the Duffing equation have the same
frequency or period.

We seek a solution to the Duffing equation with q(0) = 1, p(0) = 0. The
unperturbed equation with ε = 0 has the solution q(t) = cos(t), p(t) = − sin(t).
The Lindstedt–Poincaré technique recognizes that the actual orbit will have a period
slightly different from 2π. In the equations

τ = ωt,

ω
dq

dτ
= p,

ω
dp

dτ
= −q − εq3,(2.1)

ω allows for a rescaling of time. The Lindstedt–Poincaré technique tries to find a
solution for q and p that is 2π periodic in τ and a value of ω close to 1 to account for the
slight difference of the period from 2π. The starting guess is ω0 = 1, q0(τ) = cos(τ),
and p0 = − sin(τ).

This guess doesn’t solve (2.1). So try to correct it to ω1 = ω0 + δω, q1(τ) =
q0(τ) + δq(τ), and p1(τ) = p0(τ) + δp(τ). The corrections δq and δp must also be 2π
periodic functions of τ . Substitute into (2.1) to get

(ω0 + δω)
dδq

dτ
= δp+

(
p0 − (ω0 + δω)

dq0
dτ

)
= δp+ δω sin τ,

(ω0 + δω)
dδp

dτ
= −(q0 + δq)− ε(q0 + δq)3 − (ω0 + δω)

dp0

dτ

= (−1− 3ε cos2 τ)δq − ε cos3 τ + δω cos τ + (δq)2(· · · ) + (δq)3(· · · ).

Linearize and neglect all terms of order δ2 and higher to get

ω0
d

dτ

(
δq
δp

)
=

(
0 1

−1− 3ε cos2 τ 0

) (
δq
δp

)
+ δω

(
sin τ
cos τ

)
−

(
0

ε cos3 τ

)
.(2.2)

Equation (2.2) will be solved for δq, δp, and δω in the following way. The initial con-
ditions require q(0) = 1 and p(0) = 0. Since q0 and p0 already obey this requirement,
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Table 1 The exact ω for the periodic orbit of the Duffing equation q̈ = −q−εq3, q(0) = 1, q̇(0) = 0, is
1.036716907074633648756336095 . . . for ε = 0.1. The starting approximation is q = cos(t),
p = q̇ = − sin(t). The iterations use 32-point Fourier series to represent q and p. The
convergence to the exact solution is clearly quadratic.

Iteration ω Residual error Energy error
0 1.00000000000000 1e-1 2.5e-2
1 1.03726228918977 2.3e-3 1.7e-4
2 1.03671693072840 9.2e-7 3.8e-7
3 1.03671690707462 4.4e-14 2.8e-14
4 1.03671690707463 1.1e-15 1.0e-15
5 1.03671690707463 5.4e-16 3.3e-16

set δq(0) = 0 and δp(0) = 0. The solution of (2.2) then takes the form(
δq
δp

)
= f1(τ) + δ ωf2(τ).

The R2-valued functions f1 and f2 can be computed by applying an accurate ODE
solver to (2.2). Choose δω to minimize the 2-norm of f1(2π) + δωf2(2π). This makes
the corrections δq and δp as close to being 2π periodic in τ as possible. After these
corrections are added to the initial guess, ω1, q1, p1 will be closer to an exact solution
of the Duffing equation.

The passage from ω0, q0, p0 to ω1, q1, p1 follows the Lindstedt–Poincaré technique,
but the presentation is different from the standard accounts in Kevorkian and Cole [14]
and Nayfeh [18]. There is also a difference that goes beyond presentation. To make
the calculations analytically feasible, the usual applications of this technique ignore
the ε term in −1 − 3ε cos2 τ . Ignoring that term gives ω1 = 1 + 3ε/8. For ε = 0.1,
1 + 3ε/8 = 1.0375 is worse than the approximation obtained after one iteration in
Table 1. An early use of the Lindstedt–Poincaré technique was to get rid of the
secular terms in planetary theories that used Lagrange’s orbital elements. It is also
sometimes called the method of strained coordinates.

Table 1 shows the effect of successive iterations. The energy error is the maximum
deviation from the Hamiltonian along the approximate periodic orbit computed by the
iteration. The residual error is the maximum of |ωiq̇i(τ)− pi| and |ωiṗi(τ) + qi + εq3

i |
along the orbit. The magnitude of the Fourier coefficients of q(τ) are shown in Figure
1. The use of Fourier series in the algorithm is yet to be explained.

