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Abstract
The butterfly-like Lorenz attractor is one of the best known images of chaos. The
computations in this paper exploit symbolic dynamics and other basic notions
of hyperbolicity theory to take apart the Lorenz attractor using periodic orbits.
We compute all 111011 periodic orbits corresponding to symbol sequences of
length 20 or less, periodic orbits whose symbol sequences have hundreds of
symbols, the Cantor leaves of the Lorenz attractor, and periodic orbits close to
the saddle at the origin. We derive a method for computing periodic orbits as
close as machine precision allows to a given point on the Lorenz attractor. This
method gives an algorithmic realization of a basic hypothesis of hyperbolicity
theory—namely, the density of periodic orbits in hyperbolic invariant sets. All
periodic orbits are computed with 14 accurate digits.

Mathematics Subject Classification: 34C35, 37D25, 37D45

1. Introduction

The differential equations

ẋ = σ(−x + y), ẏ = −xz + rx − y, ż = xy − bz,

with σ = 10, r = 28, and b = 8
3 , were studied by Edward N Lorenz [10] in an article

of lasting elegance and clarity. Irregular, turbulent flow patterns that evolve in an irregular,
nonperiodic manner are an obstacle to short-term weather forecasting. Lorenz showed that
stochastic forcing is not the only way that such irregularity can arise and that the long-time
behaviour of deterministic flows can be unstable, bounded, and nonperiodic at the same time.
Lorenz based his argument partly on the equations above, now named after him, that are a
finite mode truncation of the basic equations of fluid mechanics. It is possible to interpret
solutions of the Lorenz equations as convection rolls, even though such an interpretation is not
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physically valid for all choices of the parameters [10,14]. Lorenz understood the existence of
the Lorenz attractor, the possibility of approximating the dynamics on the attractor by a one-
dimensional map, the importance of the unstable fixed point at the origin (see figure 3 of [10]),
the fractal structure of the attractor, the density of periodic orbits in the Lorenz attractor,
and that nonperiodic points in a section of the Lorenz attractor were dense and uncountable.
In the concluding section of his paper, Lorenz declared: ‘The foundation of our principal result
is the eventual necessity for any bounded system of finite dimensionality to come arbitrarily
close to acquiring a state which it has previously assumed.’ Recurrence is the foundation of
all the computations given in this paper.

Figure 1 shows a periodic orbit of the Lorenz equations, not any trajectory like the usual
plots. Symbol sequences are assigned to trajectories of the Lorenz attractor by following them
forwards and backwards in time. Every time a trajectory passes through A (see figure 1),
it is assigned an A and it is assigned a B every time it passes through B. In this way,
every trajectory is assigned a bi-infinite label. Periodic orbits have symbol sequences with
the same finite block of symbols repeating indefinitely, like decimal expansions of rational
numbers. This block can be used to label the periodic orbit. Even though the periodic orbit
in figure 1 has 240 symbols and a characteristic multiplier of magnitude 3.06e+59, its Fourier
series is computed with a relative error of 1.1e−14. If an exact formula were known for that
periodic orbit, simply evaluating it in double precision arithmetic will cause at least as much
error. We compute numerous periodic orbits with equal accuracy and take apart the Lorenz
attractor.

The computations in this paper are not exploratory in nature. Considered together,
they form a Galilean experiment that puts a mathematical hypothesis to a severe test. The
mathematical hypothesis that motivates this paper comes from hyperbolicity theory [8, 12].
Hyperbolicity theory tries to think of invariant sets as if they were hyperbolic fixed points with
no critical eigenvalues. This analogy is developed by splitting the tangent space at every point
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Figure 1. This plot shows the periodic orbit ABA2B2 . . . A15B15 of the Lorenz equations.
This periodic orbit is a part of the Lorenz attractor. Its period is 171.863 729 139 7 and
its leading characteristic multiplier has magnitude 3.06e+59. The sections marked A and B

extend into the y-axis and are used to assign symbol sequences to trajectories of the Lorenz
attractor.
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of the invariant set into a stable and an unstable subspace. The splitting must be preserved by the
flow or the map. A perturbation in a stable direction decreases exponentially with the linearized
forward flow. Similarly, a perturbation in the unstable direction decreases exponentially with
the linearized backward flow. There are periodic orbits arbitrarily close to any point on a
hyperbolic invariant set, just as there are rational numbers arbitrarily close to any real number.
The density of periodic orbits in hyperbolic invariant sets is the mathematical fact at the centre
of this paper.

Density of periodic orbits can be a consequence of a definition or a part of a definition
depending upon how hyperbolic invariant sets are defined. A consideration of recurrence of
bounded trajectories, identified by Lorenz as the foundation of his work, makes the density
of periodic orbits plausible. Let P be a point on an invariant set like the Lorenz attractor.
As Lorenz explained, the flow must eventually bring back the point P (or a point in a small
neighbourhood of P ) to a point Q close to it. The flow is in addition unstable and continuity
implies that splitting into stable and unstable manifolds at Q nearly coincides with the splitting
at P , since Q is close to P . Therefore, it is possible to perturb P to P ′ along the unstable
manifold of P and Q to Q′ along the stable manifold of Q, in such a way that Q′ lies on
the trajectory starting at P ′ and Q′ is much closer to P ′ than Q is to P . If the errors in this
linearized argument are controlled, it is possible to make Q′ coincide with P ′ and deduce the
existence of a periodic orbit close to P . Recurrences of randomly chosen points are not easy to
control, however, because very close recurrences take very long times. We will use symbolic
dynamics to make the clever perturbations that are necessary to find periodic orbits that nearly
go through a given point on the Lorenz attractor.

Symbolic dynamics and some theoretical deductions essential to our computations are
based on a geometric model of the Lorenz attractor [7, 17]. Owing to its use in some of our
computations, we give an abridged account of this model. The geometric model is based on a
map of (u, v) ∈ [−1, 1]× [−1, 1] back to the same region. To state the correspondence of this
region to the phase space of the Lorenz equations, it is necessary to take a Poincaré section
at z = 27. The u-axis sort of runs along the surface of the wings (see figure 1) and extends
over the region where the wings overlap (and therefore does not lie on the sections A and B

in figure 1). The v-axis is transverse to the u-axis and is in the plane of the Poincaré section
like the u-axis. The map of the (u, v) plane is written as G(u, v) = (f (u), h(u, v)). The form
of the one-dimensional map is shown in figure 2. The slope of this map diverges to ∓∞ as
u → ±0. The precise form of h is explained in [8], but below is a simplification that is also

u

Figure 2. A discontinuous one-dimensional map like the one above is a part of a geometric model
of the Lorenz attractor. For convenience, the map f (u) can be taken to map u ∈ [−1, 1] to
the same interval, with a discontinuity at u = 0. The interval [−1, 0), which is the left half
of the u-axis, corresponds to the symbol A. The right half of the u-axis corresponds to the
symbol B.



1038 D Viswanath

explained in [8]:

h(u, v) = av − b, u > 0,

h(u, v) = av + b, u < 0.

For the Lorenz attractor, a is something like 10−5 (see section 4) and b is chosen to make
G(u, v) a one-to-one map. If a = 10−5, b = 1

2 is an acceptable choice. This map has a Cantor
set of lines for its attractor and its hyperbolic structure is easily deduced. In the complete
geometric model, the attractor of the Lorenz flow is described as a Cantor set of leaves tied to
the unstable manifold of the saddle at the origin [8, 17].

