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 RIFFLE SHUFFLES OF DECKS WITH REPEATED CARDS

 By Mark Conger and D. Viswanath1

 University of Michigan

 By a well-known result of Bayer and Diaconis, the maximum entropy
 model of the common riffle shuffle implies that the number of riffle shuf
 fles necessary to mix a standard deck of 52 cards is either 7 or 11?with the
 former number applying when the metric used to define mixing is the total
 variation distance and the latter when it is the separation distance. This and
 other related results assume all 52 cards in the deck to be distinct and require
 all 52! permutations of the deck to be almost equally likely for the deck to
 be considered well mixed. In many instances, not all cards in the deck are
 distinct and only the sets of cards dealt out to players, and not the order in
 which they are dealt out to each player, needs to be random. We derive tran
 sition probabilities under riffle shuffles between decks with repeated cards to
 cover some instances of the type just described. We focus on decks with cards
 all of which are labeled either 1 or 2 and describe the consequences of hav
 ing a symmetric starting deck of the form 1,..., 1, 2,..., 2 or 1, 2,..., 1, 2.
 Finally, we consider mixing times for common card games.

 1. Introduction. The connection between examples and concepts in proba
 bility theory is a particularly close one. That examples derived from the question
 "How many shuffles mix a deck of cards?" have featured prominently in the devel
 opment of the convergence theory for Markov chains by Persi Diaconis and others
 can be seen in this light. This article deals with riffle shuffling, which is the most
 common way of shuffling cards.

 There are 2n ways to cut a deck of n cards into two packets and then riffle them
 together since a card that ends up in the /th position can be dropped by either the
 left hand or the right hand. The maximum entropy model assigns equal probability
 to all these 2n riffle shuffles. More generally, the maximum entropy model assigns
 equal probability to all an a-shuffles, with an a-shuffle being a way to cut a deck
 into a packets and then riffle them together. Several equivalent descriptions of the
 a-shuffle have been given by Bayer and Diaconis [2]. The a-shuffle with a = 2 is
 also described by Epstein [5] who calls it the amateur shuffle.

 We will refer to elements of the group Sn of permutations of {1, 2, ...,n] as
 shuffles. If n e Sn and n(i) = j, then by convention the shuffle n sends the card
 in the i th position to the j th position. The number of descents of n is defined as the
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 SHUFFLING DECKS WITH REPEATED CARDS 805

 number of positions 1 < i < n at which 7t(i) > n(i + 1). Bayer and Diaconis [2]
 proved that the probability that an a-shuffle results in a shuffle ix with d descents

 is given by-7f(a n~ ) The picture below shows a 3-shuffle of 6 cards.

 The bottom line indicates that the 0th, 1st and 2nd packets in the cut have 3, 2
 and 1 cards, respectively. The top line indicates that the 1st, 2nd, 3rd, 4th, 5th and
 6th cards in the shuffled deck are dropped from the 2nd, 0th, 1st, 1st, 0th and 0th
 packets, respectively. If the numbers are ignored, the arrows alone depict a shuffle.
 In a depiction of a shuffle such as the one above, a descent corresponds to a cross
 ing between arrows that originate at adjacent positions. The shuffle depicted above
 has 2 descents, and therefore, according to Bayer and Diaconis [2], the probability

 that an a-shuffle results in the shuffle depicted above is -^(fl? )
 In nearly all of the literature on card shuffling, the cards in a deck are assumed to

 be distinct. We allow cards to be indistinguishable. In our notation, both 1,1,2,1
 and l2, 2, 1 denote the deck with two cards labeled 1 above a card labeled 2 above
 a card labeled 1. Let a\, ai,..., an be a deck. When it is shuffled using n e Sn, the

 deck obtained is an-\(\),an-\(2), ,an-x{ny We define n(D\\ Dj) as the set of
 shuffles n G Sn such that n applied to D\ results in D2. The descent polynomial
 of the shuffles from the starting deck D\ to the ending deck D2 is defined as

 ? xdes(7r),
 nen(D];D2)

 where des (n) is the number of descents in tt . For example, the descent polynomial
 of shuffles from 1, 1, 2, 2 to 1, 2, 2, 1 is 2x + 2jc2.

 If the descent polynomial of the shuffles from a deck D\ with n cards to a deck

 7^2 is J2d=o cd*d > the probability that an ?z-shuffle of D\ results in the deck D2 is
 n ? \ / 7 1 \

 (U) Pa = ^a^{ n J' d=0u v 7
 a formula obtained by summing over all the shuffles in n(D\ ; D2). The system of
 linear equations (1.1) can be inverted to obtain

 Cd = Pd+\id + \)n-pddn(^\1}

 +w-i(^-ir(^1)-.-- + (-i)^ii"(n + 1),
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 806  M. CONGER AND D. VISWANATH

 for 0 < d < n. It is possible to pass back and forth between the transition probabil
 ities pa and the descent polynomial of n(D\-, D2) using (1.1) and (1.2).

