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Abstract

In a 1963 paper, Lorenz inferred that the Lorenz attractor must be an infinite complex of surfaces. We investigate this
fractal property of the Lorenz attractor in two ways. Firstly, we obtain explicit plots of the fractal structure of the Lorenz
attractor using symbolic dynamics and multiple precision computations of periodic orbits. The method we derive for multiple
precision computation is based on iterative refinement and can compute even highly unstable periodic orbits with long symbol
sequences with as many as 100 digits of accuracy. Ordinary numerical integrations are much too crude to show even the
coarsest splitting of surfaces, and there appear to be no other explicit computations of the fractal structure in the extensive
literature about the Lorenz attractor. Secondly, we apply a well known formula that gives the Hausdorff dimension of the
Lorenz attractor in terms of the characteristic multipliers of its unstable periodic orbits. The formula converges impressively
and the Hausdorff dimension of the Lorenz attractor appears to be 2.0627160. We use comparison with explicit computations
of the fractal structure and discuss the accuracy of this formula and its applicability to the Lorenz equations. Additionally, we
apply periodic orbit theory to the Lorenz attractor and exhibit its spectral determinant and compute its Lyapunov exponent.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The systematic study of the differential equations:

ẋ = σ(−x+ y), ẏ = −xz+ rx − y, ż = xy− bz,

with σ = 10, r = 28, andb = 8/3, by Lorenz[10] led to the discovery of the butterfly-like Lorenz attractor, an
image that has become commonplace in textbooks on chaos theory. The path that led Lorenz to these equations
began with an effort to find a simple model problem for which the methods used for statistical weather forecasting
would fail. The Lorenz equations are also connected to other physical phenomena[15].

In Fig. 1, we have plotted a single periodic orbit of the Lorenz equations. By an ingenious argument, Lorenz
inferred that although the Lorenz attractor appears to be a single surface, it must really be an infinite complex
of surfaces; in other words, the Lorenz butterfly must be a fractal. Lorenz’s paper has been as influential as it is
insightful, yet there has not been a single computation of the splitting of the Lorenz attractor into a complex of
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Fig. 1. This plot shows a single periodic orbit of the Lorenz equations. The crossing of trajectories to different wings of the butterfly and the
apparent merging of the two surfaces are both evident in this plot. The symbols A and B are assigned to every intersection of a trajectory with the
two sections shown in the figure. The symbol sequence that corresponds to the periodic orbit shown above is ABA2B2 · · · A15B15. Even though
this periodic orbit is highly unstable with a characteristic multiplier of 3.06e+59, the method described inSection 2can compute starting data
for this periodic orbit with 100 digits of accuracy.

surfaces. This is probably because the splitting of the surface of the Lorenz attractor cannot be computed by direct
numerical integration. If a trajectory is integrated for even a long period of time and its intersection with the Poincaré
sectionz = 27 is plotted, the intersection appears to be a one-dimensional object—a simple curved line and its
symmetric image. Lorenz[11, p. 140]has said that he initially concluded that the two wings do indeed merge and
that the curved line is what it appears to be—a one-dimensional object. This initial conclusion, however, could not
be reconciled with the mathematical fact that distinct trajectories of the Lorenz equations cannot merge. For this
conflict to go away, the Lorenz attractor has to be an infinite complex of surfaces.

A description of the first split in the surface can be used to pinpoint the reason why plots of the fractal structure
of the Lorenz attractor cannot be obtained by direct numerical integration. It is obvious fromFig. 1that trajectories
that start off on section A can have their next landings on either section A or B. In fact, the points where these
landings occur appear to span the intersection of the entire Lorenz attractor with both sections A and B. The same
is true for trajectories which start off from section B. If we consider the intersection of the Lorenz attractor with
the section A, the points that emanate from A must be on a line that is distinct from the points that emanate from
B. However, a simple estimate, such as that given by Lorenz[10], shows that the distance between these two lines
will about 3× 10−5. This distance is about five orders of magnitude smaller than the extent of the Lorenz attractor.
Therefore, for the separation of surfaces to be visible, a plot of the intersection of the Lorenz attractor with the
Poincaré sectionz = 27 has to zoom in on a very tiny region of the section. Further, the direct numerical integration
has to be carried on for a very long time if we are to find sufficiently many points in that tiny region, and the
integration has to be accurate for the plot to be meaningful. The surface of the Lorenz attractor splits first into two
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surfaces, as we just explained, and those two surfaces split again into four, and those four split into eight, and so
on. The plot will have to zoom in on ever tinier regions to make these further splits visible. Computing even this
first split is probably outside the reach of direct numerical integration. For plots of further splits, not only do the
direct numerical integrations have to be much longer, they also have to be much more accurate. Plots of the fractal
structure of the Lorenz attractor shown inFig. 2are impossible to obtain using direct numerical integration.

It is necessary then to devise a method for finding points of the Lorenz attractor in even very tiny regions of
either section A or section B shown inFig. 1. We describe how to find such points inSection 3. That method relies
on the ability to compute periodic orbits of the Lorenz equations with specified symbol sequences. It is possible to
associate a symbol sequence with any periodic orbit of the Lorenz equations in the following way. Assume that the
starting point of the periodic orbit is on either section A or section B. The first symbol is either A or B depending
upon which section the periodic orbit starts from. As the periodic orbit is traversed, it lands on the sections A or B
in some order. A symbol is appended for every landing till the periodic orbit returns to its starting point. The symbol
sequence assigned to a periodic orbit depends upon its starting point, and we will always assume that the starting
point is on either section A or section B.