We make two minor changes to the geometric model as described in [8]. The assumption
f ′(u) >

√
2 is used in [8] to prove that upon repeated applications of f , any open interval

covers all of (−1, 1) − {0}. It is better to assume only that f ′(u) > 0 and to assume, rather
than prove, that upon repeated iterations any open interval covers all of (−1, 1) − {0}. That
f ′(u) >

√
2, or f ′(u) > 1, must be false is obvious from even simple computations; a close

examination of the tight winding in the innermost part of the wing in figure 9.3.2 of [14] or
in our figure 6, which requires a more sophisticated computation, reveals this (also, see [15]).
The other change is that we use the sections A and B shown in figure 1 instead of taking
a section where the two wings overlap. With this choice, the interval [−1, 0) of the u-axis
corresponds to the intersection of the Lorenz attractor with the section A and the interval
(0, 1] corresponds to the intersection of the Lorenz attractor with B; see figures 1 and 2.
Neither change affects the topology of the attractor of the geometric model. However, in
section 5 we suggest that the topology of the Lorenz attractor may differ from the topology of
the attractor of the geometric model in a subtle way.

The assumption f ′(u) >
√

2 is used to deduce that a symbol sequence can correspond to
at most one periodic orbit of the one-dimensional map f in the geometric model. Section 2
discusses why we expect the Lorenz attractor to have at most one periodic orbit for a given
symbol sequence. This can be deduced for the slightly modified geometric model that we use
with the additional assumption (f n)′(u) > 1, for u ∈ [−1, 1] and some n > 1.

2. Symbolic dynamics

The symbol sequence of any point on the Lorenz attractor is a bi-infinite sequence of As and
Bs. If the symbol sequence of a point P is . . . x−2x−1.x1x2 . . . , where each xi is A or B, it
means that the forward trajectory from the point P goes through the section x1, and then the
section x2, and so on. Similarly, it means that the backward in time trajectory goes through
the section x−1, and then the section x−2, and so on. If the point is already on one of the two
sections, that section becomes the x1 symbol. The sections A and B are defined in figure 1.

The idea behind symbolic dynamics is extremely simple and broadly applicable. One
example is to label people in the United States by the sequence of states they visit. For this to
be a good labelling scheme, people have to move between states often and move independently
of one another. Symbolic dynamics labels trajectories and points in phase space in this way.
Symbolic dynamics is useful if, and only if, trajectories diverge rapidly; it will buy very little
if used to describe quasi-periodic dynamics, for example. Rapid divergence of trajectories is
of course true for the Lorenz attractor.

As mentioned earlier, symbol sequences of periodic orbits look like . . . ss.ss . . ., where s

is a repeating block of As and Bs. If s is something like ABB and it is rotated to something
like BAB, we get another sequence which represents the very same periodic orbit. The rotated
symbol sequence only starts at a different point on the same periodic orbit. The symbol
sequence ss represents two circuits around the periodic orbit represented by s. A few simple



Period orbits of the Lorenz attractor 1039

–20 –10 0 10 20
0

10

20

30

40

50

x

z

AB

–20 –10 0 10 20
0

10

20

30

40

50

x

z

AAB

–20 –10 0 10 20
0

10

20

30

40

50

x

z

AAAB

–20 –10 0 10 20
0

10

20

30

40

50

x

z

AABB

Figure 3. A few simple periodic orbits of the Lorenz equations. Data for these and other periodic
orbits are given in table 1.

Table 1. Data for ten periodic orbits. The s column lists the symbol sequence; x and y are the
x and y coordinates of a point on that periodic orbit with z coordinate equal to 27. A trajectory
starting at this point, which is always on A to begin with, visits the sections A and B (see figure 1)
in the order given by s. The Lyapunov exponent λ and period T are also reported.

s x y λ T

AB −1.376 361 068 213 4e+01 −1.957 875 194 245 2e+01 9.946e−01 1.558 652 210 716 2e+00
AAB −1.259 511 539 768 9e+01 −1.697 052 530 708 4e+01 9.607e−01 2.305 907 263 939 8e+00
ABB −1.442 640 802 503 5e+01 −2.111 123 005 699 4e+01 9.607e−01 2.305 907 263 939 8e+00
AAAB −1.199 852 328 006 2e+01 −1.568 425 409 688 3e+01 9.192e−01 3.023 583 703 433 9e+00
AABB −1.291 513 797 031 1e+01 −1.767 310 017 264 6e+01 9.685e−01 3.084 276 775 822 1e+00
ABBB −1.483 980 067 171 7e+01 −2.208 680 716 008 9e+01 9.192e−01 3.023 583 703 433 9e+00
AAAAB −1.158 695 166 372 2e+01 −1.481 461 528 812 2e+01 8.838e−01 3.725 641 771 555 8e+00
AAABB −1.223 140 659 627 3e+01 −1.618 273 059 889 4e+01 9.460e−01 3.820 254 163 436 8e+00
AABAB −1.269 894 134 991 5e+01 −1.719 749 724 771 3e+01 9.776e−01 3.869 539 112 564 6e+00
AABBB −1.305 693 014 634 5e+01 −1.798 721 404 928 1e+01 9.460e−01 3.820 254 163 436 8e+00

periodic orbits of the Lorenz equations are shown in figure 3. Table 1 gives data for the
first ten periodic orbits. The Lorenz equations are invariant under the change of variables
(x, y, z) → (−x, −y, z). If s represents a periodic orbit, and s ′ is obtained by flipping As to
Bs and Bs to As in s, the periodic orbit corresponding to s ′ must exist. It is easily obtained
by changing the sign of x and y in the periodic orbit s. From here on, we sometimes identify
periodic orbits with their symbol sequences.

The Lorenz equations do not have periodic orbits with the symbol sequence A or with the
symbol sequence B. Excluding these, there are in all 111011 symbol sequences of length 20
or less that can represent distinct periodic orbits. We have computed all these periodic orbits



1040 D Viswanath

Table 2. This table reports symbol sequences of certain lengths, shown in parentheses, which
have the minimum or maximum Lyapunov exponent among all symbol sequences of that length.
Of the 111011 periodic orbits with symbol sequences of length 20 or less, the periodic orbit AB has
the largest Lyapunov exponent and the periodic orbit A14B has the smallest Lyapunov exponent.

s λ s λ

AB(2) 0.994 645 AB(2) 0.994 645
AAB(3) 0.960 742 AAB(3) 0.960 742
AAAB(4) 0.919 239 AABB(4) 0.968 55
AAAAB(5) 0.883 752 AABAB(5) 0.977 592
AAAAAB(6) 0.854 468 AABABB(6) 0.974 272
AAAAAAB(7) 0.830 498 AABABAB(7) 0.982 872
AAAAAAAB(8) 0.810 897 AABABABB(8) 0.978 859
AAAAAAAAB(9) 0.795 095 AABABABAB(9) 0.985 597
AAAAAAAAAB(10) 0.782 318 AABABABABB(10) 0.982 01
AAAAAAAAAAB(11) 0.772 28 AABABABABAB(11) 0.987 248
AAAAAAAAAAAB(12) 0.764 715 AABABABABABB(12) 0.984 095
AAAAAAAAAAAAB(13) 0.759 454 AABABABABABAB(13) 0.988 371
AAAAAAAAAAAAAB(14) 0.756 413 AABABABABABABB(14) 0.985 579
AAAAAAAAAAAAAAB(15) 0.755 588 AABABABABABABAB(15) 0.989 177
AAAAAAAAAAAAAAAB(16) 0.757 063 AABABABABABABABB(16) 0.986 675
AAAAAAAAAAAAAAAAB(17) 0.761 264 AABABABABABABABAB(17) 0.989 873
AAAAAAAAAAAAAAAAAB(18) 0.768 147 AABABABABABABABABB(18) 0.987 631
AAAAAAAAAAAAAAAAAAB(19) 0.778 429 AABABABABABABABABAB(19) 0.990 372
AAAAAAAAAABBBBBBBBBB(20) 0.781 745 AABABABABABABABABABB(20) 0.988 329

Table 3. This table reports symbol sequences of certain lengths, shown in parentheses, which have
the minimum or maximum period among all symbol sequences of the same length.