For a continuous 2π periodic function x(τ), the Fourier series takes the form∑∞
k=−∞ ak exp(ikτ). The rate of decrease of |ak| as |k| → ∞ depends upon the

smoothness of x(τ). In particular, when x(τ) is analytic in a strip about the real
line, the decrease is exponential. A Fourier series of width 2p+ 1 picks up the 2p+ 1
coefficients from a−p to a0 to ap. A Fourier series of width 2p uses 2p coefficients,
but one of the coefficients is taken to be a coefficient of cos(pt). To compute n
Fourier coefficients of x(τ), the fast Fourier transform (FFT) is applied to the function
evaluated at n equispaced points in [0, 2π). The width n of the Fourier series must
be sufficiently large to pick up all the coefficients above a threshold comparable to
the machine precision. The kth coefficient of the derivative ẋ(τ) is ikak, except
when k is the index of the cos term in a Fourier series of even width. If x1, . . . , xm
are 2π periodic, so is f(x1, . . . , xm). To obtain its Fourier series from those of the
xi, interpolate xi at equispaced points in 0 ≤ τ < 2π, evaluate f at those points,
and apply the FFT. The inverse FFT can be used to interpolate a Fourier series at
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Fig. 1 The magnitudes of the Fourier coefficients of q of the periodic orbit of the Duffing equation
q̈ = −q − εq3, q(0) = 1, q̇(0) = 0, with ε = 0.1. The coefficients that cling to the bottom of
the plot are all rounding errors. Clearly, 32 points is nearly the minimum width of a Fourier
series that can pick up all the frequencies with amplitudes above 1e− 16, the IEEE machine
precision. The errors near n = 0 are due to aliasing.

equispaced points. Trefethen [23] gave a lucid account of matters related to the use
of Fourier series. We comment about aliasing errors at the beginning of section 4.

The algorithm below applies to isolated orbits. When the orbit to be approxi-
mated is not isolated, as for the Duffing equation above, the modifications needed
are minor. They are given at the end. The problem is to find an isolated orbit of
the dynamical system ẋ(t) = f(x), x ∈ Rd. Rescale time as before using τ = ωt and
ask for a frequency ω and a 2π periodic orbit of the dynamical system ωẋ(τ) = f(x).
The starting guesses ω0 for the frequency and x0(τ) for the periodic orbit must be
sufficiently close to the periodic orbit. However, x0(0) need not be on the orbit as it
was for the Duffing equation. The first guess x0(τ) must be 2π periodic. Assume it
is given as d Fourier series, one for each coordinate in Rd. The iteration to generate
improved approximations ω1 and x1(τ) is made up of the following steps:

1. Compute the Fourier series for all d2 entries of A(τ), which is defined as
A(τ) = ∂f(x)

∂x

∣∣
x=x0(τ).

2. Compute d Fourier series for the residual r(τ) = f(x0(τ))− ω0ẋ0(τ).
3. Compute d Fourier series for the derivative ẋ0(τ).
4. Set up the correction equation

ω0ẏ(τ) = A(τ)y + r(τ)− δωẋ0(τ).(2.3)

This correction equation can be matched with (2.2) term by term. It can
be derived in an almost identical manner. Take the fundamental solution of
ω0ẏ(τ) = A(τ)y to be Y (τ), with Y (0) the identity matrix and M = Y (2π)
so thatM is the approximate monodromy for the periodic orbit. The general
solution of (2.3) written as

y(τ) = Y (τ)y(0) + f1(τ)− δωf2(τ)(2.4)

allows the choice of y(0). Use an accurate ODE solver to compute the fun-
damental solution Y (τ) and f1(τ) and f2(τ).

5. δω and y(0) will be chosen to make y(τ) 2π periodic. Kevorkian and Cole
[14] showed an application of the Lindstedt–Poincaré technique that involves
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adjusting the initial condition. Clearly, y(2π) =My(0) + f1(2π)− δωf2(2π).
Requiring y(2π) = y(0) gives d linear equations for the d + 1 real unknowns
y(0) and δω. But varying x(0) along the periodic orbit gives different rep-
resentations of the same periodic orbit. Therefore, impose the additional
requirement that y(0) must be orthogonal to the vector field at x0(0). Solve
the linear system(

I −M f2(2π)
f(x0(0))T 0

) (
y(0)
δω

)
=

(
f1(2π)

0

)
,

where I is the identity in Rd,d, to obtain y(0) and δω.
6. Obtain d Fourier series for y(τ) by interpolating Y (τ)y(0), f1(τ), and f2(τ)

in equispaced intervals in [0, 2π).
7. The new approximations are x1(τ) = x0(τ) + y(τ) and ω1 = ω0 + δω.

The iteration can be continued to obtain ω2, x2(τ) from ω1, x1(τ) and so on.
Propagating the residual error r(τ) using the linearization of the differential equation
ωẋ(τ) = f(x) along the approximate orbit leads to f1(τ). Propagating ẋ0(τ) along
the approximate orbit leads to f2(τ). Therefore, f2(τ) will be roughly parallel to the
vector field along the approximate orbit. The correction equation (2.3) tries to cancel
out the residual error. From the interpretation we have given to f1 and f2, it follows
that the δω term in (2.4) will mainly cancel out the component of the residual error
along the orbit, while the y(0) term will mainly cancel out the error transverse to the
orbit.