Fig. 1 shows a periodic orbit of the Lorenz attractor that was computed to have a specified symbol sequence
of length 240. We used methods derived in[17,18] to compute the periodic orbit shown inFig. 1. Those methods
compute periodic orbits with accuracy close to the best possible in IEEE double precision arithmetic. Thus the
starting point of a periodic orbit of specified symbol sequence can be located with about 14 or 15 digits of accuracy.
Unfortunately, even this level of accuracy is insufficient to obtain detailed plots of the fractal structure of the Lorenz
attractor. InSection 2, we describe a numerical method for refining a computation of a periodic orbit to increase
its accuracy. This numerical method uses multiple precision arithmetic, as it must, but it limits its usage of multiple
precision arithmetic operations to only a fraction of the total number of arithmetic operations necessary at each
step of refinement. Thus even though the cost of multiple precision arithmetic operations is great, the computations
remain manageable. InSection 2, we report a few periodic orbits computed with 100 digits of accuracy. With
this numerical method, it is possible to compute the fractal structure of the Lorenz attractor in detail as shown in
Section 3. For fractals like the Mandelbrot set, it is easy to zoom in on successively smaller regions and exhibit the
self similarity property. The Lorenz attractor too has the same self similarity property as Lorenz inferred, and our
Fig. 2shows plots that convincingly exhibit the fractal property of the Lorenz attractor.

Although numerical computations are widely used in investigations of dynamics, they are not always reliable.
As discussed above, typical numerical computations are incapable of revealing the fractal structure of the Lorenz
attractor. More generally, it can be difficult to assert the existence of chaos with confidence based on numerical
computations. Motivated partly by a wish to remedy this deficiency, methods to perform rigorous computations of
dynamics have been developed[12,16]. Indeed the Lorenz equations have been a favored target for these methods
[13,16]. While the computation of mathematical objects such as the Conley index or the invariant cone field by these
methods uses machine arithmetic, the errors are rigorously bounded using interval arithmetic and other techniques,
so that, in the end, it is possible to assert theorems based on the computation. Methods based on the Conley index,
in particular, have already been applied to a variety of problems[12]. Although the methods developed here and
in [17,18] lead to highly accurate computations, they do not lead to a proof that the computed objects, such as
the one displayed inFig. 1, actually exist. The type of rigor that these computations aim for is not that of the
mathematical proof, but the equally exacting notion of rigor found in the experimental sciences. When the velocity
of light is experimentally found to be a certain number, the validity of that number relies on two principles. Firstly,
it must be possible to reproduce the experiment. In practice, however, reproduction of experiments can require
skill, and this is certainly true not only for the determination of the velocity of light but also for the computations
reported here. The computations reported here rely on the methods developed in[17,18]in addition to the methods
developed in this paper, and altogether, the code is nearly several thousand lines of C++. The second—and far more
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important—principle of experimentation is that the experiments can be either verified or refuted using experiments
based on independent ideas. Ultimately the validity of an experiment to determine the velocity of light depends
entirely on the digits in the answer that is found, because each of these digits can be picked apart by other experiments
and is open to refutation. With this principle in mind, we have reported computations in great detail, and with many
digits of precision, in this paper and in[17,18]. Considerations that lead us to believe that the numbers in this paper
are as accurate as we report them to be are given inSection 2. A convergence theorem proved inSection 2is a part
of those considerations.

There are formulas available for the Hausdorff dimension and other fractal dimensions of chaotic sets like the
Lorenz attractor[2,6]. These formulas can be applied to derive estimates of the Hausdorff dimension of the Lorenz
attractor when periodic orbits corresponding to all symbol sequences of length about 10 or less are known[4,5]. It is
necessary to compute periodic orbits with symbol sequences of length 16 or more to obtain a satisfactory plot of even
the first split in the surface of the Lorenz attractor. Therefore, it may be puzzling why the formulas can be applied using
only periodic orbits with symbol sequences of length around 10. Unlike a direct computation of the fractal structure,
the formulas use information from the local linearization around the periodic orbits. Thus estimates of the Hausdorff
dimension derived from the formulas may be expected to be better than estimates derived from a direct computation
of the fractal structure of the Lorenz attractor. InSection 4, we use data computed in[18] and apply the formula to es-
timate the Hausdorff dimension of the Lorenz attractor using all 111 011 periodic orbits of the Lorenz equations with
symbol sequences of length 20 or less. We find that the impressive convergence reported in[5] continues. We com-
pare this computation with the explicit computation of the fractal structure inSection 3and discuss the accuracy of
the formula and its applicability to the Lorenz attractor.Section 5applies periodic orbit theory to the Lorenz attractor.

2. Numerical method

The methods described in[17,18] can compute the starting point of a periodic orbit of the Lorenz equations of
specified symbol sequence with 14 or 15 digits of accuracy. The entire periodic orbit is represented as a Fourier
series. The numerical method described here uses multiple precision arithmetic and is based on iterative refinement
[8,14]. Its input is a periodic orbit represented as a Fourier series with 14 or 15 accurate digits. It refines the input
and outputs Fourier series for the same periodic orbit with as many as 100 accurate digits. The output Fourier series
may need to be shifted in the time domain so that the starting point of the given symbol sequence occurs at the first
point on the Fourier grid. The plots of the fractal structure of the Lorenz attractor given inSection 3use starting
points of periodic orbits computed with 40 accurate digits.