s T s T

AB(2) 1.558 65 AB(2) 1.558 65
AAB(3) 2.305 91 AAB(3) 2.305 91
AAAB(4) 3.023 58 AABB(4) 3.084 28
AAAAB(5) 3.725 64 AABAB(5) 3.869 54
AAAAAB(6) 4.417 77 AABABB(6) 4.637 14
AAAAAAB(7) 5.103 04 AABABAB(7) 5.429 13
AAAAAAAB(8) 5.783 41 AABABABB(8) 6.194 6
AAAAAAAAB(9) 6.460 26 AABABABAB(9) 6.987 97
AAAAAAAAAB(10) 7.134 63 AABABABABB(10) 7.753
AAAAAAAAAAB(11) 7.807 39 AABABABABAB(11) 8.546 66
AAAAAAAAAAAB(12) 8.479 27 AABABABABABB(12) 9.311 6
AAAAAAAAAAAAB(13) 9.150 97 AABABABABABAB(13) 10.105 3
AAAAAAAAAAAAAB(14) 9.823 17 AABABABABABABB(14) 10.870 2
AAAAAAAAAAAAAAB(15) 10.496 6 AABABABABABABAB(15) 11.664
AAAAAAAAAAAAAAAB(16) 11.172 AABABABABABABABB(16) 12.428 9
AAAAAAAAAAAAAAAAB(17) 11.850 5 AABABABABABABABAB(17) 13.222 6
AAAAAAAAAAAAAAAAAB(18) 12.533 1 AABABABABABABABABB(18) 13.987 5
AAAAAAAAAAAAAAAAAAB(19) 13.221 6 AABABABABABABABABAB(19) 14.781 3
AAAAAAAAAAAAAAAAAAAB(20) 13.918 5 AABABABABABABABABABB(20) 15.546 2

and some data is summarized in tables 2 and 3. The Lyapunov exponent of a periodic orbit
is defined as log m/T , where m is the magnitude of its leading characteristic multiplier and T

is its period. The periodic orbit A14B has the smallest Lyapunov exponent among all periodic
orbits of the Lorenz equations we have computed.
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The maximum relative error in the computation of 111011 periodic orbits with symbol
sequences of length 20 or less was 3.2e−14. The average relative error was 1.3e−14; the
mere application of the fast Fourier transform followed by Fourier inversion, the most stable of
numerical computations, creates a relative error that is only slightly smaller. All computations
were in double precision. The periodic orbits were represented as Fourier series in time, using
64 Fourier points per symbol. If the number of symbols was not a power of 2, the number of
Fourier points used was 64 times the first power of 2 that exceeds the number of symbols. For
example, the periodic orbit shown in figure 1 was represented using 64 × 256 Fourier points
since it has 240 symbols.

The computation of periodic orbits used the Lindstedt–Poincaré algorithm derived by
Viswanath [16] and an extension that is described in the appendix. The extension to the
Lindstedt–Poincaré algorithm described in the appendix makes it possible to compute periodic
orbits accurately even from inaccurate starting guesses. Use of this extension is essential to
carry out the computations described in this paper.

To describe the method used to generate starting guesses for the Lindstedt–Poincaré
algorithm, we start by assuming the availability of a library holding all 1375 periodic orbits
with symbol sequences of length 13 or less computed with 14 accurate digits. The computation
of this library is explained later. Let us say we wish to obtain a starting guess for a periodic
orbit with the symbol sequence sx = x1 . . . xn, where each xi is either A or B. The starting
guess is put together by splicing together n slices of trajectories taken from the library. The n

slices correspond to the n intervals (x1, x2), . . . , (xn, x1) in the symbol sequence.
To obtain a slice for an interval (xi, xi+1), we make one pass through the library and

compute the best fit and the length of the best fit as follows. The length of the forward fit of an
interval (yj , yj+1) of the symbol sequence sy = y1 . . . ym in the library to the interval (xi, xi+1)

of the symbol sequence sx is equal to k if

yj = xi, yj+1 = xi+1, . . . , yj+k−1 = xi+k−1.

Above, the subscripts of x are added modulo n and the subscripts of y are added modulo m.
The length of the backward fit is equal to k − 1 if

yj = xi, yj−1 = xi−1, . . . , yj−k+1 = xi−k+1.

Again, the arithmetic in the subscripts is modular. The length of the fit is defined as the
minimum of the forward fit and a certain number times the backward fit. A good choice for
this number would be 14; it is more important to match symbols forwards than backwards (see
section 4 for an explanation). In fact, for most of the computations we simply take the length
of the forward fit as the length of the fit. A long fit implies that even though the symbols xi and
yj may correspond to different points on the Poincaré section, the points are likely to be close.
The best fit is the interval among all symbol sequences in the library that gives the longest fit
to (xi, xi+1). Since the arithmetic is modular, the length of the best fit might be infinite. This
means that the periodic orbit sx is identical to some periodic orbit sy in the library.

The initial guess for the Lindstedt–Poincaré algorithm is put together using the best fits
for every interval in sx . If the best fit of (xi, xi+1) is to (yi, yi+1), the segment of the trajectory
of sy between the symbols yi and yi+1 is taken as the guess for the segment of sx from xi to
xi+1. The guess is made up of n segments corresponding to the n intervals. If the first segment
is between the symbols A and B, it will take off from section A and land on section B. The
second segment will take off from B, but the point it takes off from will not coincide with the
point where the first segment lands. Therefore, it is necessary to splice all the segments. We
used splines, with appropriate boundary conditions, to splice the segments together. The guess
for the period is the sum of the traversal times for each of the n segments.
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The library of 1375 periodic orbits was built up as follows. We started with a small library
which had all periodic orbits with symbol sequences of length 5 or less. The starting guesses
extracted from a Runge–Kutta integration are good enough to build a small library with symbol
sequences of length 5 or less. This small library was used to generate starting guesses to build
a larger library, and that library was used to generate starting guesses for an even larger library,
and we finally ended up with a library of all periodic orbits whose symbol sequences were of
length 13 or less. The starting guesses generated using this method may have relative errors
as high as 5%. Therefore, the use of the Lindstedt–Poincaré algorithm, with the extension
described in the appendix, is essential.

For a concrete example of the use of symbolic dynamics to construct initial guesses for
the Lindstedt–Poincaré algorithm, assume that the periodic orbits AB, AAB, and ABB are
available, and that the periodic orbit AABB needs to be computed. The match between the
first A in AAB and the first A in AABB is valid for three symbols in the forward direction.
This is the best match for the first A in AABB. Similarly, the best match for the third symbol,
which is a B, in AABB is the second symbol in ABB. The method described above uses a
library of 1375 periodic orbits to construct initial guesses. This is not the only way to set up
the computation. If a periodic orbit with a specified symbol sequence needs to be computed,
it is possible to recursively compute only those periodic orbits that are necessary to generate
a good guess for the specified symbol sequence.

Why is there a unique periodic orbit corresponding to a symbol sequence such as AB?
We give a heuristic argument using figure 1. The starting point of AB must surely be on the
section marked A in figure 1. It can be seen in that figure that the trajectories starting on A

that land on B must start from the part of A closer to the origin. Thus the starting point of
AB must be on this part of A. After it lands on B, we want the trajectory to return to A. This
means only a part of the trajectories that start from A and land on B are valid candidates to
be the periodic orbit AB. Continuing this argument further leaves us with a unique periodic
orbit AB. An expansion assumption, such as f ′(u) >

√
2 or (f n)′(u) > 1 for some n > 1, is

necessary for a mathematically valid argument based on the geometric model. In most cases,
the point of difficulty in constructing adequate symbolic dynamics is in verifying the expansion
and contraction requirements. The topological part of the construction, which might involve
finding a topological horseshoe for example, is often comparatively easy.