If it is known that x0(0) is on the periodic orbit, we can take y(0) = 0 and
δω = f2(2π)T f1(2π)

f2(2π)T f2(2π) . Table 1 and Figure 1 use an implementation of the iteration with
this modification.

Each iteration of the algorithm spends almost all its time in the ODE solver used
in step 4 for computing Y (τ), f1(τ), and f2(τ). The Duffing equation and the ex-
amples in section 4 used MATLAB’s ode45 with the option odeset(’AbsTol’,1e-8,
’RelTol’, 1e-8). The MATLAB code for implementing the iteration for the Duffing
equation and for the examples in section 4 was about 75 lines.

3. Proof of Quadratic Convergence. The proof of quadratic convergence (in
Theorem 3.1 below) of the algorithm in the preceding section is similar to the proof
of Theorem 2.1 in [24] in its use of the linear variation of constants formula. Hale [12]
gave a fine description of the linear variation of constants formula, as of many other
topics. Unlike the proof of quadratic convergence of Newton’s method in Dennis
and Schnabel [3], the proof below uses second derivative information. Quadratic
convergence fails when 1 is a multiple eigenvalue of the monodromy. When 1 is a
multiple eigenvalue, the constant σ2 in Theorem 3.1 becomes zero at the periodic
orbit. This failure is similar to the loss of quadratic convergence in Newton’s method
when the Jacobian at the root is singular.

The proof ignores all errors made by the ODE solvers in step 4 of the algorithm.
In other words, the linear ODEs in step 4 are assumed to be solved exactly. Both
Theorem 3.1 and its proof use notation introduced in section 2. The vector norm
in this section is length in Euclidean space. The matrix norm is the induced matrix
norm.

Theorem 3.1. Assume that ω̄ and x̄(τ) give a hyperbolic 2π periodic orbit of
ωẋ(τ) = f(x). As explained in section 2, they also give a 2π/ω̄ periodic orbit of
ẋ(t) = f(x). Assume that x ∈ Rd and that f(x) is twice continuously differentiable.
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Let ω0 and x0(τ), which must be 2π periodic, be approximations to ω̄ and x̄(τ). Let
δω̄ = ω̄ − ω0 and ȳ = x̄− x0. Assume

|δω̄| < ε,
‖ȳ(τ)‖ < ε, 0 ≤ τ ≤ 2π,
‖ ˙̄y(τ)‖ < ε, 0 ≤ τ ≤ 2π.

Let ω1 and x1 be the new approximations generated by the iteration in section 2. Then

|ω1 − ω̄| < C1ε
2,

‖x1(τ)− x̄(τ)‖ < C2ε
2, 0 ≤ τ ≤ 2π,

‖ẋ1(τ)− ˙̄x(τ)‖ < C3ε
2, 0 ≤ τ ≤ 2π

for ε < ε0 for some ε0 > 0. The constants C1, C2, and C3 are given by C1 = c1σ1/σ2,
C2 = c2(σ1/σ2 + σ1), and C3 = c2(σ1/σ2 + σ1). The constants c1, c2, and c3 depend
only upon the second derivative of f(x) in a neighborhood of the periodic orbit. The
constants σ1 and σ2 are given by

σ1 = sup
0≤s≤t≤2π

‖Y (t)Y −1(s)‖,

σ2 = σmin

((
I −M f2(2π)
f(x0(0))T 0

))
.

The definitions of Y (t) and M are given in section 2 and σmin is the minimum
singular value of the matrix.

Proof. The assumption about ω̄, x̄ and the definitions of δω̄ and ȳ imply

(ω0 + δω̄)
d(x0 + ȳ)
dτ

= f(x0 + ȳ),

which is the same as

ω0
dȳ

dτ
=
∂f

∂x

∣∣∣
x=x0(τ)

ȳ+(f(x0(τ))−ω0ẋ0(τ))−δω̄ẋ0(τ)+(remainder(x(τ), ȳ(τ))−δω̄ ˙̄y).

The remainder term above is obtained by Taylor-expanding f(x0 + ȳ) about x0. The
remainder is necessarily 2π periodic. The above equation can be written as

ω0
dȳ

dτ
=
∂f

∂x

∣∣∣
x=x0(τ)

ȳ + (f(x0(τ))− ω0ẋ0(τ))− δω̄ẋ0(τ) + p(τ),(3.1)

where p(τ) is 2π periodic. The upper bounds on ȳ and δω̄ and the differentiability
assumption on f imply that ‖p(τ)‖ < cε2 for a constant c which depends only upon
the second derivative of f in a neighborhood of the periodic orbit. Think of (3.1)
as a linear differential equation to be solved for ȳ. Then the general solution can be
written as

ȳ(τ) = Y (τ)ȳ(0) + f1(τ)− δω̄f2(τ) + P (τ).(3.2)

Here Y (τ), f1(τ), and f2(τ) are as defined in section 2, while P (τ) is given by the
linear variation of constants formula

P (τ) =
∫ τ

s=0
Y (τ)Y −1(s)p(s)ds.(3.3)
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Similar integral expressions can be written down for f1 and f2, but that won’t be
necessary.