 In Section 2 we deduce efficient recursions for the descent polynomial from the
 starting deck D\ to the ending deck D2 when either D\ or D2 is a sorted deck
 of the form lni, 2ni, ...,knk. We derive a formula for the transition probabilities
 when D\ = 1,2,..., k, xn without using the descent polynomial. Sections 3 and 4
 consider the starting decks D\ = \n, 2n and D\ = (1, 2)n. Section 5 summarizes
 mixing times for card games obtained using results in the preceding sections and
 Monte Carlo simulations.

 Although decks with repeated cards do not seem to have been considered, the
 work of Diaconis, McGrath and Pitman [4], Fulman [7] and Lalley [11] on cycle
 decompositions, and of Fulman [8] on increasing subsequences are in a somewhat
 similar vein. The thesis of Reyes [13] has new results, as well as many references
 related to other types of shuffles.

 2. Transition probabilities. We begin with a recursive algorithm to obtain
 the descent polynomial of shuffles from lni, 2ni,..., hnh to a deck D which has
 the same n\ + ^2 H-\-nn cards but in a different order. Each of the numbers
 n\, H2,..., nn is a positive integer. The transition probability under an a-shuffle
 can be obtained using the descent polynomial and (1.1).

 We assume the starting deck to be \ni, 2ni,..., hnh, which is in sorted order.
 We denote by D(i, c) the position of the /th card labeled ein D. For example,
 if D = 1, 2, 1,1, 2, 2, then D(2, 1) = 3. The deck obtained from D by keeping
 the cards labeled 1,2, ...,e and by discarding cards with all other labels will be
 denoted D\e. Similarly, the deck obtained from D by keeping the cards with labels

 f, ...,h and discarding other cards will be denoted by Dfn. We assume 1 < <
 e < f < <h and that there is no card whose label is in-between e and /, or,
 equivalently, / = e + 1. Let N = n\ + ?2 H-\-nh, N\ =n\+n2-\-Vne and
 N2 = N ? N\. Then TV, N\ and N2 equal the number of cards in D, D\e and Dfn,
 respectively.

 Consider the set of all shuffles n from the sorted deck l"1, 2ni,..., hnh to D
 such that n(l) = D(i, 1) and n(N) = D(j, h), where 1 < / < n\ and 1 < j < nn.
 The number of these shuffles with d descents is set equal to the coefficient of xd

 to define the polynomial p?j(x).
 To obtain a recursion for ptj(x), consider the set of shuffles from the sorted

 deck lni,2n2, ...,ene to D\e and the set of shuffles from the sorted deck
 fnf,..., hnh to Dfh. Define qi,k(x), for 1 < / < n\ and 1 < k < ne, as the polyno
 mial in which the coefficient of xd equals the number of shuffles n with d descents

 belonging to the first set which satisfy n(l) = D\e(i, 1) and 7r(A^i) = D\e(k,e).
 The polynomial nj(x), for 1 < / < n? and 1 < j < nn, is defined similarly, with
 the coefficient of xd equal to the number of shuffles n with d descents in the
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 SHUFFLING DECKS WITH REPEATED CARDS  807

 second set which satisfy 7r(l) = Dfh(l, f) and n(N2) = Dfh(j, h). Then the fol
 lowing recursive relationship holds:

 (2.1) pijix) = J2qi,k(x)nj(x)x?^l).
 kj

 The indices k and / vary over 1 < k < ne and 1 < / < n/. The exponent ?(k, I) is
 0 if D(k, e) < D(l, f) and 1 if D(k, e) > D(l, f).

 To prove (2.1), we consider a bijection between n(lni, 2ni,..., hnh; D) and
 n(\nx ,...,e"e; DXe) x n(fnf, ...,hnh; Dfh). Let the shuffle n map to the pair of
 shuffles (tt\,tc2) under this yet to be defined bijection. If position / is occupied
 by a card labeled 8 in the starting deck l"1, 2ni,..., hnh and n(i) = D(j, 8), then
 m(i) = DXe(j, 8) if 1 < 8 < e and n2(i - N\) = Dfh(j, 8) if / < S < h, by de
 finition of the bijection. To complete the proof of (2.1), we relate the number of
 descents of n to the number of descents of Tt\ and 712- The number of descents

 of n equals the sum of the number of descents of ii\ and 7T2 if n(N\) = D(k,e),
 n(Ni + 1) = D(l, f) and D(k, e) < D(l, f). However, if D(k, e) > D(l, f), the
 sum must be incremented by 1.

