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Linear Stability Analysis of Resonant Periodic Motions
in the Restricted Three-Body Problem
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The equations of the restricted three-body problem describe the motion of a
massless particle under the influence of two primaries of masses 1−µ and
µ,0 �µ� 1/2, that circle each other with period equal to 2π . When µ=0,
the problem admits orbits for the massless particle that are ellipses of eccen-
tricity e with the primary of mass 1 located at one of the focii. If the period
is a rational multiple of 2π , denoted 2πp/q, some of these orbits perturb
to periodic motions for µ > 0. For typical values of e and p/q, two reso-
nant periodic motions are obtained for µ>0. We show that the characteristic
multipliers of both these motions are given by expressions of the form 1±√

C(e,p, q)µ+O(µ) in the limit µ→0. The coefficient C(e,p, q) is analytic
in e at e= 0 and C(e,p, q)=O(e|p−q|). The coefficients in front of e|p−q|,
obtained when C(e,p, q) is expanded in powers of e for the two resonant
periodic motions, sum to zero. Typically, if one of the two resonant peri-
odic motions is of elliptic type the other is of hyperbolic type. We give sim-
ilar results for retrograde periodic motions and discuss periodic motions that
nearly collide with the primary of mass 1−µ.

KEY WORDS: Three-body problem; resonance; collision orbits; action-angle
variables.

1. INTRODUCTION

Resonance between the periods of planets, satellites, and other objects is a
feature of celestial mechanics. Among the many extra-solar planets discov-
ered recently, many types of resonance have been observed. Here we con-
sider resonant periodic motions in the restricted three-body problem, with
the principal aim of gaining an understanding of the instabilities caused
by resonance.
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The restricted three-body problem is about the motion of a massless
particle under the influence of primaries of masses 1−µ and µ that circle
each other at a distance equal to 1 and with period 2π . We will assume
0�µ�1/2 and in much of the discussion µ is small and positive. Instead
of the inertial frame of reference, it is often convenient to use a frame of
reference which rotates with the two primaries and which is centered at the
center of mass of the two primaries. The Hamiltonian for the motion of
the massless particle in a rotating Cartesian frame is

H = 1
2
(p2

x +p2
y)+ypx −xpy − 1−µ

�0
− µ

�1
, (1.1)

where �0= ((x+µ)2+y2)1/2 and �1= ((x−1+µ)2+y2)1/2. The general-
ized momenta corresponding to x and y are px and py . The primaries of
mass 1−µ and µ are located at (−µ,0) and (1−µ,0), respectively, and
�0 and �1 are the distances from the massless particle to the two prima-
ries. We consider the motion only in regions where the distances �0 and
�1 are both bounded away from zero, Therefore (1−µ)/�0+µ/�1 can
be expanded in powers of µ as

1
(x2+y2)1/2

+µ�′(x, y,µ)= 1
(x2+y2)1/2

+µ�(x, y)+O(µ2), (1.2)

where

�(x, y)= 1
((x−1)2+y2)1/2

− x

(x2+y2)3/2
− 1

(x2+y2)1/2
.

The change of variables px←−px, x← x,py←py, y←−y is symplectic
with multiplier −1 and leaves the Hamiltonian H unchanged. Therefore
if x(t)=X(t), y(t)= Y (t),0 � t � T , is a solution of Hamilton’s equations
formed using H , then x(t)=X(−t), y(t)=−Y (−t),−T � t � 0, is also a
solution.

If r and θ are polar coordinates then x= r cos θ, y= r sin θ , and the
Hamiltonian becomes

H = 1
2

(
R2+ G2

r2

)
−G− 1

r
−µ�(r, θ)+O(µ2),

where

�(r, θ)= 1
�1
− cos θ

r2
− 1

r
= 1

(1+ r2−2r cos θ)1/2
− cos θ

r2
− 1

r
. (1.3)

The discrete symmetry of this Hamiltonian is given by R←−R, r ←
r,G ← G, and θ ← −θ . This transformation too is symplectic with
multiplier −1.
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Given R,G, r, θ , another set of variables better suited for perturbative
calculations can be defined as follows. Let H0 = (R2 + G2/r2)/2 − 1/r.
Define the variables a, e,E, ν, g using the equations

e =
√

1+2G2H0,

a(1− e) = G2/(1+ e),

r = a(1− e cosE),

cos ν = cosE− e

1− e cosE
,

g = θ −ν (1.4)

When the third and fourth equations in (1.4) are solved for E and ν,
there are typically two solutions in the interval [0,2π). Exactly one of
these can be chosen by heeding the signs of G and R. Until Section 4, we
assume 0 <e< 1. The variables a, e, ν, g can be used instead of R,G, r, θ .
When µ= 0, the orbit (of the massless particle) is an ellipse in the iner-
tial frame with eccentricity e and semimajor axis a; the angles E and ν

are the eccentric and true anomalies, respectively; and g is the argument
of the perihelion in the rotating frame.