All the error after the first iteration arises because the iteration uses the general
solution (2.4), which is

y(τ) = Y (τ)y(0) + f1(τ)− δωf2(τ),

instead of (3.2). Thus the term P (τ), which can be bounded as ‖P‖ < c′σ1ε
2, is what

is missing. This term picks up all the error caused by the linearization.
The rest of the proof is routine. We show the proof only for the bound on ω1− ω̄.

If the iteration were to use (3.2), the linear equation for determining ȳ(0) and δω̄
would be (

I −M f2(2π)
f(x0(0))T 0

) (
ȳ(0)
δω̄

)
=

(
f1(2π)

0

)
+

(
P (2π)

0

)
.

However, the actual iteration neglects the P (2π) term. Therefore, the errors
‖y(0)− ȳ(0)‖ and |δω−δω̄| can be bounded above by cσ1ε

2/σ2 for a suitable constant
c.

4. Examples. The first three examples in this section are drawn from Gucken-
heimer and Meloon [10]. The fourth example is based on Hill’s famous work on the
motion of the moon. In every case, the quadratic convergence of the algorithm in
section 2 is clearly demonstrated. The first three examples include brief comparisons
of our computations with those in [10].

The computations give all the 15 digits of precision possible in IEEE arithmetic
of the frequencies or periods of the periodic orbits in all the examples. Characteristic
multipliers are determined with equal precision in all examples but the last.

The implementation of the algorithm must pay attention to the possibility of
aliasing. The system

ẋ = −y + µx(1−
√
x2 + y2),

ẏ = x+ µy(1−
√
x2 + y2)

has a limit cycle along the circle x2 + y2 = 1 for µ 
= 0. The limit cycle is attracting
for positive µ. Let the starting guesses be x = cos t+ ε cosmt and y = sin t. Evaluate
the vector field along this approximate curve to O(ε) to get(

− sin t+ εµ( cosmt
2 − cos(m−2)t

4 + cos(m+2)t
4 )

cos t+ εµ( cosmt
µ − sin(m−2)t

4 + sin(m+2)t
4 )

)
.

If the Fourier series is wide enough to pick up sinmt and cosmt terms but not wide
enough to pick up sin(m+2)t and cos(m+2)t terms, the latter two frequencies can’t
be represented and are aliased to some lower frequencies. The correction equation
has no chance of removing this O(ε) error. Thus, once there is error in some of the
higher frequencies, it will persist throughout the computation. Therefore, the Fourier
series may have to be wider than the minimum width needed to represent the periodic
orbit, and very crucially for the success of the algorithm, the starting guess must not
have high frequency errors. It is best to entirely remove about half or two-thirds of
all the frequencies at the higher end from the starting guess.

At the end of every iteration, the Fourier series representing x(τ) must be forced
into representing purely real functions. The use of the FFT creates a complex part
because of rounding errors, and upon repeated iterations, this complex part may
excite an instability.
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Table 2 The accurate digits in ω are underlined. The top eigenvalue of the monodromy is 1 for the
exact orbit. However, M is only an approximation to the exact monodromy. The charac-
teristic multiplier, which is the other eigenvalue of the monodromy, is 0.03815204168599.

Iteration ω Energy error Top eigenvalue of M
0 0.81178104743922 4.4e-3 1.01798286617795
1 0.81525369936630 1.3e-04 0.99953566116580
2 0.81519336337922 1.2e-07 0.99999930843800
3 0.81519335086431 3.1e-14 0.99999999999723
4 0.81519335086431 5.0e-16 0.99999999999752

4.1. Periodic Orbit along the Curve x2− y2 + 2y3/3 + .07 = 0. The system

ẋ = y − y2 − x(x2 − y2 + 2y3/3 + 0.07),

ẏ = x+ (y − y2)(x2 − y2 + 2y3/3 + 0.07)

has an attracting limit cycle along the curve x2 − y2 + 2y3/3 + .07 = 0. Table 2
summarizes a computation that used a Fourier series of width 64. The energy error in
that table is the maximum of |x2−y2+2y3/3+ .07| for 0 ≤ τ < 2π. Our computation
easily matches the accuracy in [10].