 The base case of the recurrence (2.1) occurs when the starting deck has cards
 of only one type. Take this deck to be \n. The coefficient of xd in Pij(x) is then
 equal to the number of shuffles n e Sn with n(l) = i, n(n) = j and with d de
 scents. The number of shuffles ix e Sn with d descents is defined as the Eulerian

 number (nd) [9]. Given a permutation of {1, 2,..., n ? 1} with d or d ? 1 descents,
 the number n can be inserted in d + 1 or n ? d places, respectively, to obtain a
 permutation of {1, 2,..., n) with d descents. Thus, as shown in [9], consideration
 of the insertion of the number n into a permutation of the numbers 1, 2,..., n ? 1
 gives the recurrence

 (;H+?(VH-<?(r!) ?-> (2.2)

 (S)-?- (2H ?'**
 The modified Eulerian number (d)? is defined as the number of n e Sn with

 7t(1) = / and d descents. If d = 0, (?)i is 0 if i > 1 and 1 if / = 1. Considera
 tion of the insertion of n into a permutation of the numbers 1, 2,..., n ? 1 that
 begins with / gives the recurrence

 {?)rid+l){'"A+("-'l-l){?-\)i i?">i'">? (2.3)

 (2)B=(2~i) ifM=?'?>?
 If n = i = 1, (nd)i; is equal to 1 if d = 0 and equal to 0 if d > 0. The modified

 Eulerian number (?)ij is defined as the number of n e Sn with7r(l) = i,n(n) = j
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 808  M CONGER AND D. VISWANATH

 and d descents. If d = 0, ( nd )tJ is 1 if i = 1 and j = n but 0 otherwise. For d > 0,
 the following recurrence can be derived:

 (2.4) =(r,)"_y --!.->..
 = (nd1)| ifn> \n = j.

 If w = i = j = 1 and d > 0, ( )-,, = 0. Using (2.2), (2.3) and (2.4), the polynomi
 als pt j (x) can be formed in the base case.

 The descent polynomial of shuffles from lni, 2"2,..., hnh to D is obtained as
 the sum of the polynomials ptJ (x) over 1 < i < n\ and 1 < j <nh.

 We now turn to the descent polynomial of shuffles n from D to the sorted deck
 I"1, 2"2,..., hnh. We first consider the occurrence of descents between n(k) and

 n(k + 1) when the positions k and k + 1 are occupied in D by cards with different
 labels. There will be a descent if and only if the label of the card at k is greater
 than the label of the card at k + 1. Thus, the number of descents of this type is the
 same for every shuffle from D to the sorted deck and is equal to the number of
 places where a card with a greater label immediately precedes a card with a lesser
 label in the deck D. This quantity, which may be denoted by des(D), is called the
 number of descents in D and is extensively studied in [10] and [12].

 We next consider descents between n(k) and n(k+ ) only if both positions k
 and k + 1 .are occupied in D by cards with the label c. The cards at k and k + 1
 both have the label c if and only if k = D(i, c) and k + 1 = D{i + 1, c) for some
 integer /, 1 < / < nc. To facilitate the counting of this type of descent, denote

 the generating polynomial Y^dZ} ,Cd)xd of the Eulerian numbers by r)n(x) [10].
 If we pay attention only to cards with label c in the deck D, it will look like
 * * ccc * * * cc * *c with blocks of c's sep-arated by cards with different labels.
 Assume that the lengths of these blocks are given bymi,ra2,...,ray, with y being
 the number of blocks. Then nc - m\ +m2-\-\-my. Let

 c

 jc = J2nJ

 and let ic = jc - nc + 1. If n is a shuffle from D to the sorted deck, then ic <
 7t(D(i, c)) < jc must hold for 1 < i < nc. The nc integers in [ic, jc] can be divided
 into sets of mi, m2,..., my in nc\/(m\ .m2! . . . my !) ways. For each such division
 of these nc integers into sets, there are m 1 .m2! . . . mK ! ways of assigning values to
 n(D(i, c)), 1 < i < nc, such that a number assigned to a position within the first
 block of cs is in the first set and so on. The coefficient of xd of the polynomial
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 SHUFFLING DECKS WITH REPEATED CARDS  809

 i)m\ (x)r)mi(x) T]my (x) is equal to the number of these assignments which have
 d descents. Therefore, the coefficient of xd of the polynomial

 nc\
 (2.5) pc(x) =-~--nmi (x)T]m200 * ' * Vmy 00

 m\\m2\ - - -mY\

 is equal to the number of assignments with d descents out of the nc ! assignments of
 integers in [ic, jc] to n(D(i, c)), 1 < / < nc. As intended, (2.5) counts the descent
 between n(k) and n (k + 1) if and only if cards at positions k and k + 1 in D both
 have the label c.

 To find the descent polynomial of shuffles from D to the sorted deck, note that
 the occurrence of a descent between n(k) and n(k + 1), with cards labeled c at
 positions k and k + 1 in D, is completely independent of the occurrence of a
 descent between n(l) and it (I + 1), with cards labeled d at positions / and / + 1,
 i?c^d. Moreover, there are always des(D) descents in a shuffle n from D to the
 sorted deck that correspond to positions k and k + 1 occupied in D by cards with
 different labels. Therefore, the descent polynomial is given by

 (2.6) xdQs(D)Pl(x)p2(x)..>ph(x),

 where the p? (x) are defined by (2.5).
 If the deck D is any permutation of the multiset [\nx, 2ni,..., hnh],

 (2.1) and (2.6) make it possible to find the descent polynomials of shuffles from
 the sorted deck to D and of shuffles from D to the sorted deck in polynomial time.