There have been many other computations of periodic orbits of the Lorenz attractor.
The Lorenz equations undergo many bifurcations as the parameter r is varied and there are
computations of periodic orbits near known bifurcation points [9, 13]. With the same choice
of parameters as in this paper, computation of all periodic orbits of the Lorenz attractor with
symbol sequences of length 11 or less is reported in [6]. The level of accuracy obtained is
7 digits. In [5], the damped Newton method is used to compute all periodic orbits corresponding
to symbol sequences of length 9 or less. The level of accuracy obtained is fewer than 7 digits.
The shadowing principle is used to accurately shadow periodic orbits of the Lorenz attractor
in [2]. For a result about the Lorenz attractor see [11].

Periodic orbit theory described in [3] is an elaborate framework for computing dynamical
averages over chaotic sets using periodic orbits. One might expect that dynamical averages
like the Lyapunov exponent can be obtained by taking weighted averages over periodic orbits.
This is indeed true; however, it must be noted that in periodic orbit theory the averages are
taken over individual periodic orbits as well as groups of periodic orbits, and crucially for fast
convergence, some of the weights are negative. This theory treats the Lorenz attractor as a
chaotic set without assuming it to be an attractor. The theory gives a method for approximating
the escape rate using periodic orbits, as the logarithm of the leading eigenvalue of a certain
Fredholm determinant, and this escape rate must be zero for an attractor. The computation of
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the escape rate is a useful check of the accuracy of the formulae of periodic orbit theory. For
the Lorenz attractor, an estimate of 5.0 × 10−6 for the escape rate may be deduced using all
periodic orbits with symbol sequences of length 20 or less.

3. Periodic orbits with long symbol sequences

It is easy to compute periodic orbits with long symbol sequences. For example, the symbol
sequence

AAABAABABBAABABBABAABBBBAAAAAAABABBAAAAABBAABAAAAAABBBBBBAABAABBABBBBA
ABBAABBBBABBBBAAABBBBBAABABBBBBAABABABABAAABBAABBBABBBBAAABAAABABBBABB
AAABBBBBBBBBABAABBBAAABBAAAABAAAAAABBBAABABBBABBABABABBBBBBABABAAABBAA
ABABAABABABABBABAAABABBAAAABABABBBABAABAAAAABBAABAABBAAAAAABAABBBABBBA
BABBABABBABAABAABAABABBBAABBAABABAAAAABBBBABAAABBAAAABBBBAABABAAABA

is of length 347. The periodic orbit with that sequence has period 2.630 875 008 674 2e+02
and was computed with a relative error of 1.5e−14. Its leading characteristic multiplier is of
magnitude 9.56e+105. A periodic orbit with a symbol sequence that is ten times as long can
be computed just as easily.

It is clear from table 4 that if a single symbol is removed from the sequence of length 347,
the periodic orbit corresponding to the shorter sequence will be so close that the double
precision representation of two points on the supposedly distinct periodic orbits will be
identical. The question arises in what sense the periodic orbits are being computed. The answer
is that each point in the Fourier series is accurate to machine precision and so is the period.

Consider the map xn+1 = 2xn mod 1 over [0, 1). This map shifts the leading bit with every
application. If the interval [0, 1

2 ) is labelled 0 and [ 1
2 , 1) is labelled 1, the symbol sequence

of every point is identical to its binary expansion. Suppose a machine word can represent
only three bits and we wish to compute a periodic orbit with symbol sequence b1 . . . b10. In a
computation such as ours, the first point in the orbit will be .b1b2b3, the second point will be
.b2b3b4, and the tenth point will be .b10b1b2.

We now go back to table 4 and explain a numerical issue that arises in computing distances
between periodic orbits. In the Lindstedt–Poincaré algorithm [16], nonlinearities in the vector
field F(x) are handled by interpolating at Fourier grid points. This can lead to aliasing errors.
Nevertheless, the Lindstedt–Poincaré algorithm computes periodic orbits to machine precision
without requiring any more Fourier points than necessary to represent those periodic orbits
to machine precision. This is possible because, even though F(x) can be nonlinear, the left-
hand side of the differential equation ẋ(t) = F(x) is very much linear. A price has to be

Table 4. In this table, s is a randomly generated symbol sequence, whose length is in parentheses.
The symbol sequence s′ is identical to s but without the last symbol. The second column is the
distance between the periodic orbits represented by s and s′ at closest approach.

s Dist(s,s′)

ABABB(5) 0.120 595
ABABBAAABA(10) 0.003 582 89
BBAABAABBABABBA(15) 0.000 250 035
ABAAAABBBBBBABBAAAAB(20) 3.497 62e−05
BAABBAAABAABBBBBABAABAAAB(25) 2.361 38e−07
BBAABAAABBBAAAAABABBBABAABAABA(30) 1.927 9e−08
AABAAAABABBABBBBBBBAAAABABBAABBABBA(35) 3.299 1e−10
ABAABBBBAABBABAAAABAAABBBABBBABBABABAAAB(40) 2.015 42e−11
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paid to eliminate aliasing errors, however, in computing the distance between two periodic
orbits.

First consider the problem of finding the distance from a point (x0, y0, z0) to a periodic
orbit. A simple strategy, which fails to avoid aliasing errors, is to start by finding the distance
di from (x0, y0, z0) to the ith point of the periodic orbit on the Fourier grid. The distance of
the point to the periodic orbit must be a periodic function itself; we can treat di as Fourier
interpolants of that periodic function. To find the minimum distance, we simply need to
minimize this Fourier series. This method is plagued by aliasing errors, however. If the
distance of the point from the periodic orbit is of the order of machine precision, as it is both in
table 4 and section 7, the minimum can in fact be negative. The distance between two points
is the square root of a sum of squares and because of this square root the number of Fourier
points needed to represent the distance of a point from a periodic orbit as a Fourier series can
be easily 50 times as many. The way to eliminate aliasing without paying too steep a price is
to minimize the square of the distance and not the distance itself, and then take the square root
of this minimum. The Fourier series to represent the square of the distance from (x0, y0, z0)

to a periodic orbit to machine precision may require at most twice as many points.
Next there is the problem of finding the distance between two nearby periodic orbits

accurately. The distance of points of the first periodic orbit from the second periodic orbit
can be represented as a Fourier series. In theory, it is enough to minimize this Fourier series.
Again there is the problem of aliasing, and this time, there is no easy solution to it. We are
saved, however, because we do not even need to do a continuous minimization. Both periodic
orbits are solutions of the same differential equation and the divergence factor of trajectories
over small intervals of time will be close to 1, even for the Lorenz equations (for a proof use
the Lipshitz constant). So it is enough to find the distance of points of the first periodic orbit
on the Fourier grid from the second periodic orbit and take the minimum of these numbers.
This distance will not be accurate to machine precision, but it will be off by a factor that is
quite close to 1.

4. Cantor leaves of the Lorenz attractor

The passage below from Lorenz’s paper [10] has been quoted by Strogatz [14]. It is worth
quoting once again.

It would seem, then, that the two surfaces merely appear to merge, and remain distinct
surfaces. Following these surfaces along a path parallel to a trajectory, and circling
around C and C ′, we see that each surface is really a pair of surfaces, so that, where
they appear to merge, there are really four surfaces. Continuing this process for
another circuit, we see there are really eight surfaces, etc, and finally we conclude
that there is an infinite complex of surfaces each extremely close to one or the other
of the two merging surfaces.

To explain this passage, we return to figure 1. The points C and C ′ are the fixed points located
inside the holes in the two wings. The z coordinate is 27 for both the fixed points. However, C
has positive x and y coordinates, while C ′ has negative x and y coordinates. Trajectories of the
Lorenz equations are directed upwards, with increasing z, when they intersect the sections A

and B. They are directed downwards where the wings overlap. Lorenz based his argument on
the apparent merging of the two wings.