4.2. Coupled Josephson Junctions. An uncoupled Josephson junction is de-
scribed by βφ̈+φ̇+sinφ = I. This equation also describes a forced, damped pendulum.
The parameter β is named after Stewart and McCumber. Denote the unique periodic
orbit by φ = h(t). Over one period, h(t) increases by 2π, but ḣ(t) is exactly periodic.
Thus the pendulum goes over in every period. The equation for N coupled Josephson
junctions is

βφ̈j + φ̇j + sinφj + Q̇ = I, j = 1, . . . , N,

LQ̈+RQ̇+
Q

C
=

1
N

(φ̇1 + · · ·+ φ̇N ).

Watanabe and Swift [26] show an electrical circuit in which the parameters I, L,
R, and C are the bias current, the inductance, the resistance, and the capacitance,
respectively. They seek solutions of the coupled equations that take the form φ1 =
g(t), φ2 = g(t+T/N), and so on until φN = g(t+(N−1)T/N), where g(t) increases by
2π over the period T . Their interest is in particular in the stability of such splay-phase
solutions. They say that various uses have been proposed for splay-phase solutions
of coupled Josephson junctions, including use as computer memory, and presumably
the practicality of these proposals could depend upon the stability of splay-phase
solutions. In a splay-phase solution of period T , the period of Q will be T/4.

Table 3 shows computations of two splay-phase solutions. Both computations use
I = 2.5, L = 0.75, R = 0, and C = 20. In one of them β = 0.2, and in the other,
β = 20. The number of oscillators is N = 4. The starting guess uses a suggestion of
Watanabe and Swift [26]; it simply uses h(t), the periodic solution of the uncoupled
Josephson junction, in place of g(t) and shifts it by 0, T/4, T/2, and 3T/4 to get the
starting guesses for φ1, φ2, φ3, and φ4. The starting guess takes Q to be C times the
average of ḣ(t) over one period and Q̇ to be zero.

The computation for β = 0.2 follows the algorithm in section 2 with one small
modification. The φi(τ) are not exactly 2π periodic but increase by 2π as τ increases
from 0 to 2π. We represent φi(τ) − τ and φ̇i(τ), 1 ≤ i ≤ 4, using Fourier series as
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Table 3 The correct digits of ω are underlined. The algorithm in section 2 is implemented with
modifications described in the text. The width of the Fourier series used was 64. The
residual error is merely the maximum component of r(τ), defined in section 2, over 0 ≤
τ < 2π.

β = 0.2 β = 20
Iteration ω Residual error Iteration ω Residual error

0 2.33004377543409 3.0e-3 0 2.34132762154759 6.8 e-1
1 2.33000570267381 5.3e-8 1 2.50011544616387 4.8e-2
2 2.33000570299029 9.4e-14 2 2.49992020054629 3.8e-6
3 2.33000570299029 1.2e-14 3 2.49992002719170 2.7e-13
4 2.33000570299029 1.4e-14 4 2.49992002719170 3.9e-14

2π periodic functions. The width of the Fourier series used was 64. The computed
values of the 10 eigenvalues of the monodromy matrix are

1.14972325197525 + 5.356810539765e-02i,
1.14972325197525 - 5.356810539765e-02i,
1.00300906019521,
0.999999999999998,
0.882622153149967,
-1.17233411754789e-3 + 4.4552134973842e-04i,
-1.17233411754789e-3 - 4.4552134973842e-04i,
1.39002192156418e-6,
1.21256461043241e-6 + 5.700237506520e-8i,
1.21256461043241e-6 - 5.700237506520e-8i.

Watanabe and Swift [26] used multiple scale perturbation analysis and approximated
the absolute value of the top two eigenvalues above using formulas that evaluate to
1.12511278376262. The actual absolute value is 1.15097050268390. Their formulas
give 1.00224333725148 as the approximation for the third eigenvalue from the top.
The eigenvalues above are in close agreement with the numbers in [10]. The fourth
eigenvalue is pretty close to 1, its exact value.

The method used for β = 0.2 fails completely when β = 20. When β = 20 the
monodromy has multiple eigenvalues very close to 1. As a result, σ2 in Theorem 3.1
will be very close to zero. However, a simple modification allows us to get around this.
Instead of treating the functions φi and φ̇i as different functions for i = 1, 2, 3, 4 during
every iteration, we pretend that there is only the set φ1 and φ̇1, and we force the other
φi and φ̇i to be copies of this set shifted by a suitable fraction of the period at the
end of every iteration. The algorithm then converges quadratically. The eigenvalues
of the monodromy are

1.00000000000000 + 0.00000000000000i,
0.99999999956928 + 0.00000000000000i,
0.99994524677903 + 0.00000220190766i,
0.99994524677903 - 0.00000220190766i,
0.88195612146459 + 0.00000196311346i,
0.88195612146459 - 0.00000196311346i,
0.88190783340108 - 0.00000000000000i,
0.93882448496301 - 0.00000000000000i,
0.59095372790138 + 0.76821107119497i,
0.59095372790138 - 0.76821107119497i.