 The descent polynomial of shuffles between decks neither of which is sorted will
 be considered in later work.

 In the rest of this section, we turn to theorems about transition probabilities
 between decks under an a-shuffle which do not use the descent polynomial. Let
 a\, #2, ., an be one of the an integer sequences with 0 < at < a for 1 < / < n.
 This sequence can be sorted to a^ < a?2 < < a?n in a stable manner and
 the permutation i\, ?2,..., in of {1, 2,..., n} is uniquely determined since we re
 quire ij < ij+\ if aij ? aij+l. Associate the shuffle n e Sn with n(k) = /? for
 1 < k < n with the sequence a\,a2, ...,an. Then the uniform distribution on the
 an sequences induces the a-shuffle distribution on Sn [2]. This description of the
 a-shuffle is used in Theorems 2.1 and 2.2.

 THEOREM 2.1. Among all decks D that are permutations of the multiset
 {\nx ,2ni,..., hnh], the transition probability under an a-shuffle from the sorted

 deck lnx,2n2,..., hnh to D is greatest for D = l"1, 2"2,..., hnh and least for
 D = hnh,...,2n2, ln].

 Proof. Assume the sorted deck to be 1^,2". The proof for more general
 sorted decks is similar.
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 810 M. CONGER AND D. VISWANATH

 Let a\, 02,..., din be a sequence with 0 < a? < a for 1 < i < 2n. If D(i, 1) = j,
 define a? = aj, and if D(i,2) = j, define ?i = a?. For example, if D =
 1,2,1,2,1,2, then

 a\, a2, as, a^, as, ae = a\,?\, ?2, ?i, ?3, ?3

 For the sequence to induce a shuffle from ln, 2n to D, each a,- must be less than
 or equal to each ?i. In addition, each a,- must be strictly less than all the ?'s that
 precede it in the sequence. For example, if D = 1,2,1, 2,1, 2, the inequalities are

 max(ai,a2,?3) <min08i,?2, &), <*2<?\, c*3<?8i, ?3<)?2.
 If D = lw, 2n, it is enough if each a is less than or equal to each ?. If D = 2n, ln,
 each a must be strictly less than each ?. Therefore, the number of sequences that
 induce a shuffle from 1", 2n to D is greatest for D = ln, 2n and least for D =
 2n,\n. The statement about transition probabilities follows. D

 Theorem 2.2 below generalizes Theorem 3 of [2] and their proofs use similar
 arguments. Similar arguments can also be found in [6] and [10].

 THEOREM 2.2. Let the deck D be a permutation of the multiset {1,2,...,
 h,xn}. Let the number of cards labeled c, 1 < c < h, that are not preceded by
 a card labeled c ? 1 in D be equal to r. Let the number of cards labeled x that
 precede the card labeled h in D be equal to I. Then the probability that an a-shuffle
 applied to the sorted deck 1,2, ...,h,xn results in D is

 1 ^ (m-r + h\ 1 ?_/ ~^h L ( ?_i \(a-m-\)(a-m) , m=r ? \

 where if I = 0 and m = a ? 1, (a ? m ? I)1 must be taken to be 1.

 PROOF. Let a\, a2,..., a^+n be an integer sequence with 0 < ai < a for 1 <
 i < h + n. If D(\, c) = i, 1 < c <h, define ac = a?. If D(j, x) = k, 1 < j < n,
 define ?j = a?. For the sequence a\, 02,..., ah+n to induce an a-shuffle from the
 sorted deck to D, we require

 (2.7) ax < a2 < < ah < mini?u , ?n)
 In addition, the inequality ac-\ < occ, 2 < c < h, must be strict if the card labeled
 c in D is not preceded by the card labeled c ? 1. Therefore, exactly r ? 1 inequal
 ities between the as in (2.7) are strict. Further, at least I of the ?i, the ones with
 1 < i < I, must be strictly greater than oth.

 The number of solutions to (2.7), with the additional conditions described below
 it, can be counted by allowing ah = m to vary from r ? 1 to a ? 1. Given m, the
 number of ways to pick the ac, 1 < c < h, can be counted as follows. Start with
 m "jumps." Allocate r ? 1 of these jumps to the inequalities in a\ < a2 < <
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 SHUFFLING DECKS WITH REPEATED CARDS  811

 oih-\ S m that must be strict. The remaining m ? r + 1 jumps can be assigned to h

 positions, namely, the position before a\ and the h ? 1 inequalities, in (m ~r_ { )
 ways. The value of ax-, for 1 < / < h ? 1, is equal to the number of jumps preceding
 it. The number of ways to pick the ?s is (a ? m ? I)1 (a ? m)n~l. The formula for
 the transition probability from the sorted deck to D follows. D

 3. Starting deck l", 2". The probability distribution over decks that are per
 mutations of the same multiset of cards under an a-shuffle can be obtained from

 (2.1 ) or (2.6) if either the starting deck or the ending deck is in sorted order. The to
 tal variation distance from the uniform distribution is a sum over all possible decks
 and its calculation can therefore involve a very large number of terms. However,
 the calculation becomes simpler if it is recognized that the transition probabilities
 are the same for whole classes of decks. In the case where all n cards have dif

 ferent labels, the transition probabilities depend only upon the number of descents
 in the shuffle and, hence, the n\ decks fall into only n equivalence classes. In this
 section we investigate this type of equivalence relationship when the starting deck
 isl",2".