The change of variables from R,G, r, θ to a, e, ν, g, in the region
of phase space with 0 < e < 1, is not symplectic. To obtain a symplec-
tic change of variables in that region, define the variables L, l using the
equations

L=±√a, l=E− e sin E. (1.5)

As further explained in Section 3, the sign of L is chosen to be the
same as that of G, the angular momentum, The change to L,G, l, g is
symplectic and the Hamiltonian becomes

H =− 1
2L2
−G−µ�(L,G, l, g)+O(µ2). (1.6)

Simple expressions for the perturbation � in terms of x, y and in terms
of r, θ have been given in (1.2) and (1.3). In Sections 2 and 3, we partially
develop � as a trigonometric series in l and g. The variable l is called the
mean anomaly. The discrete symmetry of the Hamiltonian (1.6) is given by
L←L, l←−l,G←G,g←−g. This transformation too is symplectic with
multiplier −1.

Let µ=0. If L= (p/q)1/3, where p and q are relatively prime positive
integers, or equivalently a= (p/q)2/3, and 0 < e < 1 or G= (a(1− e2))1/2,
then the massless particle moves on an ellipse in the counterclockwise
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Figure 1. The dotted line above is a circle of radius 1.

sense. In the rotating frame, this ellipse itself rotates in the clockwise sense
with angular velocity equal to 1 as shown in Figure 1. The orbit has a
period equal to 2πp in the rotating frame as the period of motion on the
ellipse is in resonance with the period of rotation of the frame. Arenstorf
[1] and Barrar [3] proved that the periodic orbit persists for µ> 0 and µ

small enough, if l and g are multiples of π at t = 0, and if the orbit for
µ=0 does not pass through the location of the primary of mass µ.

Since l and g are angular variables, there are four possibilities for l

and g at t = 0, namely l = nlπ and g = ngπ with nl and ng either 0 or
1. Only two of these are distinct. They are depicted on the Poincaré sec-
tion g = 0 in Figure 2. If p is odd the two distinct orbits are obtained
with ng=0 and nl either 0 or 1. When p is even, we can take nl=0 and
ng either 0 or 1. Over its period, the orbit intersects the Poincaré section
exactly p times. The plots in Figure 2 correspond to p=1 and p=2.

We investigate the linear stability of resonant periodic motions, such
as the ones depicted in Figure 2, for µ > 0. The existence and stability
of the nearly circular orbits, which are related to the nearly elliptic ones
considered here, is discussed in [4, 8, 9, 11].

In Section 2, we prove that the characteristic multipliers of the
resonant periodic orbits are given by the expression 1±√C(e,p, q)µ+
O(µ) in the limit µ→0, where

C(e,p, q)=−6πp5/3

q2/3

∫ 2πp

0

∂2�(r, θ)

∂θ2
dt.



Linear Stability Analysis of Resonant Periodic Motions 275

Figure 2. Periodic points on the L− l plane with p=1 and p=2, respectively.

In the integral above, expression (1.3) for �(r, θ) must be used to
evaluate the partial derivatives of �(r, θ) with respect to θ . After that,
the variables r and θ must be expressed in terms of L,G, l, g using (1.4)
and (1.5). The dependence of l and g on t is obtained from (1.6) with
µ=0 as l(t)=qt/p+nlπ and g(t)=−t+ngπ , and L= (p/q)1/3 and G=
(p/q)1/3(1− e2)1/2 do not vary with t .

If p/q �= 1/1,C(e,p, q) is analytic at e = 0. In Section 2, we prove
that all powers of e with exponent less than |p−q| have coefficients equal
to 0 in the power series expansion of C(e,p, q) about e= 0. The coeffi-
cient of e|p−q| can be obtained as a finite sum of hypergeometric terms
if q >1. The coefficients of e|p−q| for the two distinct types determined by
the choice of nl and ng sum to zero. It seems to be the typical case that if
one of the two types of periodic motions is elliptic then the other is hyper-
bolic for small µ. This is depicted in Figure 2 by the use of crosses for
hyperbolic points and circles for elliptic points. In later work, we will dem-
onstrate the existence of homoclinic points in the resonance band around
L= (p/q)1/3.