COMPUTING PERIODIC ORBITS 489

The formulas in [26] give 0.9999452808964 as the estimate of the absolute value of the
third and fourth eigenvalues. The absolute value is actually 0.99994524678145. The
Watanabe–Swift estimate for the second eigenvalue is 0.99999999956940. Evidently
their perturbative analysis is trustworthy. For β = 0.2 the splay-phase solution is a
saddle and for β = 20 the splay-phase solution is very weakly attracting.

4.3. A Planar Vector Field with Multiple Limit Cycles. The four-parameter
family of planar vector fields

ẋ = y,

ẏ = −(x3 + rx2 + nx+m) + (b− x2)y(4.1)

has been investigated by Dangelmayr and Guckenheimer [2]. When r = m = 0, the
vector field becomes a normal form for codimension-2 bifurcations with a certain type
of symmetry. Dangelmayr and Guckenheimer analyzed this four-parameter family
to understand the effect of loss of symmetry. They scaled variables and rewrote the
vector field above as a small perturbation of a one-degree-of-freedom Hamiltonian
vector field. The Hamiltonian part has exact solutions that are mostly periodic orbits
expressible, unsurprisingly, in terms of elliptic integrals. The perturbative analysis
has many points of difficulty, but among other things, leads to a region of parameter
space with four limit cycles. The parameters r = 0.87, m = −1, n = −1.127921667,
and b = 0.897258546, used here and in [10], are based on Malo’s work [17]. The
four limit cycles are shown in Figure 2. Note how close the three inner cycles are to
one another. The outermost cycle is attracting and the inner three are, respectively,
repelling, attracting, and repelling. For the three inner cycles, the dynamics is slow
when they cross the negative x axis but much faster when they cross the positive x
axis.

The outermost cycle can be easily computed using the algorithm in section 2.
But the three inner orbits are much harder to compute accurately. Figure 3 helps
explain the source of the difficulty. The entries of the fundamental matrix Y of the
inner cycles start with values near 1, vary over a range of more than 105, and at the
end of the cycle, the entries of the monodromy are again of the order 1. This wide
variation inevitably leads to a loss of 10 digits of precision in the monodromy. The
peculiar behavior of Y (τ) is concentrated in a small part of the period, and to capture
it correctly the ODE solver used in step 4 of the algorithm has to be very accurate.

To find the four periodic orbits accurately, we modified the algorithm in section
2. All along the x axis, the vector field is directed in the orthogonal y direction.
Therefore, the negative x axis is a natural choice for a Poincaré section. The modified
algorithm starts at a point x0 on this section and follows the trajectory from that
point accurately until it cuts the section again at x′0 in the same direction as the
vector field at x0. We used an eighth-order Runge–Kutta method due to Fehlberg
[11] and a stepsize of 0.005. The fundamental matrix of the linearization along the
trajectory is also computed. Assume that the fundamental matrix at x′0 is M . It
will be close to the monodromy of the cycle if the initial point x0 is close to being on
the orbit. Instead of following the trajectory again from x′0, we use the principles of
section 2 and solve the 2× 2 linear system

(I −M)δx = x′0 − x0

for δx and take x1 = x0 + δx as the starting point for a new iteration.
The trajectories were followed forward in time for attracting orbits and backward

in time for repelling orbits. The starting values of x0 were −1.3, −0.9736, −0.9712,
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Fig. 2 Four limit cycles of (4.1). The parameters r, m, n, and b take values given in the text. The
inset shows all four cycles, but the three inner cycles are indistinguishable and appear as one
curve. The outer plot shows a portion of the three inner cycles around the narrow turn.
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Fig. 3 The two plots show y(τ) vs. τ and the first entry of the second row of Y (τ) vs. τ for
the middle of the three inner orbits. The sharp rise and fall of y implies that a Fourier
representation of y will need a lot of coefficients.

and −0.9654 for the orbits from outermost to innermost. Since a loss of 10 digits is
inevitable for the three inner orbits, we used floating point arithmetic with 128 bits of
precision. The eighth-order Runge–Kutta method, which does most of the trajectory
following, was implemented using the GNU MP package [7]. Only a small part of the
trajectory was followed in MATLAB. Table 4 shows that the convergence is quadratic.
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Table 4 The x(0) column gives the starting position on the negative x axis for each iteration.
The top eigenvalue of M is 1 for the exact orbit. The correct digits of the period T are
underlined. The convergence is clearly quadratic.