Figure 4 shows a section of the Lorenz attractor. There is no evidence of an infinite complex
of surfaces here. When trajectories starting at the intersection of the Lorenz attractor with the
section A are followed, they intersect the Poincaré section once again at la (see figure 4). The
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Figure 4. This plot shows a section of the Lorenz attractor at z = 27. The holes in the two wings
can be seen in this plot. Of the four lines in the plot, the ones that point to the corners of the plot
are on sections A and B defined in figure 1. When these two lines are integrated forwards in time,
they trace out the top part of the two wings by first moving up, with z increasing, and then moving
down. They end up on the Poincaré section z = 27 once again, but face each other this time as
shown in the plot. We will denote the two lines facing each other by la and lb .

observation behind Lorenz’s argument is that upon further integration, the trajectories spread
out, and at their next intersection with the Poincaré section z = 27 seem to nearly completely
cover the intersection of the attractor with both the sections A and B (see figure 1). The same
thing is true if we follow trajectories from B. Therefore, the lines in figure 4 must be really
two lines close to each other.

Figure 5 shows how the infinite complex of surfaces that Lorenz talked about is formed.
The two plots were obtained using symbolic dynamics. The basic idea for obtaining the plots
is contained in the passage quoted before, although perhaps it is more explicit in [8]. To see
the line in figure 4 split into two, we need to separate the points that come from A from the
points that come from B. If we consider periodic orbits, the starting points of the periodic
orbits (these points will be located on either section A or section B) whose symbol sequences
end with A, come from A. Those whose symbol sequences end with B, come from B. To
zoom in on a little segment of the line, we need to fix the first several symbols. For the first
of the two plots in figure 5, we fixed this at ABABABABAB, a sequence of length 10. The
upper of the two lines in the first plots shows the starting points on section A of periodic orbits
ABABABABABxA, where x varies over all the 128 sequences of length 7. The lower line
is obtained from periodic orbits ABABABABABxB.

All the points in the upper line in the first plot in figure 5 land on A if the
Lorenz equations are solved backwards in time. However, if we continue to integrate
backwards some of them land on B and some of them land on A. These points
must be separated to see that line split into two. We used periodic orbits of symbol
sequences ABABABABABABABABABABABABxAA and ABABABABABABABA

BABABABABxBA to obtain the two lines in the second plot in figure 5. The leading symbol
sequence used to zoom in on a segment of the upper line in the first plot must be an extension
of ABABABABAB with some more symbols. The extension we used has a total length
of 24.
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Figure 5. The two plots show the intersection of the Cantor leaves of the
Lorenz attractor with the plane z = 27. The first plot is centred at (a, b) =
(−13.764 512 562 987 30, −19.579 872 581 336 32). It zooms in on a small region of the plot
in figure 4, so that what appears to be a line there splits into two. The second plot is centred at
(a, b) = (−13.764 318 918 851 49, −19.578 490 040 637 68). It zooms on a small region on the
upper line in the first plot. What appears to be a single line in the first plot is now seen to be really
two lines. The text explains how the two plots were obtained.

Returning to section 2, the reason that a long forward fit is more important than a long
backward fit in finding a match for an interval in a given symbol sequence is now clear. It takes
10 forward symbols to define the same scale as a single backward symbol; and 24 forward
symbols to define the same scale as two backward symbols. It will take 38 forward symbols
to define the same scale as three backward symbols.

It is clear from figures 4 and 5 that the intersection of the Lorenz attractor with a Poincaré
section at z = 27 is a Cantor set of lines. The attractor of the flow must then be a Cantor set
of leaves. In the geometric model, these leaves are pinched together at the unstable manifold
of the origin. We will have more to say about this in the next section.

It is possible to estimate the factor by which the distance between the Cantor lines decreases
every time the lines split. Lorenz [10] gave the estimate 7 × 10−5. This estimate can be
improved slightly. We will estimate the factor by which the distance between the two lines
in the second plot of figure 5 is smaller than the distance between the two lines in the first
plot. The second plot can be obtained by pushing the first plot forwards in time until it
intersects the section A once again. The approximate time for a point on section A to return
to section A is 0.72. The rate of volume contraction is 41

3 and the rate of expansion on the
unstable manifold is approximately 0.9. This implies that the rate of contraction along the
stable manifold is approximately −14.6. Therefore, the distances between the two lines must
decrease approximately by the factor e−14.6×0.72 ≈ 3 × 10−5. Figure 5 shows that the actual
contraction is in-between Lorenz’s estimate and this estimate.

5. Periodic orbits close to the origin

The origin is a distinguished part of the Lorenz attractor. In this section, we compute periodic
orbits close to the origin. We also begin to make more careful use of the geometric model to
guide our computations. The propositions in this section and another proposition in section 7
assume the geometric model, partly explained in section 1. All the proofs follow standard
symbolic dynamics arguments.
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Proposition 5.1. The geometric model possesses a periodic orbit with a certain symbol
sequence if and only if the one-dimensional map f admits a periodic orbit with the same
symbol sequence.

Proof. Assume that the one-dimensional map admits a periodic orbit with a certain symbol
sequence. This symbol sequence fixes the u coordinate of the first point of this periodic orbit
uniquely. To find a periodic orbit of the geometric model, we need to determine a v coordinate
for the given symbol sequence. This can always be done as the geometric model allows a com-
plete, infinite binary tree of Cantor lines (transverse to lines with a fixed u) in the (u, v) plane.

In the geometric model, the u coordinate is mapped independently of the v coordinate.
Therefore, the converse follows easily. �

Proposition 5.1 allows us to look for periodic orbits by considering only the one-
dimensional map f . Periodic orbits of the one-dimensional map that pass close to u = ±1
will pass close to the origin in the geometric model. The points u = ±1 correspond to the
intersections of the two branches of the unstable manifold of the origin with the sections A

and B (see figures 1 and 2). The point u = 0 corresponds to the stable manifold of the origin.
The following proposition helps locate periodic orbits close to the origin.

Proposition 5.2. Assume that −1 has the symbol sequence AmBnAo . . . under the one-
dimensional map f . Then

• The periodic orbits AkBk exist for k < m. If m �= n, the periodic orbit AmBm also exists.
• The periodic orbits get closer to ±1 as k increases.

Proof. Let −1 < u1 < 0 be such that f (u1) = 0. Define ui+1, for 1 � i, by −1 < ui+1 < ui

and f (ui+1) = ui , as long as such a ui+1 can be found. If −1 < ui < 0 for 1 � i < M , but uM

cannot be found, define uM = −1. Define u0 = 0. Denote the half-open interval [uk, uk−1),
1 � k � M , by Ik . Define the interval Jk to be −Ik for 1 � k � M .

A point in Ik has a symbol sequence beginning with k As and then one or more Bs. Since
−1 has the symbol sequence AmBnAo . . . , we can say that M = m.

Let k < m. Then f k(Ik) is the whole of [0, 1] and monotone. There must be an interval
I ′
k ⊂ Ik such that f k(I ′

k) = Jk . Since f k(Jk) is the whole of [−1, 0], there must be I ′′
k ⊂ I ′

k

such that f k(I ′′
k ) ⊂ Jk and f 2k(I ′′

k ) = Ik . In addition, f 2k is monotone over I ′′
k . Therefore,

f 2k has a fixed point in I ′′
k . This fixed point is the first point of a periodic orbit of f with the

symbol sequence AkBk .
The argument above breaks down for k = m because we can no longer assert that f m(Im)

includes all of [0, 1]. In particular, Jm may not be fully contained in f m(Im). However, if
n < m, it is easy to argue that Jm − {1} ⊂ f m(Im).