In Section 3, we give similar results for retrograde periodic motions.
For retrograde periodic motions, C(e,p, q)=O(ep+q) as e→0. In Section
4, we consider periodic motions near collision with the primary of mass
1−µ. The variables L,G, l, g are not a valid choice of variables at colli-
sion. Giacaglia [6] solved the Hamilton–Jacobi equation for the regular-
ized Hamiltonian with µ= 0 and derived action-angle variables that are
valid near collision. The existence of resonant periodic motions near colli-
sion was proved by Schmidt [10]. We solve the Hamilton–Jacobi equation
again, using the geometric approach of Arnold [2], to correct a calculation
and to put it on a more secure basis. We discuss the existence of periodic
motions that collide with the primary of mass 1−µ.
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2. DIRECT PERIODIC MOTIONS

Let µ = 0. The Hamilton’s equations formed using (1.6) are l̇ =
L−3, ġ=−1, L̇=0, and Ġ=0. Consider the solution with the initial condi-
tions L(0)= (p/q)1/3,G(0)= (p/q)1/3(1−e2)1/2, l(0)=nlπ , and g(0)=ngπ ,
where p and q are relatively prime positive integers, 0 <e < 1, and nl, ng

are either 0 or 1. This solution has a period equal to 2πp. Assume that
�1 >0 along this orbit. Then �′ in (1.2) is uniformly bounded in a neigh-
borhood of the orbit for µ small enough. Therefore, for initial conditions
chosen in a neighborhood of this solution and for a finite interval of time,
the solution is analytic in µ at µ= 0. The assumption �1 > 0 is valid for
p/q �= 1/1 if e is small enough. For given p/q,nl , and ng, it is valid for
all except finitely many values of e [1].

The solution is unchanged by the discrete symmetry L← L, l ←
−l,G←G,g←−g, at both t = 0 and t = πp. For µ > 0 and µ suffi-
ciently small, it is possible to perturb L(0) and the time of flight πp such
that the solution is unchanged by the discrete symmetry at t = 0 and t =
πp+O(µ) [3]. The existence of a unique family of periodic solutions for
µ>0 and µ sufficiently small with period T =2πp+O(µ) and initial con-
ditions L(0)= (p/q)1/3 +O(µ),G(0)= (p/q)1/3(1− e2)1/2, l(0)= nlπ , and
g(0)=ngπ follows.

2.1. Characteristic Multipliers

To obtain the characteristic multipliers of this family of periodic
solutions, we consider the return map to the Poincaré section g=ngπ . The
Hamilton’s equations that correspond to (1.6) are

l̇=L−3−µ�L+O(µ2), ġ=−1−µ�G+O(µ2),

L̇=µ�l+O(µ2), Ġ=µ�g+O(µ2). (2.1)

Since H is a first integral of these equations, we can fix H and solve (1.6)
for G using the implicit function theorem and identify the Poincaré section
with the L− l plane. Figure 2 depicts the intersections of periodic solu-
tions with p= 1 and p= 2 with the Poincaré section. We refer to these
intersections as periodic points. Since ġ=−1 for µ= 0, the implicit func-
tion theorem implies the existence of the return map over large regions
of the L− l plane and certainly in a neighborhood of the periodic points.
The Poincaré map leaves the area element dl dL invariant. When µ=0, the
return time is 2π for all points in the L− l plane.

When µ = 0, the pth return map maps the periodic point on the
L− l section with L(0)= (p/q)1/3 and l(0)=nlπ to itself. The pth return
time denoted by T is 2πp. By (2.1), l(t)= l(0)+ tL(0)−3 and L(t)=L(0).
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Therefore,

∂(L(T ), l(T ))

∂(L(0), l(0)
=
(

1 0
−6πq4/3

p1/3 1

)
(2.2)

at L(0) = (p/q)1/3, l(0) = nlπ , which implies that the characteristic
multipliers of the pth return map are both 1. Two of the characteristic
multipliers of any periodic solution of (2.1) must be 1. In this case all four
characteristic multipliers equal 1.