 In this section and the next, we use a, ? and y to denote sequences of 1 's and 2's
 that stand for segments of a deck of cards. The number of entries in the se
 quence a is denoted by \a\. The sequence obtained by reversing the order of a
 and then replacing each 1 by 2 and each 2 by 1 is denoted a*. For example, if

 a = I, 2, 2, 2, 1,1, then a* = 2, 2, 1,1, 1, 2. A total of (2?) decks can be obtained
 by rearranging the cards of ln, 2n. The equivalence relation R on that set of decks
 is defined as follows. The deck Dj = a?y is R-related to D2 = a?*y if \a\ = \y\,
 and the number of 1 's and the number of 2's in ? are equal. For example, 1,2,2,1
 is #-related to 2,1, 1, 2 and 1, 1, 2, 2, 1, 2 is ^-related to 1, 2, 1, 1, 2, 2. The equiv
 alence relation is obtained by taking the transitive, reflexive closure. For example,
 the decks 1,2,1,2,2,1,2,1 and 1,2,2,1,1,2,2,1 and 2,1,1,2,2,1,1,2 and
 2, 1, 2, 1, 1, 2, 1, 2 are all in the same equivalence class.

 THEOREM 3.1. IfD\is R-related to D2, the transition probability from \n,2n
 to D\ is equal to the transition probability from \n ,2n to D2 under an a-shuffle

 for any a.

 PROOF. It is sufficient to consider D\ = a?y and D2 = a?*y with |a| = \y\
 and with equal number of l's and 2's in ?. It is enough to show that the descent
 polynomial of shuffles from in,2n to D\ is equal to the descent polynomial of
 shuffles from \n, 2n to D2. We will construct a bijective map from n(\n, 2n; D\)
 to n(\n, 2n; D2) such that a shuffle maps to another shuffle with exactly the same
 number of descents.

 The number of l's in a is equal to the number of 2's in y since the number of
 l's and 2's are equal in a?y and in ?. Similarly, the number of 2's in a is equal
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 812  M. CONGER AND D. VISWANATH

 to the number of l's in y. Let p\ < < pa and q\ < -- <qb and r\ < < rc
 be the positions of D\ that correspond to a and ? and y, respectively, that are
 occupied by l's. Similarly, let p[ < < p'c and q[ < < qfb and r[ < < r'a
 be the positions of D\ that correspond to a and ? and y, respectively, that are
 occupied by 2's.

 Define f(x) = 2n?x + \. The map / reflects a position in a deck of size 2n
 about its center; for example, the first position is reflected to the last position. The
 positions occupied by l's in D2 = a?*y are

 P\ < ' ' ' < Pa < fiq'b) < < fiq[) < r\ < < rc,
 where ps and rs correspond to a and y, and f(q)s correspond to ?*. In D\,
 the position q[ is occupied by a 2. When ? is reversed that 2 is moved to the
 position f(q[) and then it is replaced by 1 to form ?*. This explains the central
 block of f(q?Ys above. Similarly, the positions occupied by 2's in ?>2 are

 P\<"'<Pc< filb) < < f(q\) <r[<---<r'a,
 where the //s correspond to positions in a, f(q)'s to positions in ?* and r"s to
 positions in y. Note that each p or pf is less than each q or qf, which is less than
 each r or r'.

 Let n e S2n be a shuffle from ln, 2n to D\. Then the numbers

 7r(l),7r(2),... ,n(n)

 must be an arrangement of the positions occupied by l's in D\. Similarly, the
 numbers

 n(n + 1), n(n + 2),..., n(2n)

 must be an arrangement of the positions occupied by 2's in D\. The map to a
 shuffle from \n, 2n to D2 is based on two cases. In the first case, we assume that
 not both n(n) and 7t(n + 1) correspond to positions in ?. The shuffle 7r* from
 ln, 2n to D2 that n maps to is defined as

 7T*(I)=0(7T(I)),

 for 1 < / < 2/2, where </>(-) will now be defined. First, we define (p(pi) = pi,

 0(r,-) = 77, (p(p?) = p'i and 0(r-) = r[. In addition, we define 0 as

 91 -> /(tf?) 92 -> /(9?_i) ^ - f(q[)
 q[ -+ fi9b) qf2 -* /to-i) * ?? -> /(9i).