All the points of the periodic orbit AkBk are contained in the interval [uk, −uk] and
the starting point is in Ik . Therefore the periodic orbits AkBk get closer to −1 for
increasing k. �

Figure 6 illustrates proposition 5.2. The periodic orbit A25B25 was the last periodic orbit
we were able to compute. It is necessary to add the periodic orbits AkBk to the library described
in section 2 as they are computed for increasing k. While almost all periodic orbits out of the
111011 periodic orbits with symbol sequences of length 20 or less took less than 15 iterations
of the Lindstedt–Poincaré algorithm to compute, the periodic orbit A23B23 took a few hundred
iterations, the periodic orbit A24B24 took nearly a thousand iterations, and the periodic orbit
A25B25 took tens of thousands of iterations. The periodic orbit A26B26 may not exist. Our
computation went into a local minimum of the residual error and was stuck with a relative
residual error around 6.0e−4. It is stated in [13] that the unstable manifold of the origin passes
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Figure 6. The left-hand plot shows the periodic orbit A25B25. It is symmetric like the Lorenz
attractor and gives a good idea of the full extent of the entire Lorenz attractor including the origin.
However, the separation of trajectories that emanate from the section A into those that return to A

and those that land on B is not as clear as in figure 1. The right-hand plot illustrates proposition 5.2.
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Figure 7. Two plots of the periodic orbit A23B. The right-hand plot is the only one in this paper
to plot the z coordinate against the y coordinate.

through the section A 24 times before crossing over to the other side. Our computations show
that this number is 25 or greater.

A symbolic dynamics argument assuming the geometric model implies that if A25B25

exists, so must the periodic orbit A24B. We tried to test this implication by computing periodic
orbits of the form AkB. We were able to compute these periodic orbits up to k = 23 (see
figure 7), but not with k = 24. Therefore, either the geometric model does not give a completely
correct description of the Lorenz attractor or the Lindstedt–Poincaré algorithm fails to compute
some periodic orbits that actually exist. We discuss both these possibilities after the next
paragraph.

Figure 8 shows the periodic orbit A25B7 whose distance from the origin is 0.169. We
were unable to compute A25B6. If that periodic orbit indeed fails to exist, then the symbol
sequence of the negative branch of the origin could begin as A25B6A . . . . However, it is not
possible to draw this conclusion with certainty. Data for some of the periodic orbits that came
up in this section is given in table 5.

The geometric model of the Lorenz attractor implies that the Cantor leaves of the Lorenz
attractor, computed in section 4, are pinched in at the unstable manifold of the origin. Thus
the Cantor lines on a Poincaré section at z = 27, such as the ones shown in figure 5, are



Period orbits of the Lorenz attractor 1049

 –20  –15  –10  –5 0 5 10 15 20
0

5

10

15

20

25

30

35

40

45

50

x

z

8 10 12 14 16 18 20 22 24

0.17

0.171

0.172

0.173

0.174

0.175

0.176

0.177

0.178

0.179

0.18

n

d(
A

25
B

n ,0
)

Figure 8. Among the periodic orbits we have computed, the periodic orbit A25B7 passes closest
to the origin. The left-hand plot shows this periodic orbit. It is possible to extend proposition 5.2
and deduce the upward trend of the distances to the origin in the right-hand plot.

Table 5. Data for a few of the periodic orbits discussed in section 5. Comparison with table 2
shows that periodic orbits that pass close to the origin tend to have larger Lyapunov exponents.

s λ T

A20B 0.813 1.462 753 180 496 2e+01
A21B 0.842 1.535 545 749 548 1e+01
A22B 0.886 1.611 597 203 895 0e+01
A23B 0.958 1.694 510 320 552 6e+01
A22B22 0.842 3.071 091 470 802 8e+01
A23B23 0.886 3.223 194 408 118 1e+01
A24B24 0.958 3.389 020 642 303 8e+01
A25B25 1.13 3.604 395 870 791 7e+01
A25B10 1.04 2.516 150 035 094 0e+01
A25B9 1.05 2.449 012 425 167 2e+01
A25B8 1.06 2.381 812 609 353 6e+01
A25B7 1.08 2.314 577 553 153 6e+01

tied in at a point that lies on the unstable manifold of the origin. It seems possible that the
Cantor lines (or leaves) merge and disappear in a cascade, and not merge simultaneously as the
model implies. Our computations provide no direct support to this possibility, however. This
alternative picture has implications for symbolic dynamics (e.g. proposition 5.1 will fail) as
well as the topology of the Lorenz attractor. These implications apply only in a very tiny region
around the first intersections of the unstable manifold of the origin with the sections A and B.

The Lindstedt–Poincaré algorithm too becomes unreliable in this region. It appears
possible, however, to combine the Lindstedt–Poincaré algorithm with a normal form
computation near the origin, such as the one used in [15]. Such a method might be capable of
determining the topology of the Lorenz attractor in a small neighbourhood of the origin. To
focus this discussion, we ask the following question:

What are the first 250 symbols of the negative branch of the unstable manifold of the
origin?

The extended precision computation necessary to answer this question will also shed light on
two related matters. The first is the topology of the Lorenz attractor near the unstable manifold
of the origin and the second is the question of exactly what symbol sequences are admitted by
the Lorenz attractor.
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6. Density of periodic orbits in the Lorenz attractor I

Table 6 shows 11 points close to the Lorenz attractor. They were generated using the 7th-order
Fehlberg Runge–Kutta method with a constant time step. A random point was integrated for
t > 10 000 to generate the points shown in table 6. The time step used was 1

128 for the first
two points, 1

512 for the next two, 1
4192 for the ones numbered 7 and 8, and 1

2096 for the others.
All these points are a little below the section A.

We wish to find periodic orbits that pass as close to these points as possible. The method
used in this section makes no attempt to be clever. A better method, derived using the geometric
model in the next section, shows that all these points are as close to the Lorenz attractor as
machine precision permits. The simpler method of this section is not so successful, however.
We present it nevertheless because it may apply in situations where a detailed geometric model
is not available.

Table 7 shows the periodic orbits computed using this simpler method and their distances
from the 11 points. Although they do pass quite close to the points, the distances are not of
the order of machine precision.

The method works as follows. Given a point, it prepares a list of symbol sequences of
length from 2 to 32 such that each symbol sequence is the closest to the given point among

Table 6. This table shows points close to the Lorenz attractor. They are numbered from n = 1 till
n = 11. The text explains the method used for generating these points.

n x y z

1 −1.479 351 263 303 5e+01 −2.265 460 975 160 8e+01 2.601 751 639 387 0e+01
2 −1.179 336 677 270 8e+01 −1.567 815 010 226 7e+01 2.634 734 133 982 2e+01
3 −1.336 188 799 485 0e+01 −1.878 134 776 736 4e+01 2.683 377 564 595 5e+01
4 −1.030 743 945 264 6e+01 −1.218 022 416 084 0e+01 2.690 220 173 720 9e+01
5 −1.321 633 041 880 2e+01 −1.838 169 888 555 2e+01 2.693 709 938 314 3e+01
6 −1.356 230 039 378 3e+01 −1.913 466 467 849 7e+01 2.697 655 815 165 9e+01
7 −1.396 763 919 801 8e+01 −2.007 068 580 792 8e+01 2.696 531 491 804 2e+01
8 −1.211 990 132 847 3e+01 −1.594 589 290 517 6e+01 2.699 658 557 704 7e+01
9 −1.231 125 028 898 3e+01 −1.637 063 704 277 9e+01 2.697 740 231 982 3e+01

10 −1.324 777 611 718 5e+01 −1.843 802 870 444 0e+01 2.696 397 233 116 9e+01
11 −1.426 039 058 036 1e+01 −2.079 380 159 649 7e+01 2.689 994 450 658 4e+01