The periodic solution with the initial conditions L(0) = (p/q)1/3 +
O(µ),G(0)= (p/q)1/3(1− e2)1/2, l(0)= nlπ , and g(0)= ngπ depends ana-
lytically on µ at µ= 0 and the pth return time, which is also the period,
is given by T = 2πp+O(µ). Therefore the entries of the Jacobian matrix
in (2.2) will be perturbed by O(µ) for µ> 0 and µ sufficiently small. We
determine only the perturbation to the entry in the upper right corner
which is equal to 0 in (2.2). By (2.1),

L(T )=L(0)+µ

∫ T

0
�l(L(t),G(t), l(t), g(t))dt+O(µ2).

As the solution depends analytically on µ at µ=0, we have

L(t) = (p/q)1/3+O(µ),

G(t) = (p/q)1/3(1− e2)1/2+O(µ),

l(t) = nlπ +qt/p+O(µ),

g(t) = ngπ − t+O(µ)

for 0� t �T . The pth return time T itself can depend upon l(0). However,
∂T

∂l(0)
= 0 at µ= 0 as the pth return time equals 2πp for all points on the

L− l plane when µ=0. Therefore,

∂(L)

∂l(0)
= µ

∫ 2πp

0
�ll((p/q)1/3, (p/q)1/3(1− e2)1/2,

nlπ +qt/p,ngπ − t)dt+O(µ2).

Define C(e,p, q) such that the integral in the above equation is given
by −C(e,p, q)p1/3/(6πq4/3). Then the Jacobian matrix for the pth return
map is given by

∂(L(T ), l(T ))

∂(L(0), l(0))
=
(

1 0
−6πq4/3

p1/3 1

)
+µ

(
� −C(e,p, q)

p1/3

6πq4/3

� �

)
+O(µ2).

It follows that the characteristic multipliers are 1±√C(e,p, q)µ+O(µ)

in the limit µ→ 0. If C(e,p, q) > 0, the periodic solutions in the family
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are hyperbolic for µ > 0 and µ sufficiently small. If C(e,p, q) < 0, those
periodic solutions are elliptic.
The expression for C(e,p, q), namely

C(e,p, q) = −6πq4/3

p1/3

∫ 2πp

0
�ll((p/q)1/3, (p/q)1/3(1− e2)1/2,

nlπ +qt/p,ngπ − t)dt, (2.3)

can be cast into a simpler form. If � has the same arguments as in (2.3),
it is periodic in t with period 2πp. Using the identity d�l

dt
= q

p
�ll −�lg,

the integrand in (2.3) can be changed to �lg. Use of the identity d�g

dt
=

q
p
�lg−�gg gives the expression

C(e,p, q) = −6π5/3

p2/3

∫ 2πp

0
�gg((p/q)1/3, (p/q)1/3(1− e2)1/2,

nlπ +qt/p,ngπ − t)dt. (2.4)

The advantage of (2.4) becomes evident when the expression (1.3) for � in
terms of r and θ is considered. From (1.4) and (1.5), we see that r depends
on L,G, and l but not on g and that θ=ν−g, where ν too depends upon
L,G, and l but not on g. Therefore,

C(e,p, q)=−6πp5/3

q2/3

∫ 2πp

0

(
1

�1

)
θθ

+ cos θ

r2
dt, (2.5)

where �1= (1+ r2− 2r cos θ)1/2. The variables r and θ can be obtained
in terms of L,G, l, g using (1.4) and (1.5). For the family of periodic
solutions determined by p,q, e, nl , and ng, the variables L,G, l, g depend
upon t as indicated by the arguments of �ll and �gg in (2.3) and (2.4),
respectively.

For the family of periodic solutions to exist, we required e ∈ (0,1)

to be such that �1 > 0 everywhere along the unperturbed orbit at µ= 0.
The integrand of (2.5) can be differentiated with respect to e in a com-
plex neighborhood of the value of e for 0 � t � 2πp using formulas, since
�1 >0, and is therefore analytic in e. That C(e,p, q) is also analytic in e

follows from a standard argument (see [7]). If p/q �=1/1, then �1 >0 along
the unperturbed orbit for e sufficiently small. Therefore C(e,p, q) is ana-
lytic at e=0 if p/q �=1/1. The expression (2.5) can be used to investigate
the expansion of C(e,p, q) in powers of e assuming p/q �=1/1.
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2.2. Expansion of C(e, p, q)