The Newton iteration described in[17] starts with a guessx0(τ) ∈ Rd , which is 2π periodic, and a frequencyω0.
It tries to improve this guess, and obtain a more accurate periodic solution of the differential equation dx/dt = f(x),
with x, f(x) ∈ Rd , by solving the linear system:

ω0ẏ(τ) = A(τ)y + r(τ)− δωẋ0(τ) (2.1)

for y andδω. The residualr(τ) is given byr(τ) = f(x0(τ)) − ω0ẋ0(τ) andA(τ) = (∂f/∂x)|x=x0(τ). The use of the
Lindstedt–Poincaré technique to solve(2.1) is described in[17]. Relative residual error is obtained by dividing the
usual Hilbert space norm of the 2π periodic functionr(τ) by the norm off(x0(τ)).

Iterative refinement is combined with the Newton iteration as explained below. For concreteness, we will assume
that the final output must be a periodic orbit accurate to 100 digits:

1. Compute a periodic orbit represented as a 2π periodic functionx0(τ) and a frequencyω0 to about 14 digits of
accuracy. ComputeA(τ) andẋ0(τ) for repeated use in step 5. Even though this guess has only about 14 digits of
accuracy, the number of Fourier points used to represent it must be sufficient for 100 digits of accuracy.
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2. Representx0(τ) andω0 using numbers with 100 digit mantissas.
3. Compute the residualr(τ) using 100 digit arithmetic.
4. Convert the residualr(τ) to IEEE double precision.
5. Solve(2.1) in IEEE double precision fory andδω.
6. Perform the updatesx1 = x0 + y andω1 = ω0 + δω using 100 digit arithmetic.
7. Return to step 3, replacex0 andω0 by x1 andω1, and repeat till the relative residual error is smaller that 10−100.

The iterative refinement described above fails unless the guessx0(τ) is smoothed at the beginning or at the end
of every iteration. We used the software package MPFUN++ for multiple precision arithmetic. The FFT supplied
with that package was used to compute the residual and to smooth the guess.

The effect of freezingA(τ) andẋ0(τ) at the beginning is thatEq. (2.1)cannot be solved exactly; it is not even
formed exactly. This is not a problem because in any event(2.1) is solved only with a relative error of about 10−5.
We prove the convergence of the iterative refinement procedure in two steps.Theorem 2.1is a modified version
of a theorem given in[17]. The modification supplies different estimates for the constantsC1, C2, andC3. The
earlier estimates are wildly unrealistic for periodic orbits with characteristic multipliers greater than 1010 such as the
periodic orbit displayed inFig. 1. Theorem 2.1assumes that the correctionequation (2.1)is solved exactly, which
is not the case in the iterative refinement procedure described above.Theorem 2.2only assumes that the correction
equation (2.1)is solved with a certain relative accuracy as in the iterative refinement procedure described above.

Theorem 2.1. Assume that̄ω andx̄(τ) give a hyperbolic2π periodic orbit ofωẋ(τ) = f(x). They also give a2π/ω̄
periodic orbit ofẋ(t) = f(x). Assumex ∈ Rd and thatf(x) is twice continuously differentiable. Letω0 andx0(τ),
which must be2π periodic, be approximations tōω and x̄(τ). Let δω̄ = ω̄ − ω0 and ȳ = x̄− x0. Assume

|δω̄| < ε, ‖ȳ(τ)‖ < ε, 0 ≤ τ ≤ 2π, ‖˙̄y(τ)‖ < ε, 0 ≤ τ ≤ 2π.

Letδω andy(τ) be the corrections toω0 andx0(τ) obtained by solving the correction equation(2.1)along with the
condition(2.3)exactly. Letω1 = ω0 + δω andx1 = x0 + y. Then

|ω1 − ω̄| < C1ε
2, ‖x1(τ)− x̄(τ)‖ < C2ε

2, 0 ≤ τ ≤ 2π, ‖ẋ1(τ)− ˙̄x(τ)‖ < C3ε
2, 0 ≤ τ ≤ 2π

for ε < ε0 for someε0 > 0. The constantsC1, C2, and C3 are given byC1 = c1
√
m+ 1(σ1/σ2), C2 =

c2(
√
m+ 1(σ1/σ2) + σ1), C3 = c3(

√
m+ 1(σ1/σ2) + σ1). The constantsc1, c2, and c3 depend only upon the

magnitudes off(x) and its first and second derivatives in a neighborhood of the periodic orbit. The constantm is
an arbitrary positive integer. The constantσ1 is given by

σ1 = sup
0≤s≤t≤2π,|s−t|≤2π/m

‖Y(t)Y−1(s)‖,

whereY(t) is the fundamental solution matrix of the linear systemẏ = A(τ)y with Y(0) being the identity matrix.
The constantσ2 is the minimum singular value of a matrix that is described in the proof. The dimension of that
matrix and its entries depend upon the choice of the constantm.

Proof. As shown in the proof of Theorem 3.1 in[17], δω̄ andȳ satisfy the equation:

ω0 ˙̄y = A(τ)ȳ + r(τ)− δω̄ẋ0(τ)+ p(τ), (2.2)

wherep(τ) is a 2π periodic function corresponding to the term ignored when the correctionequation (2.1)is formed
by linearizing. If the correctionequation (2.1)is solved exactly, all the error inx1 andω1 comes from neglecting
the termp(τ). The proof of Theorem 3.1 in[17] used a single shooting procedure to represent the solution of
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(2.2). To obtain the expressions for the constantsC1, C2, andC3 given above it is necessary to use a multiple
shooting procedure to represent the solution of(2.2). To this end, leth = 2π/m for some positive integerm. Let
Mi = Y(ih)Y−1((i− 1)h) for 1 ≤ i ≤ m. Let fi = z(ih) for the solution oḟz = A(τ)z+ r(τ), z((i− 1)h) = 0 for
1 ≤ i ≤ m. Similarly, letgi = z(ih) for the solution oḟz = A(τ)z + ẋ0(τ), z((i − 1)h) = 0 for 1 ≤ i ≤ m; and
Pi = z(ih) for the solution oḟz = A(τ)z+p(τ), z((i−1)h) = 0 for 1 ≤ i ≤ m. Letyi = ȳ(ih) for 0 ≤ i < m. Then

M1y0 + f1 + P1 = y1 + δω̄g1, M2y1 + f2 + P2 = y2 + δω̄g2, . . . ,

Mmym−1 + fm + Pm = y0 + δω̄gm.