Table 7. The first column refers to the numbering of the points in table 6, and s is a symbol sequence
of length 32. The last column gives the distances of the point numbered n from the periodic orbit
with symbol sequence s.

n s Distance

1 ABBBBABABBBBBBAABABBBAAAAAAAAAAA 7.04e−07
2 AAABAAABAAAABABBAAAAAABAAAAAAAAA 5.37e−07
3 ABAAABABAAAABBABAABBABBAAAAAAAAA 1.85e−07
4 AAAAAAAAAABAAAAABABAABBAAAAAAAAA 2.01e−05
5 AABBBBBBBBBAAABBABBABBAAAAAAAAAA 1.59e−04
6 ABAABBAAABBBAAAAAAAAAAAAAAAAAAAA 2.01e−06
7 ABABBBBABBBABABAABAABAABBBBBBBBB 7.62e−06
8 AAABABABAAAABBABBBABBBABBBBBBBBB 1.14e−06
9 AAABBBAAAAABAABAABAABAABBBBBBBBB 1.10e−04

10 ABAAAAAAAAABBBBAABAABAABBBBBBBBB 8.85e−05
11 ABBABAAABAAAAAAAABABBAABBBBBBBBB 1.64e−06
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a large number of symbol sequences of the same length. To begin with, it makes one pass
through the library described in section 2 and finds symbol sequences of length 2–13 that are
the closest to the given point among symbol sequences of the same length. These 12 sequences
are entered into the list. The 12 symbol sequences for the point numbered 7 in table 6 and
their distances from that point are shown below.

AB(2) dist:0.533595
ABB(3) dist:1.12959
ABBA(4) dist:0.614564
ABABB(5) dist:0.248908
ABABBB(6) dist:0.0982862
ABABBBB(7) dist:0.0119864
ABABBBBA(8) dist:0.0355487
ABABBBBAB(9) dist:0.015166
ABABBBBABB(10) dist:0.00513484
ABABBBBABBB(11) dist:0.000335084
ABABBBBABBBA(12) dist:0.00122588
ABABBBBABBBAB(13) dist:0.000131703

Above and in table 7, the given point is closest to the segment of the periodic orbit after the
last symbol, but before the first symbol. To find a symbol sequence of length n, n > 13, the
method starts with the symbol sequences of shorter length entered into the list. It inserts a
single symbol in one of the last six positions of the previous symbol sequence of length n − 1.
It then adds two symbols together in one of the last six positions of the one before the previous
symbol sequence. Finally, it adds three symbols together to the symbol sequence of length
n − 3 in the list. Of all the possible strings obtained in this way, the symbol sequence closest
to the given point is entered into the list as the sequence of length n. Table 7 shows that this
simple method does reasonably well. The list can be continued to sequences longer than 32,
but these longer sequences do not get appreciably closer to the points in table 6 than the symbol
sequences of length 32 shown in table 7.

7. Density of periodic orbits in the Lorenz attractor II

We will devise another method to find periodic orbits close to a given point on the Lorenz
attractor in this section. Table 8 shows that periodic orbits computed by this method come
within a distance of about 1e−12 in all 11 cases. Since points near the section A have two digits

Table 8. The last column gives the distance from the periodic orbit with the symbol sequence s to
the point numbered n. Data for the points is given in tables 6 and 9.

n s Distance

1 ABBBBABABBBBBBAABABBABBBBBBABAABABBBBBBAABAA 3.34e−12
2 AAABAAABAAAABABBAAAAAAABBBAABBBABBBABBBBBBAAA 8.71e−13
3 ABAAABABAAAABBABAABBABBAABBABABABBABAABAA 4.95e−12
4 AAAAAAAAAABAAAAABABAABBAABBAABAAABABBBBAAABBBABBBABA 5.62e−13
5 AABBBBBBBBBAAABBBABAABBBABBABBBBABBAABABBAABAABAAA 8.97e−13
6 ABAABBAAABBABBBBBBBBBBBBBABBBBBBABBABABAAAAAABBAAAAAABAA 2.06e−13
7 ABABBBBABBBABABAABAAAAAAABBBAABAABABB 1.30e−12
8 AAABABABAAAABBABBBABBBAAABBABBBAAAAABBBAABBBBABB 5.74e−13
9 AAABBBAAAAABAAABBBBBBBBBBABABAABBBBAABABABBAB 1.98e−12

10 ABAAAAAAAAABBBBAAABABBAAABAAAABAABBABABABBAAB 9.26e−13
11 ABBABAAABAAAAAAAABABBAABAABABABBAAABBBBBBBBABBB 3.08e−13
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before the decimal point, 14 digits of the randomly generated points on the Lorenz attractor
coincide with some point on the periodic orbits. In effect, we have a method here that merely
changes the last digit or two of a given point on the Lorenz attractor and then finds a periodic
orbit that passes right through the perturbed point.

The proposition below is easily deduced from the geometric model. It forms the basis for
a method to find periodic orbits close to a given point on the Lorenz attractor.

Proposition 7.1. Let −1 < p < 1. Consider the one-dimensional map f on [−1, 1]. Let
d(p, α) denote the distance of that point from the first point of the periodic orbit of symbol
sequence α. Assume that the symbol sequence of p begins with αp and that αp ends with a
block of As. Let

d(k) = d(p, αpBkA).

Let m be as in proposition 5.2. Then

• As k takes the values 1, 2, 3, . . . , m successively, d(k) begins to decrease and then
increases.

• If d(k) is minimum for k = k0, the block of Bs that follows αp in the symbol sequence of
p is of length k0 − 1, k0, or k0 + 1.

The statements above are still true if A and B are interchanged.

Proof. The proof uses notation defined in the proof of proposition 5.2. Let l be the number of
symbols in αp. By assumption, the symbol following αp in the symbol sequence of p must be
B. Denote the periodic point whose symbol sequence repeats αpBkA by pk .

The point f l(p) must be positive. If the number of Bs that follow αp in the symbol
sequence of p is r , f l(p) will lie in the interval Jr . Similarly, f l(pk) lies in the interval Jk .
Therefore, d(f l(p), f l(pk) is minimum for k = r − 1, or k = r , or k = r + 1. Furthermore,
this quantity first decreases and then increases as k takes the values 1, 2, . . . , m. The map f l

is monotone over the interval of points whose symbol sequences begin with αp. Therefore,
the statements made about d(k) in the proposition are true.

To obtain a proof for the proposition with A and B interchanged, interchange A and B in
the proof and replace J by I . �

We will assume the point on the Lorenz attractor to be on the section A. Table 9 shows the
points obtained by advancing the points in table 8 till they lie on section A. The proposition

Table 9. This table gives the x and y coordinates of points shown in table 6 after advancing them to
the section A. The last column gives the Lyapunov exponents of periodic orbits shown in table 8.
Their distance from the corresponding points is of the order of machine precision in every case.

n x y λ

1 −1.507 688 334 028 0e+01 −2.265 317 531 783 1e+01 0.906
2 −1.200 699 650 035 0e+01 −1.567 871 724 314 0e+01 0.888
3 −1.341 179 249 534 0e+01 −1.877 738 672 920 9e+01 0.957
4 −1.034 111 146 724 7e+01 −1.217 777 331 046 8e+01 0.899
5 −1.323 527 218 244 6e+01 −1.837 995 753 542 3e+01 0.912
6 −1.356 925 853 612 8e+01 −1.913 398 873 181 7e+01 0.867
7 −1.397 778 360 200 3e+01 −2.006 971 168 098 6e+01 0.926
8 −1.212 097 834 492 1e+01 −1.594 578 578 610 2e+01 0.931
9 −1.231 832 021 112 9e+01 −1.636 995 430 629 1e+01 0.905

10 −1.325 860 991 718 6e+01 −1.843 699 521 219 5e+01 0.917
11 −1.428 938 112 515 1e+01 −2.079 122 015 447 7e+01 0.902
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above leads to a method that can find the u coordinate of a given point p in the geometric
model. However, since we wish to carry our computations till the periodic orbit is as close to
the given point as machine precision permits, it is also necessary to do something about the v

coordinate. The v coordinate of the beginning point of a periodic orbit is determined by the
last few symbols in its symbol sequence. Computations in section 4 imply that the last two or
three symbols are sufficient to determine the v coordinate. Since the number of possibilities
is not too many, we do not attempt to derive a systematic method to find the last few symbols.
We simply use a guess for the last few symbols.