Expression (2.5) for C(e,p, q) is an integral over an elliptic solution
of the two-body problem, obtained by setting µ=0 in (2.1), that satisfies
�1 >0 at all points on the solution. By (2.1) and (1.5), l=qt/p+nlπ and
l=E−e sin E. Change the variable of integration in (2.5) to E using dt=
(p/q)1/3r dE, and then to F , which is defined by qF =E, to get

C(e,p, q) = −6πp2

q

∫ 2πq

0

(
r

�1

)
θθ

+ cos θ

r
dE

= −6πp2
∫ 2π

0

(
r

�1

)
θθ

+ cos θ

r
dF. (2.6)

Define C1(e,p, q) and C2(e,p, q) by

C1(e,p, q)=
∫ 2π

0

(
r

�1

)
θθ

dF and C2(e,p, q)=
∫ 2π

0

cos θ

r
dF. (2.7)

Then C(e,p, q)=−6πp2(C1(e,p, q)+ C2(e,p, q)). The dependence of r

and θ on E or F is given by r= (p/q)2/3(1−e cosE) and θ=ν+ngπ− t .
The variables t and ν can be obtained as functions of E or F using l=
qt/p+nlπ , (1.4), and (1.5). The integrands of both integrals in (2.7) are
periodic in F with period 2π , and as �1 >0, are analytic in F for 0�F <

2π .
Let z= exp(iF ). Define β by e=2β/(1+β2). Standard formulas that

connect the true and mean anomalies with the eccentric anomaly (see [5])
imply the following:

exp iν = zq(1−βz−q)(1−βzq)−1,

exp it = exp(−iπnlp/q)zp exp
(

ep

2q
(z−q − zq)

)
. (2.8)

The variable r and exp(inθ), n∈Z, too can be expressed in terms of z.

r = (p/q)2/3(1+β2)−1(1−βz−q)(1−βzq),

exp(inθ) = (−1)nng exp(iπnnlp/q)zn(q−p)(1−βz−q)n(1−βzq)−n

× exp
(

enp

2q
(zq − z−q)

)
. (2.9)

If the integrands in (2.7) are expressed in terms of z, they are analytic
on the circle |z|=1. Therefore the integrands can be expanded in Laurent
series in z. Only the constant terms in the Laurent series contribute to
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C1(e,p, q) and C2(e,p, q). For later use, we record the following Laurent
series:

exp
(

enp

2q
(zq − z−q)

)
=

∞∑
k=−∞

Jk(enp/q)zkq . (2.10)

The Bessel functions Jk are entire functions. We need the first term in the
power series expansion of Jk(x) about x = 0, which is xk

2kk!
for k � 0, but

no others. For k >0, J−k(x)= (−1)kJk(x).
When we consider C2(e,p, q), defined by (2.7), and use a Laurent

series of its integrand in z, we find that C2(e,p, q)≡ 0 except when q =
1. Since cos θ/r = (exp(iθ)+ exp(−iθ))/(2r), we may use expressions for
exp(inθ), n=±1, and r from (2.9) to get

cos θ

r
=
(

q

p

)2/3 1+β2

2
(exp(iπnlp/q)zq−pF (z)+exp(−iπnlp/q)zp−qF (1/z)),

where F(z) = (−1)ng (1 − βzq)−2 exp(((ep)/(2q))(zq − z−q)). The Laurent
series of F(z) only has powers of zq . Since p and q are relatively prime,
none of these powers can equal zp−q or zq−p, except when q= 1. There-
fore the Laurent series of cos θ/r has no constant term if q �= 1 and
C2(e,p, q)=0.

If q=1, we can use the Laurent series (2.10) with n=1 and the bino-
mial series of (1− βzq)−2 to obtain the Laurent series of F(z) and of
cos θ/r. The Laurent series of cos θ/r implies

C2(e,p, q) = (−1)ng (−1)nlp2π
1+β2

p2/3

×(Jp−1(ep)+2Jp−2(ep)β+3Jp−3(ep)β2+· · · ) (2.11)

for q=1. Note that C2(e,p, q)=O(ep−1) as e→0, when q=1.
We will prove that the power series of C1(e,p, q), defined by (2.7),

has no terms lower than e|p−q|. We will also determine the coefficient of
the e|p−q| term. In the ensuing analysis, we assume p <q. The p >q case
is similar. We obtain terms in the Laurent series of the integrand

(
r
�1

)
θθ

in two steps. For the first step, consider

I (α)= ∂2

∂θ2

(
α√

1+α2−2α cos θ

)
.