Since a periodic solution of the autonomous systemẋ = f(x) can be shifted in time,̄y andδω̄ are not determined
uniquely by the starting guessesx0 andω0 and the exact solution. We eliminate this freedom by imposing the
condition:

m−1∑

i=0

f(x0(ih))
T yi = 0, (2.3)

wheref(·) is the vector field. The equations above form a linear system of dimensionmd+ 1 for the variables
δω̄ andyi, 0 ≤ i < m. The constantσ2 is the minimum singular value of this linear system. When the correction
equation (2.1)is solved exactly to compute the correctionsy andδω, all the error is due to neglecting the termsPi
in the equations above.

From this point, the proof can be completed by following the proof of Theorem 3.1 in[17]. However, a difference
is in the appearance of the

√
m+ 1 factor in the bounds for the constantsC1, C2, andC3. We now explain this

factor. As noted in[17], ‖p(τ)‖ < cε2 for 0 ≤ τ < 2π and a constantc that depends only the second derivative
of f in a neighborhood of the periodic orbit. Again as in[17], it follows that‖Pi‖ < c′σ1ε

2. Since all thePi are
neglected in solving the linear system, the norm of the neglected vector is bounded above by

√
m+ 1c′σ1ε

2 and
this is the source of the

√
m+ 1 factors in the theorem stated above. �

The development of the multiple shooting method is described in[9]. It appears possible to stateTheorem 2.1
using the Banach space approach described in[9]. In the statement, we have adopted, the bounds are given in terms
of quantities formed in the intermediate stages of the computation of a periodic orbit.

Theorem 2.2. If the assumptions are as inTheorem 2.1, except that the correctionsy, δω and the derivativėy are
computed with relative errors less thanε′ and not exactly, then

|ω1 − ω̄| < C1(εε
′ + ε2), ‖x1(τ)− x̄(τ)‖ < C2(εε

′ + ε2), 0 ≤ τ ≤ 2π,

‖ẋ1(τ)− ˙̄x(τ)‖ < C3(εε
′ + ε2), 0 ≤ τ ≤ 2π

for ε < ε0, ε′ < ε0, for someε0 > 0. The constantsC1, C2, andC3 can be chosen as inTheorem 2.1.

Proof. We first argue that the correctionsyi andδω obtained by solving themd+1-dimensional linear system in the
proof ofTheorem 2.1afterdropping thePi terms have norms bounded above by a constant timesε. The right-hand
side of that linear system is formed by the quantitiesfi and these quantities are formed by propagating the residual
errorr(τ) of the starting guessx0(τ), ω0. Since the errors in the starting guess|ω0 − ω̄|, ‖x0 − x̄‖, and‖ẋ0 − ˙̄x‖ are
all bounded above by a constant timesε, the residual errorr(τ) = f(x0(τ))− ω0ẋ0(τ) is also bounded above by a
constant timesε. This constant only depends uponf and its first two derivatives in a neighborhood of the periodic
orbit. It follows that the quantities‖fi‖ are bounded above bycσ1ε, for a constantc that depends onf and its two
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derivatives in a neighborhood of the periodic orbit. This implies that‖yi‖, 0 ≤ i < m, and‖δω‖ are bounded above
by c(σ1/σ2)ε, with a constantc of the same type.

Now assume thatyi andδω are computed with a relative accuracy ofε′ and not by solving the linear system
exactly as in the previous paragraph. Denoteyi andδω computed as in the previous paragraph byyei andδωe. Then
‖yi − yei ‖ < c(σ1/σ2)εε

′ and‖δω − δωe‖ < c(σ1/σ2)εε
′. Adding these bounds to those given inTheorem 2.1

completes the proof of the bounds for|ω1 − ω̄| and‖x1(τ)− x̄(τ)‖.
To prove the bound for‖ẋ1(τ) − ˙̄x(τ)‖, it is necessary to obtain a bound for‖ẏ(τ)‖, wherey(τ) is the exact

solution of the correctionequation (2.1)with the condition(2.3). Such a bound is readily obtained sinceẏ =
A(τ)y + r(τ)− δωẋ0(τ) andy, r, andẋ0 have already been bounded. �

Below we give data for three periodic orbits of the Lorenz equations, all of them unstable. We give thex andy
coordinates of a point on the periodic orbit withz = 27, and the periodT of the periodic orbit. The periodic orbit
AB alternates between the negative and positive wings of the Lorenz attractor. Its data is as follows:

x = −13.763610682134200525014401054361653864100864854092368453537864292120282774726811585294023934639503828,

y = −19.578751942451795538838041446009558866114240053427643864979133429542635474614752641597316550670467617,

T = 1.5586522107161747275678702092126960705284805489972439358895215783190198756258880854355851082660142374.