In the description of the method below, we assume that the last two or three symbols are
known to be β. In practice, β is guessed by running the method two or three times. At an
intermediate stage in the method, there will be up to five guesses, αi , 1 � i � 5, for the starting
symbol sequence of the given point p. To pass to the next stage, the first step is to trifurcate,
following proposition 7.1, from each of the αi . The trifurcation proceeds as follows. Assume
that α1 ends with a B. Then we compute d(k) = d(p, α1A

kBβ), where d(p, s) is the distance
from the point p to the periodic orbit of symbol sequence s, for k = 1, 2, 3, . . . . This first
decreases and then increases. We stop the computation of distances as soon as the distances
begin to increase, and record the value of k where d(k) is minimum as k0. It is possible that k0

is equal to 1. The symbol sequence α1 trifurcates into the symbol sequences α1A
k0−1, α1A

k0 ,
and α1A

k0+1, if k0 > 1. If k0 = 1, if bifurcates into the latter two sequences. After all the five
sequences either trifurcate or bifurcate, we will be left with at most 15 sequences. Of these, we
retain only the five sequences that are the closest to the given point p. The last few symbols
must be fixed at β for computing these distances. The five remaining sequences are used to
begin the next stage.

For the point numbered 7 in table 9, the beginning collection of αi is:

A dist:0.249867
AA dist:2.98898

At the 7th stage, we are left with the following collection:

ABABBBBABBBA dist:0.000220551
ABABBBBABBBAA dist:0.00120674
ABABBBBABBA dist:0.00535478
ABABBBBABBAA dist:0.00790187

At the 17th and final stage, we have the following collection:

ABABBBBABBBABABAABAAAAAAABBBAABAA dist:1.30158e-12
ABABBBBABBBABABAABAAAAAAABBBAABAAA dist:7.89513e-10
ABABBBBABBBABABAABAAAAAAABBBAABA dist:1.49464e-09

The computation for this point was run with β = ABB.
Computation of each of the periodic orbits listed in table 8 using this method involved the

computation of a few hundred periodic orbits in the intermediate stages. Table 9 shows the
Lyapunov exponents of the periodic orbits that pass as closely as machine precision allows to
11 randomly generated points. The wide variation of Lyapunov exponents in table 9 indicates
the difficulty faced by numerical methods that attempt to compute the Lyapunov exponent by
direct numerical integration.

8. Conclusion

Lorenz [10] used numerical integrations to support his argument that bounded, nonperiodic
flows are necessarily unstable, and to draw a series of conclusions about the geometry of the
Lorenz attractor. His integration used a time step of 0.01 and a one step numerical method



1054 D Viswanath

(the use of 64 Fourier points per symbol implies that the time step in our computations can be
longer). We have obtained plots of the fractal structure of the Lorenz attractor in section 4 and
derived a method to compute periodic orbits arbitrarily close to a given point on the Lorenz
attractor in sections 6 and 7. From a computational point of view, we have demonstrated the
symbolic dynamics approach to the numerical investigation of chaos. Even for the widely
studied Lorenz attractor, we have shown that this approach leads to far greater precision and
level of descriptive detail than any other approach.
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Appendix

This appendix discusses an extension of the Lindstedt–Poincaré algorithm for computing
periodic orbits presented in [16]. The computational problem is to find periodic solutions
of dz/dt = f (z), z ∈ Rd , starting with an initial guess z(t) = x(ωt), where x(τ) is a 2π

periodic function of τ and ω is a guess for the frequency. The Lindstedt–Poincaré algorithm
proceeds by solving the linear equation

ωẏ(τ ) = A(τ)y + r(τ ) − δωẋ(τ ),

where A(τ) = ∂f /∂x|x=x(τ) and r(τ ) = f (x(τ)) − ωẋ(τ ) is the residual error in the starting
guess. The solution y(τ) is the correction to x(τ) and δω is the correction to ω. It is different
from other Newton methods mainly in the systematic use of Fourier series to represent x(τ)

and also in the use of the Lindstedt–Poincaré technique to compute δω. We make some points
about the method below.

(1) The numerical computation of any mathematical object can be only as accurate as its
representation permits. The representation of periodic orbits by Fourier series is both
accurate and efficient because, for analytic vector fields, the Fourier coefficients decrease
exponentially. Moreover the residual error r(τ ) can always be computed accurately,
even when the guess itself is inaccurate, as its computation requires only the fast Fourier
transform and the evaluation of the vector field at points on the equispaced Fourier grid.
It might appear, however, that the Fourier representation of f (x(τ)) could require many
more points than the Fourier representation of x(τ) because f is nonlinear; for example,
the Fourier representation of

√
3 + cos τ up to machine precision requires many more

points than the Fourier representation of cos τ . Such a need for padding Fourier series to
eliminate aliasing error never arises in the Lindstedt–Poincaré algorithm because x(τ) is
not just any Fourier series but a representation of a Fourier series close to a solution of
the system ẋ = f (x). Even though f (x) is nonlinear, it is equal to ẋ which is a linear
function of x. Therefore, there must be a conspiracy between the nonlinear vector field
f and the solution x(τ) that completely eliminates any need to pad Fourier series while
computing the residual error r(τ ).

(2) Every step of the method attempts to eliminate the residual error r(τ ) by computing
corrections y(τ) and δω. This residual error cannot be completely eliminated in a
single step because the correction equation is obtained by keeping only the linear part.
Further, it is not necessary to solve the correction equation with any great accuracy
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even when the final solution is desired to be as accurate as machine precision allows.
Computing the correction with only three digits of accuracy, e.g., is enough to improve
the guess by three digits of accuracy, and upon successive iterations, the guess will become
more and more accurate. The key is to compute the guess r(τ ) accurately and it is here that
the Fourier representation proves essential.

(3) There are some auxiliary linear ODEs that arise in the solution of the correction equation
[16]. It is convenient to take the step size of the Runge–Kutta method used for solving those
ODEs to be equal to the spacing between neighbouring points on the Fourier grid. Data
needed for the intermediate stages of the Runge–Kutta methods can be easily obtained by
shifting Fourier series. The ability of the methods derived in [1] to compute oscillations,
which is due to the use of the matrix exponential by those methods, makes them a good
choice in the Lindstedt–Poincaré algorithm.

(4) The Lindstedt–Poincaré algorithm presented in [16] uses single shooting to solve the
correction equation. A multiple shooting version requires only a slight modification. As
even a coarse solution of the correction equation suffices as explained above, even highly
unstable periodic orbits can be computed with only a few shooting intervals. For example,
a periodic orbit with leading characteristic multiplier of 1060 can be computed using only
five or six shooting intervals.

A particularly felicitous way to improve the convergence of Newton iterations is the dogleg
trust region method discovered by M J D Powell (see [4]). The only ingredient necessary to
incorporate the dogleg method into the Lindstedt–Poincaré iteration is a formula for the gradient
of the residual. A simple variational calculation shows the gradient along x(τ) to be

2(AT(τ )r(τ ) + ωṙ(τ )),

and the gradient along ω to be

−2
∫ 2π

0
〈r(τ ), ẋ(τ )〉 dτ.

For the computations presented in the preceding sections, the above formulae were used to
modify the Lindstedt–Poincaré method.
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