Iteration T = 2π/ω x(0) Top eigenvalue of M
0 1.555318923187230e2 −0.97120000000000 1.08267992336501
1 1.510992886709926e2 −0.97135250141984 1.00307045291158
2 1.509158025428224e2 −0.97135911618029 1.00000629224100
3 1.509154245688264e2 −0.97135912983162 1.00000000002695
4 1.509154245672065e2 −0.97135912983168 0.99999999999999

Table 5 Data for the four periodic orbits from outermost to innermost. The x(0) column gives the
point of intersection with the negative x axis.

Periodic orbit T = 2π/ω x(0) Characteristic multiplier
1 11.43951544634134 −1.34900179268526 0.49598496726985
2 103.8895372178061 −0.97394763366240 1.62267497161985
3 150.9154245672065 −0.97135912983168 0.29226469348440
4 79.14808431110376 −0.96547045585340 6.33296668940165

Table 5 gives the periods and the characteristic multipliers of all four periodic orbits
with 15 digits of precision. The periods of the three inner orbits are very different
even though they stick together closely. Most of the difference in period comes from
the slow turn around the x axis.

If the value of b is increased or decreased for fixed n, r, and m, two of the periodic
orbits fuse together in a saddle node bifurcation. If n is changed slightly, then again
there are two values of b where saddle node bifurcations occur. Thus for r = 0.87 and
m = −1, there are two saddle node bifurcation curves in the n − b plane. In fact,
according to comments in [10], the two curves intersect at a cusp where presumably all
the four periodic orbits are fused together. Finding 15 digits of the parameter values
at the cusp and the periodic orbit at those parameter values could be an interesting
problem. It does not appear completely trivial to construct a cubic vector field in
the plane which has four limit cycles like the one above. Hilbert’s 16th problem
asks for the maximum possible number of limit cycles for a planar vector field of
any given degree. Dangelmayr and Guckenheimer [2] did not comment on Hilbert’s
16th problem but Guckenheimer’s suggestions in [9] have much in common with the
analysis in [2].

4.4. Hill’s Problem. In 1878, Hill [13] derived the following equations to describe
the motion of the moon around the earth:

ẍ− 2ẏ =
∂Ω
∂x
,

ÿ + 2ẋ =
∂Ω
∂y
.

Here, Ω = 3x2/2 + (x2 + y2)−1/2. The Jacobi integral 2Ω− ẋ2 − ẏ2 is constant along
the solutions of Hill’s equation. In fact, it has been proven that it is the only constant
expressible algebraically. With proper choice of units, Hill’s equation describes the
motion of the moon around the earth in a coordinate system that rotates with the
sun. The motion of the moon is assumed to be planar, which it is nearly, and the
perturbing effect of the sun is taken into account up to first order. Hill’s equation
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Fig. 4 Two periodic orbits of Hill’s equation. The inner orbit is a good approximation to the lunar
orbit. The outer orbit is called the orbit of maximum lunation. Both ẋ and ẏ are zero at the
intersection of the orbit of maximum lunation with the y axis.

can be derived from the restricted three-body problem using a scaling argument, a
derivation whose “simplicity and directness is a source of true joy” [21]. Szebehely’s
classic work on the three-body problem [21] discussed Hill’s equation. Lunar theories
based on Hill’s work are discussed in many sources on celestial mechanics, including
[20].

Figure 4 shows two periodic orbits of Hill’s equation. The inner orbit has 1/ω =
0.08084893380831 = nm

ns−nm , where ns = 365.256371 and nm = 27.321661. This
special value of the period makes the inner orbit an excellent approximation for the
moon’s orbit around the earth. Between the inner and outer orbits, there is a family
of periodic orbits. If the moon were following the outer orbit, called the orbit of
maximum lunation, it would come to a complete halt at the y axis (in the rotating
coordinate system) before starting off again, pulled by the earth and by the sun.
Hill’s research on lunar theories achieved quick recognition and are influential even
today. Speaking of Hill’s work and progress in celestial mechanics, Poincaré said in the
preface to his New Methods of Celestial Mechanics [22], “In this work, unfortunately
incomplete, we are permitted to perceive the germ of the major part of progress which
science has since made.” In what sense does Poincaré regard the work as incomplete?
Perhaps he was referring to the Hill–Brown lunar theory later developed by Brown
based on Hill’s work; or he might have been bothered by the absence of rigor in some
of Hill’s calculations.

Table 6 gives the data for the two orbits. This is possibly the most accurate
determination of the two orbits done so far. Both the orbits are symmetric with
respect to both the x and the y axes. Thus y(T/4) will give the intersection of the
periodic orbit with the y axis. Further, y(0) = 0, ẋ(0) = 0, and ẏ(T/4) = 0 for both
the orbits. The monodromy, in both cases, has 1 as a double eigenvalue. But the
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Table 6 Data for the inner and outer orbits in Figure 4. The λi are the eigenvalues of the mon-
odromy. The last two numbers in the second column must be read together. This table
reports 1/ω instead of ω or the period T = 2π/ω to facilitate comparison with Table II in
Chapter 10 of [21]. The latter table gives data accurate to five digits but does not give the
eigenvalues of the monodromy. Only five of the seven digits of 1/ω of the orbit of maximum
lunation reported in that table are accurate.