Data for the periodic orbit A25B25 is as follows:

x = −9.1667531454203668088823435688547607789225800334959147908463068489602923367949043469193835587645010324,

y = −9.9743951128271827345161884281709643013815947125948301035567025538830868522225373223436220212323688956,

T = 36.043958707914849533151673848862974502009243730020190798586123062370108760553858014094134100572851733.

Finally, the data for the periodic orbit ABA2B2 · · · A15B15 is as follows:

x = −13.568317317591138693791116532738086146665425413802770267307341928920639925115986035379124247913350182,

y = −19.134575113926898610482106145675590555238063694018831440659257986585209042730623744601562225619287641,

T = 171.86372913973174676014481271369986804353836527546572814842984169003209300163561597123596376874805444.

All 100 digits in the numbers reported above are accurate after rounding.
The periodic orbit AB is the simplest periodic orbit of the Lorenz equations. Its leading characteristic multiplier

is 4.71. The periodic orbit A25B25 passes very close to the origin, which is a part of the Lorenz attractor, as shown in
[18]. Its leading characteristic multiplier is 4.8× 1017. The periodic orbit AB· · · A15B15 has leading characteristic
multiplier equal to 3.06× 1059. It is possible to verify the first 15 or 16 digits of the data given for AB using a high
order numerical integrator and short time steps. If an eighth order Runge–Kutta method is used, for example, the
time steps have to be about 0.01 or 0.001. However, it is not possible to verify all 100 digits of the data even for
the simple periodic orbit AB using a multiple precision numerical integrator. For the local truncation error to be of
the order of 10−100, the time steps have to be so small that the computation becomes prohibitively expensive. In
comparison, the number of Fourier grid points needed to represent the periodic orbit AB with 14 or 15 accurate digits
is 128, and if the level of accuracy desired is 100 digits, the number of Fourier grid points needed is 1024. The high
precision computations given in this paper take full advantage of the exponential decrease of the Fourier coefficients
of analytic functions, and indeed those computations are possible only because of the use of Fourier series.

Methods of quantifying the error can be based on the residualr(τ). One such quantity, the relative residual error, was
defined earlier in this section. Since we represent approximations to solutions as Fourier series, the computation of
the residual is particularly direct. All that is needed is the direct substitution of the Fourier series into the differential
equation dx/dt = f(x) followed by an examination of how nearly the two sides of the equality cancel. If the
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arithmetic uses 100 digits, the method described in this section can find anapproximationx0(t) to the true solution
whose relative residual error is as small as 10−100. This does not imply that the relative error inx0(t) itself is as small
as 10−100. It can in fact be greater and for the sake of discussion, we will suppose that the relative error inx0(t) is as
large as 10−50. Even though the loss of 50 digits may seem disappointing, such a loss of accuracy is inevitable in any
computation. Suppose there is another guessx1(t)whose relative accuracy is 10−100. When the relative residual error
is computed usingx1(t), it will again be around 10−100, just as forx0(t), since the arithmetic does not permit more
that 100 digits in computing the residual. Thus within the confines of 100 digit arithmetic, the guessesx0(t) andx1(t)

are indistinguishable and there can be no computational method for improvingx0(t) to get something closer tox1(t).
The data for periodic orbits given above is mindful of the distinction between the relative residual error and the rela-

tive error of the guess itself. The connection between these two types of errors is made by the correctionequation (2.1)
which attempts to compute the correctionsy(τ) andδω from the residualr(τ). The conditioning of the connection
betweenr(τ) and the actual errors in the guess becomes evident during the intermediate stages of the computation,
and numbers that govern this conditioning have been explicitly exhibited in the bounds ofTheorems 2.1 and 2.2.
We have taken those numbers into account in reporting data here and in[18]. A more heuristic approach is to look at
the digits of the computed approximation and observe which ones do not change with repeated iterations. It may be
verified, for example, that all data for the periodic orbits AB, A25B25, and AB· · · A15B15 is in agreement with the
less accurate computations of[18]. As pointed out inSection 1, these considerations by no means imply the existence
of a periodic orbit such as A25B25; they only suggest that the chances of nonexistence are extraordinarily small.

Above, data for some periodic orbits is reported at particular points along the orbits. Therefore, the distinction
between normwise errors and pointwise errors must be considered as well. It is impossible in general to make the
pointwise errors small in a relative sense. One of the components of a solution can be tiny, even zero, and there is
no way to prevent remote parts of the periodic orbit from contributing to the error in that component. The number
of digits in pointwise data that can be deemed correct is determined by absolute errors. The Fourier series used to
represent periodic orbits use only thousands of terms. Thus even in the worst case where all the normwise error is
concentrated in a single component, the pointwise data will be accurate in an absolute sense. Typically, we may
expect the normwise error to be spread around the periodic orbit and that the relative error at a typical point along
the orbit is about the same as that of the relative error of the approximation to the periodic orbit considered as a
whole.

3. Fractal structure of the Lorenz attractor

As mentioned inSection 1, it is necessary to compute points located in tiny regions of the Poincaré section
z = 27 to obtain plots of the fractal structure of the Lorenz attractor. The method we use for locating points of the
Lorenz attractor in tiny regions (like the region plotted in the plot numbered 6 inFig. 2, whose extent is 35 orders
of magnitude smaller than the extent of the Lorenz attractor) is related to the inverse limit construction[7,10,19].
Locally the intersection of the Lorenz attractor with the Poincaré section looks like the product of a closed interval
with a Cantor set. This Cantor set has the structure of a middle-α Cantor set, where theαth portion of a closed
interval is removed from its middle and the same operation is recursively applied to the two remaining closed
intervals at the ends. The fractionα is less than 1 by about 10−5 and is hence very close to 1. The resulting Cantor
set is an uncountable union of points, which are like the leaves of an infinite binary tree, and has fractional Hausdorff
dimension. If the root of the binary tree is assigned a depth 0, there are 2d nodes at depthd, and each of these nodes
corresponds to a closed interval. The lengths of the intervals corresponding to the nodes decreases geometrically
with the depth of the nodes. Since the attractor looks like the product of a line segment with a middle-α Cantor set
locally, it can be thought of as a union of Cantor lines, where each Cantor line is the product of the line segment
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Fig. 2. The plots above are numbered from 1 to 6. Each is a plot ofy−b againstx−a. Table 2lists the points(a, b). Each plot shows two Cantor
bundles of the Lorenz attractor at the Poincaré sectionz = 27. The connection of these plots toTable 1is explained in the text. The number in
the lower right-hand corner is the scale factor for thex andy axes.