 This definition maps the gs to the f(q'Ys and the ^'s to the /(^)'s and, therefore,
 7T* is a shuffle from ln, 2n to D2. Further, x < 3; if and only if (?>(x) < <t>(y),
 except when x is a q and y is a #' or when x is a #' and y is a ?7. However, in the
 arrangement

 7r(l),..., n(n), 7i(n + 1),..., n(2n),
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 SHUFFLING DECKS WITH REPEATED CARDS  813

 a q and qf can occur in consecutive positions as n(n) and n(n + 1), and in no
 other way, and we have assumed that not both of those positions correspond to ?.
 Therefore, the above arrangement has the same number of descents as

 4>(n(l)),..., <Kn(n)), 4>(n(n + 1)),..., 0(tt(2h))

 and 7T* has the same number of descents as n.

 The other case is when 7i(n) is a q and rt(n + 1) is a q'. Then we define (f)(qi) =

 f(qi),(t>(q?) = f(q?),Pi <? r?_/+1 andr,- <? /^_/+1. We map tt to tt*, where
 7T* is defined as

 7T*(i) = 0(;r(2f!-i + l)),

 for 1 < / < 2n. It can be verified that 7r* is a shuffle from 1", 2" to D2. Further,
 x < y if and only if (f>(x) > (/)(y), except when x is a p and y is a p', or x is a
 p' and y is a p, or jc is an r and y is an r', or x is an r' and y is an r. In the
 arrangement,

 7r(l),..., n(n), 7t(n + 1),..., n(2n),

 a p and // or an r and r' can occur in consecutive positions only at n(n) and
 n(n + 1). However, we have assumed that n(n) is a g and that 7r(/i + 1) is a #'.
 Therefore, every descent in the above arrangement becomes an ascent in

 0(7T(1)), ..., 4>(7T(n)), (f>(n(n + 1)),..., (t>(7i(2n))

 and every ascent becomes a descent. This arrangement is reversed to define
 7r*(l),..., 7t*(2n) which changes the ascents back into descents and, therefore,
 the number of descents in 7r* is equal to the number of descents in n.

 Finally, we need to show that the map defined above is a bijection. A shuffle
 from ln, 2" to D2 can be mapped to a shuffle from \n, 2n to D\ using the same
 procedure as above. The resulting map is the inverse of the above map because
 <t> o <f) is identity in both cases above. D

 It is natural to ask if the equality of the descent polynomials of the shuffles from
 \n, 2n to D\ and D2 implies that D\ is R-related to D2. We have checked that this
 is indeed so for n = 1, 2, 3,4, 5, 6, 7. The theorem below counts the total number
 of equivalence classes under the relation R.

 THEOREM 3.2. The number of equivalence classes under R is equal to the

 Catalan number -?^("^ )

 Proof. We describe a method to find a unique representative for each equiv
 alence class and then count the number of unique representatives. The function
 f(x) = 2n ? x + 1 reflects positions with respect to the center of the deck as be
 fore. In this proof, we refer to f(x) as the reflection of the position x. A position
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 814  M. CONGER AND D. VISWANATH

 and its reflection either both lie in ? or lie outside it, since |a| = \y |. Consider the

 positions x = n + l,n + 2, ...,2n. Assume that x and f(x) both lie inside ?. If
 the positions x, f(x) are occupied by 1,2 in the deck D, reversal of ? changes
 it to 2,1, and the replacements of l's by 2's and 2's by l's changes it back to
 1,2. Similarly, application of the basic rule that generates the relation R does not
 change D in the positions x, f(x) if those positions are occupied by 2,1. How
 ever, if they are occupied by 1,1, that becomes 2,2 when the rule is applied using
 a ? large enough to include positions x and f(x). Similarly, 2,2 becomes 1,1.

 With each position x, we associate the symbol "+" if positions x, f(x) are oc
 cupied by 1,2, the symbol "?" if occupied by 2,1, the symbol 1 if occupied by
 1,1, and the symbol 2 if occupied by 2,2. The deck as a whole is coded as the
 list of symbols associated with positions n + 1 through 2n. For example, the deck
 1,1,2,1, 2, 2, 2,1,1,2,1, 2,1,2 is coded as +, +, 2,1, 2,1, -.

 The +s and ? s never change when the rule that generates the relation R is
 repeatedly applied with possibly many different choices of ?. They are ignored
 in much of the rest of this proof. We can find the /3's which lead to a nontrivial

 application of the rule to generate the relation R using the code for the deck D
 as follows. We traverse the code from left to right, and record the excess of l's
 over 2's. For example, for the code ?, ?, 2,1, 2,1, +, this excess is ?1 after the
 first 2 is passed, then becomes 0, and then ?1, and then 0. The rule for generating
 R can be applied whenever this excess becomes 0. If the excess becomes zero, after
 traversing / symbols in the code, the corresponding ? in the deck is a segment
 of 2/ cards extending from position n ? i + 1 to position n + i. When the rule
 is applied, the l's become 2's and the 2's become l's among the first i symbols
 of the code. If the excess becomes 0 after i symbols and then again after / + j
 symbols, the application of the rule with a ? of length equal to 2/ followed by
 another application using a ? of length 2(i +j) changes the code for the deck only
 between the (i + l)st and the 7th symbol. Among these symbols, the l's change
 to 2's and the 2's change to l's. By applying the rule with judicious choices of ?,
 it is possible to obtain a single code in which the excess never becomes negative.
 For example, the code ?, ?, 2,1, 2,1, + can be converted to ?, ?, 1, 2,1,2, +.
 We use such codes as unique representatives of equivalence classes of decks.