Lunar orbit Orbit of maximum lunation
1/ω 0.08084893380831 0.56095735370278

Jacobi constant 6.50887947496948 2.55790629858017
x(0) 0.17609701771836 0.27179733000554
y(T/4) 0.17864404564174 0.78188946995836

1.00000153080612 454.161613940992
λi 0.99999846919563 1.00000484977549

0.90054668719805 0.99999515023284
± 0.43475931753079i 0.00220185935677

eigenvalues in Table 6 approximate 1 very poorly. It is possible to prove that 1 is
a double eigenvalue of the monodromy with a nontrivial Jordan block in both cases.
Consequently, even though the monodromy is accurate, these two eigenvalues are not
very accurate.

To approximate the lunar orbit, we generated a starting approximation using
MATLAB’s ode45 and Table II in Chapter 10 of [21]. Step 5 of the algorithm in
section 2 tries to compute a correction to x, y, ẋ, and ẏ at t = 0, and to δω. However,
since 1 is a double eigenvalue of M , the linear system of dimension 5 in step 5 will
be singular or nearly singular. To compute the correction to these quantities, we set
δω = 0, since what we seek is a lunar orbit of known period and δy = 0 so that
y(0) = 0 across iterations. This leads to a least squares problem of size 5×3 to obtain
corrections to x, ẋ, and ẏ. We used a Fourier series of width 64 and filtered out
20% of the frequencies at the high end after each iteration. The errors in successive
approximations, measured using the Jacobi constant, were 1.3e−5, 1.4e−8, 6.2e−15,
and 4.4e− 15.

The orbit of maximum lunation is harder to get. That orbit is defined by the
condition ẋ = ẏ = 0 after one quarter-period when the orbit is at the y axis. There
is exactly one periodic orbit that crosses the x axis at any given point in the vicinity
of the orbit of maximum lunation. All these orbits are symmetric about the x and
the y axes. Therefore, ẏ(T/4), which is ẏ at one quarter-period, is zero for all these
orbits. To solve for the orbit of maximum lunation, we need to find x(0) such that
the periodic orbit passing through x = x(0) and y = 0 at t = 0 has ẋ(T/4) = 0 in
addition to ẏ(T/4) = 0. Starting data from [21] was used to construct a periodic orbit
very near (error ≈ 1e − 5) the orbit of maximum lunation. We varied x(0), keeping
y(0) = 0. Every time x(0) was varied, a new periodic orbit had to be constructed.
This time we solved a 5× 3 least squares problem in step 5 of the algorithm to obtain
corrections to δω, ẋ(0), and ẏ(0), while keeping x(0) and y(0) = 0 fixed. Finally, we
applied the secant method [3], which can be used to find the zero of a smooth function
of one real variable. Two steps of the secant method were needed to solve for an x(0)
such that ẋ(T/4) = 0. The final solution to the orbit of maximum lunation has an
error of about 1e− 15. The error is measured using the Jacobi integral and ẋ at one
quarter-period.

In finding the orbit of maximum lunation, we used Fourier series of width 512
and filtered out 40% of the frequencies at the high end after each iteration. It is
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feasible to use Fourier series of width n for large n because the cost of each iteration
is proportional to n log n. In the direct implementation used here, the cost is propor-
tional to n2 log n, but see [25]. As we noted in section 1, the cost of each iteration is
proportional to n3 for harmonic balance methods, which makes use of Fourier series
of large width prohibitively expensive.

The three inner limit cycles in the planar vector field of the previous example com-
bine slow and rapid variation. The adaptivity of AUTO [6] and the Guckenheimer–
Meloon algorithms [10] may make them more suitable for such examples. However,
conditioning implies that the three limit cycles cannot be computed with accuracy
greater then 1e-5 in IEEE arithmetic no matter what algorithm is used. Extended
precision has to be used to compute the limit cycles accurately. We have derived a
multiple shooting version of the Lindstedt–Poincaré algorithm [25]. Multiple shooting
was not needed for any of the examples in this paper. Multiple shooting could be of
use for computing a periodic orbit only if its computation is severely ill-conditioned,
with condition number greater than 1e+10.

5. Conclusion. This paper has concentrated exclusively on the computation of
periodic orbits. Computing periodic orbits is a basic step in computing bifurcations
of several kinds. We hope the algorithms given in sections 2 and 4.3 can be made
the basis for computing bifurcations. The Lindstedt–Poincaré technique has been
applied to partial differential equations [14]. The algorithm in section 2 may also be
applicable to partial differential equations.
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