with a point in the Cantor set. The product of the line segment with an interval corresponding to a node at depth
d is therefore a bundle of Cantor lines. The lines in the plots inFig. 2correspond to these Cantor bundles. It must
also be pointed out that the fraction that is removed from closed intervals is not a fixed numberα for the Lorenz
attractor, but varies from node to node.

Let P be the starting point of a periodic orbit whose symbol sequence is s. The symbol sequence s is related to
the location of P in the Lorenz attractor. The location of P is determined by its position on the one-dimensional
skeleton of the intersection of the Lorenz attractor with the Poincaré section and by the Cantor line it lies upon. Both
these are related to the symbol sequence, but in different ways. The symbol sequence s determines the position of
P on the one-dimensional skeleton in the same way the binary expansion of a fraction determines its position in the
interval [0,1]. Let Q be the starting point of another periodic orbit whose symbol sequence is s′. Assume that the
first i symbols in s and s′ coincide but that the(i+ 1)st symbols are different. Then the distance between P and Q
along the one-dimensional skeleton will be smaller for largeri. For the Lorenz attractor, the distance roughly halves
for every additional matching symbol.

The Cantor line that P lies upon is also determined by the symbol sequence s. The symbol sequence now has
to be read backwards beginning with the last symbol. The symbol sequence read backwards will correspond to a
node in the infinite binary tree, and if only the last few symbols of s are considered, they will correspond to a node
that is the parent of the node that corresponds to s. These nodes in turn correspond to Cantor bundles, and P will
lie in those Cantor bundles. It is possible to take the symbol sequence corresponding to P to be ss, sss, and so on,
and find thinner and thinner Cantor bundles, and eventually a Cantor line, that must contain P. For every additional
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Table 1
Plots inFig. 2correspond to this tablea

n α β Distance

1 ABABABABABABABABABABABAB A 2.96044e −0.8
2 ABABABABABABABABABABABABABABABABABABABAB BA 1.12766e −13
3 ABABABABABABABABABABABABABABABABABABABABABABABABABABABA ABA 1.73144e −1.8
4 ABABABABABABABABABABABABABABABABABABABABABABABABABABAB-

ABABABABABABABAB
BABA 1.57786e−23

5 ABABABABABABABABABABABABABABABABABABABABABABABABABABAB-
ABABABABABABABABABABABABABABABA

ABABA 1.86012e−28

6 ABABABABABABABABABABABABABABABABABABABABABABABABABABAB-
ABABABABABABABABABABABABABABABABABABABABABABAB

BABABA 1.95584e−33

a The columnsα andβ give the starting and ending symbol sequences used to determine the Cantor bundles plotted inFig. 2. The last
column gives the distance between two nearly parallel straight lines that fit the lines in the plot numberedn in Fig. 2. Another way to measure
the distance between the lines is along the stable foliation.

backward symbol, the corresponding node in the infinite binary tree is at a depth greater by 1, and the girth of the
corresponding Cantor bundle is smaller by a factor that is approximately 10−5.

Assume that P and Q are the starting points of periodic orbits with symbol sequencesαxβ andαyβ, whereα, β,
x, andy are strings of As and Bs. Ifx �= y, the distance between P and Q along the one-dimensional skeleton of
the intersection of the Lorenz attractor with the Poincaré section is determined by the number of symbols inα. The
distance between the Cantor lines that contain P and Q (this distance is along a line transverse to the one-dimensional
skeleton) is determined by the number of symbols inβ. Since every additional symbol inα causes the distance to
decrease by a factor that is about 1/2, while every additional symbol inβ causes the distance to decrease by a factor
that is about 10−5, it is necessary to take many more symbols inα than inβ if these distances are to be balanced.
The lengths of theαs and theβs listed inTable 1are chosen so that the two distances are of the same order for points
P and Q. Each plot inFig. 2 is obtained by plotting the starting points of all periodic orbits with symbol sequence
of the formαxβ, wherex varies over the 16 possible symbol sequences of length 4. The 16 points line up along two
lines in each case. These lines are the Cantor bundles for the ending sequences Aβ and Bβ, respectively. It is also
evident fromTable 1that the starting sequenceα for a higher numbered plot is obtained by appending symbols at the
end of theα for a lower numbered plot. Similarly, the ending sequenceβ for a plot is obtained by appending a single
symbol at the front of theβ for the previous plot. This ensures that each plot zooms in on a tiny region in the previous
plot, too tiny in fact to be shown inFig. 2. The containment relationship between a plot and its previous plot can be
inferred fromTable 2, however. Further, because theβ’s increase one symbol at a time, the Cantor bundles that can
be seen in a plot are obtained by removing the middle portions of one of the two Cantor bundles in the previous plot.