 Assume that in such a code, there are k symbols equal to 1 and k symbols equal
 to 2. Then there must be n ? 2k symbols equal to + or -. If the + and - symbols

 are ignored, and each 1 is substituted by a ( and each 2 by a), we obtain a valid
 arrangement of parentheses of length 2k. The number of valid arrangements of

 parentheses of length 2k is well known to be the Catalan number ?y(?). For
 each assignment of l's and 2's to the 2k positions, the other positions can be filled
 with symbols + and ? in 2n~2k ways. The 2k positions that are assigned either the

 symbol 1 or the symbol 2 can be chosen in (?) ways. Therefore, the total number
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 of equivalence classes is given by ?2k T+r(^)(?)- This sum can ^e simp?fie?1'

 ??(?)U)-*?m(*i2)r?,)/2)
 2n /n/2+l\((n-l)/2\

 /i/2+l^l k + \ )\ k )'
 The first equality above uses (5.35) in [9]. The proof may be completed using the

 binomial identity ?2k (ml+k)(p+k) = ii-m+p) for integers z> m' P and / > 0. The
 cases with n even and odd have to be considered separately. D

 4. Starting deck (l,2)n. The equivalence relation R in this section is dif
 ferent from the one considered in the previous section. In this section D\ =a?y
 is R-related to D2 = a?*y if ? has the same number of l's as 2's. The addi
 tional condition \a\ = \y | is no longer required. The decks D? are all permutations
 of {1", 2n}. The equivalence relation is obtained by taking the transitive, reflexive
 closure. The equivalence class containing 1, 2, 1, 2, 2, 1, 2, 1 has five other decks
 in it.

 THEOREM 4.1. If D\ is R-related to D2, the transition probability from
 (1, 2)n to D\ is equal to the transition probability from (1, 2)n to D2 under an
 a-shuffle for any a.

 Proof. It is sufficient to consider D\ = a?y and D2 = a?*y with equal
 number of l's and 2's in ?. We will construct a bijective map from n((l, 2)n; D\)
 to 7r((l, 2)n; D2) such that a shuffle maps to another shuffle with exactly the same
 number of descents.

 Let n 7i((l,2)n; D\). Let ix(2i - 1) = a/, 1 < / < n, and n(2i) = bt,
 1 < / < n. The number of descents in n is equal to the number of descents in
 the arrangement a\, b\, a2, ?2, .,an,bn. To facilitate the proof, we depict this
 arrangement in the following way:

 a\ a2 an

 In the deck D\ each position a? is occupied by a 1 and each position b\ is occupied
 by a 2 [because n is a shuffle from (1, 2)n to D\]. We assume that ? begins at the
 (/ + l)st position and ends at the (/ + 2j)th position. In the depiction above, circle
 all the a/ and b? that do not correspond to ?, that is, circle an a/ or a b? if it is
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 less than i + 1 or greater than / + 2 j. When n is mapped, the circled numbers will
 stay fixed. The uncircled numbers form segments that run from a circled number
 to another circled number (or they might begin or end at a\ or bn). These segments
 of uncircled numbers are of four types according as they either begin or end at the
 top line or the bottom line:

 W\ AA/ AA l/K
 The third type of segment has one more uncircled position in the bottom line,
 corresponding to a position occupied by a 2 in Di, than in the top line. The fourth
 type of segment has an extra uncircled position in the top line, corresponding to
 a position occupied by a 1 in Di. Since the number of l's in is equal to the
 number of 2's, the number of uncircled positions in the top line must be equal
 to the number of uncircled positions in the bottom line. Therefore, the number
 of uncircled segments of the third type must be equal to the number of uncircled
 segments of the fourth type.

 To map ti to a shuffle from (1,2)" to D2, we will modify the uncircled segments
 and insert them back in-between the circled numbers in the original arrangement
 of ai and b . We define a map / from the uncircled positions, that is, the positions
 that correspond to , back to the the uncircled positions as follows:

 i + 1 -> i + 2j, i + 2 -> i + 2j - 1, ..., i + 2j - 1 -> i + 2, i + 2] -> 1 + 1.

 If i + 1 < x < i + 2 j and the position x in Di is occupied by 1 (or 2), the position
 f(x) in D2 will be occupied by 2 (or 1). If ap,bp, ap+\, bp+\,..., bq is an uncir
 cled segment of the first type, it will be modified to f(bq),f(aq),..., f{ap+\),
 f(bp),f(ap). In the deck D2, each position f(b ) [or f(a )], p < i < q, is oc
 cupied by 1 (or by 2). Therefore, the modified segment is also of the first type.
 However, when an uncircled segment of the third (or fourth) type is modified
 in this way, it becomes a segment of the fourth (or third) type. The arrangement
 a\, b\, a2, b2,.. .,an,bn can be converted to another arrangement in the following
 steps:

 1. Extract the uncircled segments of the first and second type from the arrange
 ment, modify them as described above, and put the modified segment back in
 the same place.