Fig. 2 may give the impression that Cantor bundles of the Lorenz attractor are straight lines. This is far from
being true. For example, it is clear fromTable 3that the distance between the same Cantor bundles can depend a

Table 2
The points of the Lorenz attractor plotted inFig. 2are centered atx = a andy = b in the planez = 27

n a b

1 −13.764318917690414925022830902023965876189 −19.578490037982618846341494795388351482041
2 −13.764318894388820868962416471783533350650 −19.578490021642010277850042121844164884100
3 −13.764318894388828755035202962819358269485 −19.578490021641887589995227600060138207047
4 −13.764318894388828754638773391293198413650 −19.578490021641887591249375829935211870775
5 −13.764318894388828754638777146411062863846 −19.578490021641887591249364726660511246751
6 −13.764318894388828754638777146356549931052 −19.578490021641887591249364726767981118157
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Table 3
The first and second set of rows in the table below use the same ending symbol sequencesβ but different starting sequencesαa

α β Distance

BAAAAABABBAAABABBABABBAB A 1.79459e −10
BAAAAABABBAAABABBABABBABBAAABABBABBBAAAB AA 8.70484e −15
BAAAAABABBAAABABBABABBABBAAABABBABBBAAABAABABBAAABBBAAA BAA 2.37141e −20

BBBAAABAAABBBBAAABBBBAAB A 1.47793e −08
BBBAAABAAABBBBAAABBBBAABABABBABBBAAABABB AA 4.22756e −13
BBBAAABAAABBBBAAABBBBAABABABBABBBAAABABBAABABABBBBABABB BAA 2.35906e −18

a The distance is between the Cantor bundles corresponding to the ending sequences Aβ and Bβ in the region of the Lorenz attractor
determined by the starting sequenceα.

lot on the point along their lengths where the distance is computed. The Cantor bundles appear to come close and
move apart in a complicated way. It is difficult to predict precisely where the Cantor bundles come close and where
they move apart. But it is possible that the Cantor bundles corresponding to the first row of the first table inTable 3
come close because of the string of 5 As following a single B in the starting sequence. From the plots inFig. 2and
Tables 1 and 3, it seems that the Lorenz attractor is a very complicated type of fractal.

In one respect, the investigation of the fractal structure of the Lorenz attractor given in this paper is incomplete.
For a mathematically tractable model of the Lorenz equations, it is shown in[19] that the Cantor leaves are tied to
the unstable manifold in the same way that the pages of a book are attached to its spine. In the Lorenz attractor too
something unusual has to happen to Cantor bundles, such as the ones shown inFig. 2, as they approach the part
of the unstable manifold near the boundary of the attractor. A computation of the fractal structure of the Lorenz
equations in this region has not been carried out. We have discussed this issue at greater length inSection 5of [18],
where we also discuss a possible method for investigating the Lorenz attractor in this tiny region.

4. Hausdorff dimension of the Lorenz attractor

The Hausdorff dimension is a number that can be associated with any fractal, however complicated. The number
of ε-balls needed to cover a fractal increases asε decreases. The Hausdorff dimension may be recovered from the
power law scaling relationship between this number andε. Unless the construction of the fractal set is especially
simple, the Hausdorff dimension is a difficult number to get hold of. The computations we have reported in the
previous section are sufficient only for a crude estimate of the Hausdorff dimension.

A known formula connects characteristic multipliers of periodic orbits to the Hausdorff dimension of a chaotic
attractor. LetF be an invertible map of the plane with a chaotic attractor. DefineDm by

∑

i

1

λi
λ
Dm
i = 1, (4.1)

where the summation is over all pointsxi in the attractor withFm(xi) = xi andλi the stable characteristic multiplier
of Fm atxi. It is argued in[2,6] thatDm converges to the Hausdorff dimension asm→ ∞.

In Table 4, we have used computations reported in[18] and the formula forDm above. However, eachDm listed
in Table 4gives an estimate for the entire Lorenz attractor and is therefore greater than theDm obtained from(4.1)
by 1. Computations using the formula are reported in[4,5]. Our computation agrees with[5] except for the case
m = 12. The disagreement form = 12 is because the computation reported in[5] misses some periodic orbits with
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Table 4
EstimatesDm for the Hausdorff dimension of the Lorenz attractor obtained using the characteristic multipliers of 111 011 periodic orbits with
symbol sequences of length 20 or less and(4.1)

m Dm

4 2.05915144e+00
5 2.06124450e+00
6 2.06207150e+00
7 2.06244322e+00
8 2.06257995e+00
9 2.06265149e+00

10 2.06268522e+00
11 2.06270128e+00
12 2.06270901e+00
13 2.06271278e+00
14 2.06271464e+00
15 2.06271557e+00
16 2.06271607e+00
17 2.06271589e+00
18 2.06271598e+00
19 2.06271603e+00
20 2.06271606e+00

symbol sequences of length 12 that actually exist. The computation in[5] goes up tom = 13. The computation in
[4] goes up tom = 9, but the numbers inTable 1of [4] do not agree with the numbers in ourTable 4.