 2. Number the uncircled segments of the third and fourth type from left to right.
 As explained above, they must be equally numerous.

 3. Replace the /th uncircled segment of the third type by the modification of the
 1 th uncircled segment of the fourth type. Similarly, replace the /th uncircled
 segment of the fourth type by the modification of the /th uncircled segment of
 the third type.
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 The shuffle 7r* is defined by setting n*(i) equal to the ith number in the arrange
 ment constructed in this manner. By construction, n* is a shuffle from (1,2)"
 to ?>2. Further, the number of descents of tt * must equal the number of descents of

 n for the following reason. If there is a descent or an ascent between two circled
 positions in the arrangement a\,b\,a2,b2,...,an,bn,it remains unchanged. Also,
 the modification of uncircled segments described above preserves the number of
 descents, although it changes their locations. Finally, if a circled number is greater
 than (or less than) a single uncircled number, it must be greater than (or less than)
 all uncircled numbers and, therefore, the number of descents between circled and
 uncircled numbers in the arrangement also remains unchanged.

 It is possible to map a shuffle from (1, 2)n to D2 to a shuffle from (1, 2)n to D\
 using the same procedure. That map would be the inverse of the map defined above.
 Therefore, the map from shuffles 71 to shuffles 7r* defined above is a bijection. D

 The converse of the above Theorem 4.1 appears to be true as well. The number
 of equivalence classes seems to be given by the simple formula (n + 3)2!l~2. One
 can attempt to prove this by finding unique representatives for equivalence classes
 and then counting them as in the proof of Theorem 3.2. We have derived a method
 to construct unique representatives for equivalence classes of R. However, we have
 not yet devised a method to count the number of unique representatives.

 5. Card games. Some inferences about the mixing times for common card
 games such as blackjack and bridge can be drawn using results given in the pre
 ceding sections. Let S be a finite set and let p be a probability distribution on 5.
 Then the total variation distance of p from the uniform distribution is given by

 \ Uses \p(s) ? Tgr I - For a deck of 52 distinct cards, the total variation distance
 remains close to 1 until the number of riffle shuffles exceeds 4. The total variation
 distance falls below 0.5 when the number of shuffles is 7 and this can be taken to

 be the mixing time [2]. Another distance defined in [1] is the separation distance.
 The separation distance of p from the uniform distribution is maxses(l ? \S\p(s)).
 Like the total variation distance, the separation distance has a maximum of 1 and
 a minimum of 0. However, it leads to a more demanding notion of mixing as the
 number of riffle shuffles of a deck of 52 distinct cards needed to make the separa
 tion distance no more than 1/2 is 11. The use of entropy to understand mixing is
 discussed in [14]. The validity and limitations of the maximum entropy model of
 riffle shuffles are discussed in [3] and [5].

 In the game of bridge, 52 distinct cards are dealt to four players. To apply the
 results proved in Section 2, we need to assume that the first 13 cards are dealt to
 one player, the next 13 to another and so on. Let the deck D be a permutation
 of the multiset {l13, 213, 313,413}. Let pD be the transition probability from D
 to 113, 213, 313,413 under an a-shuffle. This transition probability can be obtained
 using (2.6). The probability that the first player is dealt cards originally in the
 positions occupied by cards labeled 1 in D, that the second player is dealt cards
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 818  M. CONGER AND D. VISWANATH

 originally in the positions occupied by cards labeled 2 in D, and so on after an
 a-shuffle is equal to po> Therefore, the distance of the probability distribution pp
 over decks from the uniform distribution will indicate the closeness of a deal after

 an a-shuffle to a random deal to four players. If the separation distance is used to
 define mixing, an application of (2.6) with D = (4, 3, 2, l)12 shows that the sep
 aration distance is greater than 0.5 after 10 riffle shuffles. Therefore, the mixing
 time is still 11 riffle shuffles. The total variation distance involves a sum with a

 great number of terms and the results of Sections 3 and 4 indicate that the recog
 nition of equalities among the transition probabilities po is unlikely to make this
 sum tractable. However, a Monte Carlo procedure for evaluating this sum, which

 will be described elsewhere, implies that the mixing time is 6 riffle shuffles when
 the total variation distance is used. If the cards are dealt to the players in cyclic
 order, which is the common practice, the mixing times will almost certainly be
 lower.

 In the game of blackjack, the distinction between the suits is ignored. We as
 sume the starting deck to be l4, 24,..., 134. Application of Theorem 2.1 and (2.1)
 shows that the separation distance from the uniform distribution over decks be
 comes less than 0.5 after 9 riffle shuffles. Again, a Monte-Carlo procedure has
 to be employed to find the total variation distance. It then follows that the total
 variation distance becomes less than 0.5 after only 4 riffle shuffles.

 Acknowledgments. The authors thank Professors P. Diaconis, J. Fulman,
 S. Lalley, C. Mulcahy and J. Rauch for helpful discussions.
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