The numbers inTable 4are converging to 2.0627160. . . But is that number really the Hausdorff dimension of the
Lorenz attractor? To answer this question, we attempt to connect the computations in the previous section to(4.1).
Arguments that lead to(4.1) use periodic orbits like our computations in the previous section, but the geometry
of the Lorenz attractor is inferred from the periodic orbits in a way that is entirely different. To explain the way
periodic orbits are connected to the geometry of the Lorenz attractor to obtain(4.1), we assumem = 3. Withm = 3,
the Lorenz attractor has two distinct periodic orbits with the symbol sequences AAB and BBA, respectively. These
give six periodic points of the map of the Poincaré plane induced by the Lorenz flow. We have seen in the previous
section that Cantor bundles can be obtained by fixing the ending sequence and varying the starting sequence. If
we consider the six Cantor bundles corresponding to the ending sequences AAB, ABA, BAA, BBA, BAB, and
ABB, each of the six periodic point will lie on a different one of these Cantor bundles. There are Cantor bundles
corresponding to the ending sequences AAA and BBB as well, but there are no periodic points in the sum with
m = 3 that correspond to these. To derive formula(4.1), it is necessary to think of each of these Cantor bundles as
having O(1) length and constant girth. The formula uses the stable characteristic multiplier of the periodic point on
the Cantor bundle as an estimate for its girth which, it is hoped, is off by atmost a constant factor. Withm = 20,
the formula pictures the section of the Lorenz attractor as being made up of 220—2 Cantor bundles of uniform girth
and O(1) length, and it infers the scale of the girth of a Cantor bundle using the stable characteristic multiplier of a
single periodic point on that Cantor bundle. We can use the computations reported in the previous section to check
if the Cantor bundles are of uniform girth and if their girth is correctly estimated by characteristic multipliers.

The distances listed inTables 1 and 3are the distances between Cantor bundles with ending sequences Aβ and
Bβ and give a good approximation to the girth of the Cantor bundle corresponding to the ending sequenceβ. It
follows fromTable 3that the girth can vary along the length of the section of the Lorenz attractor. There is still the
possibility however that the girth might be more and more uniform over the length of Cantor bundles corresponding
to longer ending sequences. For the Cantor bundles with the ending sequences BA, BABA, and BABABA the girths
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are about a thousandth of the estimate obtained from characteristic multipliers. This is not so bad, because it is more
important to get a scaling factor that is independent of the Cantor bundle than to get a scaling factor that is close to
1. Thus the computations of the previous section raise questions about the assumptions behind(4.1), but are unable
to conclusively verify or deny their validity. More extensive computations needed to examine those assumptions
are not possible with available computing resources.

It is not difficult to construct fractals in the plane whose local structure is given by a product of a line segment
with a middle-α type Cantor set, but whose Cantor bundles are of nonuniform girth. This can be done for example
by smoothly varyingα along the length of the line segment. If such fractals can be chaotic attractors, the main
assumption behind(4.1)will be false.

5. Application of periodic orbit theory to the Lorenz attractor

The starting point for the application of periodic orbit theory to the Lorenz attractor is a linear operator that
propagates probability densities supported inside the Poincaré section according the return map of the Lorenz
flow; see[1,3]. The traces of powers of this operator can be formally expanded as a sum over periodic orbits. The
information contained in these traces can be converted into a spectral determinant which bears the same relationship
to the return map as the characteristic polynomial does to a matrix. The spectral determinant, however, is not a
polynomial although it is known to be an entire function for some flows[3]. The first 20 terms of the spectral
determinant for the Lorenz attractor are given below:

1 −0.269331z2 − 0.244951z3 − 0.172774z4 − 0.113168z5 − 0.072512z6 − 0.0462723z7

− 0.0295876z8 − 0.018885z9 − 0.0120788z10 − 0.00772456z11 − 0.00492473z12 − 0.00312169z13

− 0.00196396z14 − 0.00122612z15 − 0.00076226z16 − 0.00038957z17 − 0.000197666z18

− 0.0000999565z19 − 0.0000493542z20.

The escape rate for the Lorenz attractor implied by the above polynomial is 5×10−6. Since the terms above use only
periodic orbits with symbol sequences of length equal to or less than 20, it is natural to expect that an occurrence
of a repeated sequence of As or Bs of length 20 or greater will be interpreted by the above truncation as an escape
from the attractor. If As and Bs are taken to be equally probable and independent, the probability of occurrence of
20 consecutive As or Bs is 1/219, which leads to an estimate of the escape rate that is in the same ball park.

There is a formula to obtain an estimate of the Lyapunov exponent of the Lorenz flow using periodic orbits; see
appendix of[3]. Use of this formula leads to the number 0.905630. The magnitude of the last term before truncation
suggests that the error in this number is less than 0.00005.

6. Conclusions

The Lorenz equations are but one set of differential equations that exhibit chaos. They are peculiar in several ways,
as so definite a set of equations must be, and also very simple algebraically. The greater complexity and differences
in detail of physical models may lead one to conclude that the significance of the numerical investigations presented
here and in[18] is limited to the Lorenz equations and is therefore narrow.

Lorenz explains in his book[11] that the Lorenz equations were derived in order to suggest a theory of turbulence.
Although the Lorenz equations are derived by Galerkin truncation of the basic equations of fluid dynamics, the
elimination of all but a few modes in the truncation and the somewhat arbitrary choice of parameters imply that
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any direct connection to fluid flow is unlikely. However, since the work of Lorenz the presence of chaos in fluid
flow has been discovered to be widespread and theories of types of turbulence based on strange attractors have been
advanced. Thus in the work of Lorenz we have an example of the investigation of a narrow mathematical problem
having broader consequences.

Numerical investigations, even though unreliable, can provide information where mathematics is intractable.
In almost all of computational science, dynamical models are integrated forwards in time by Runge–Kutta-like
methods that attempt to match terms of Taylor series expansions. As a result, a number of possibilities suggested
by the mathematical theory of dynamical systems are completely out of reach of typical computations. Attempts
to close this gap between conceptual possibilities and mathematical theorems on the one hand, and what can be
computed on the other have to begin with particular examples.
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