This quantity I (α) would equal the integrand if α = r. However, we
assume α to be fixed in the range (0, 1). It will be set equal to (p/q)2/3
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later. The Fourier expansion of I (α) is

I (α)= 1
2

∞∑
n=−∞

−n2αbn(α) exp(inθ), (2.12)

where bn(α) are the Laplace coefficients. The Laplace coefficients are
hypergeometric functions whose series converge for |α|<1. They and their
derivatives satisfy a number of identities. See [5].

In the second step, we let α = r in I (α) to make it equal to the
integrand (r/�1)θθ in (2.7). Let f (x) be analytic in x at x = x0. Then
f ((1+ δ)x0) has a convergent power series expansion in δ. This power
series can be conveniently represented as (1+ δ)Df (x0), with the under-
standing that D stands for the differential operator x d

dx
and that (1+

δ)D is expanded according to the binomial formula [5]. Note that r =
(p/q)2/3(1 − e cos E). Let D be the differential operator α d

dα
. Since

cos E= (z−q + zq)/2, we get

Dα= (1− e cos E)D= (1+β2)−D(1−βz−q)D(1−βzq)D, (2.13)

where the first equality defines the operator Dα. By (2.12) and (2.13), the
integrand in the definition (2.7) of C1(e,p, q) can be represented as(

r

�1

)
θθ

= 1
2

∞∑
n=−∞

−n2Dααbn(α) exp(inθ), (2.14)

which is to be evaluated at α= (p/q)2/3. We will use (2.9) and (2.13) to
substitute expressions in terms of z for exp(inθ) and Dα, respectively.

Define Xn(A,B,C)=(1+β2)A(1−βz−q)B(1−βzq)C exp((enp/(2q))(zq−
z−q)). The formal Laurent series of Xn(A,B,C) is gotten by multiplying
the binomial expansions of (1−βz−q)B and (1−βzq)C with the series in
(2.10). Each of these three series is in terms of integral powers of zq and
so is the resulting series for Xn(A,B,C). In each of the three series the
coefficient of zkq is a power series in e with the lowest power of e with
possibly nonzero coefficient being e|k| and so it is for the series expansion
of Xn(A,B,C).

The nth term in the summation in (2.14) is given by

−n2Dααbn(α) exp(inθ) = −(−1)nng exp(iπnnlp/q)n2zn(q−p)

×Xn(−D,D+n,D−n)(αbn(α)). (2.15)

For the Laurent series of the term in (2.15) above to have a nonzero
constant term, n must be an integer multiple of q with n �=0. Let n=n0q.
Then that constant term is ±n2 times the coefficient of zn0(p−q)q in the
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Laurent series of Xn(−D,D+ n,D− n). By the previous paragraph, the
lowest term with possibly nonzero coefficient in the power series expan-
sion of that constant term is e|n0(p−q)|. As C1(e,p, q) is obtained in (2.7)
by integrating the sum in (2.14), only the constant term in the Laurent
series in z of each term of (2.14) makes a contribution to C1(e,p, q). Thus
the lowest possibly nonzero term in the power series of C(e,p, q) is e|p−q|
and the only terms of (2.14) that contribute to the coefficient of e|p−q| are
n=q and n=−q.

Thus we have proved that the coefficients of all powers of e less than
|p−q| in the power series of C1(e,p, q) about e=0 are zero, if p<q. The
coefficient of e|p−q| is equal to

−2πq2 (−1)q−p

2q−p
(−1)ngq+nlp

(
q−p∑
k=0

(
D+q

k

)
pq−p−k

(q−p−k)!

)
(αbq(α)),

(2.16)

evaluated at α= (p/q)2/3. By definition D is the operator α d
dα

and bq is
a hypergeometric function whose series converges for |α|<1 as mentioned
earlier.

If p>q, a similar analysis proves that all powers of e less than |p−q|
in the power series of C1(e,p, q) about e= 0 are zero. The coefficient of
e|p−q| in that power series is equal to

−2πq2 (−1)p−q

2p−q
(−1)ngq+nlp

(
p−q∑
k=0

(−1)k
(−D−q

k

)
pp−q−k

(p−q−k)!

)
bq(α),

(2.17)

evaluated at α= (q/p)2/3. That C(e,p, q)=O(e|p−q|) for p/q �=1/1 is now
clear from (2.6), (2.7), (2.11), and the power series of C1(e,p, q) is given
by (2.16) and (2.17).

The two families of periodic solutions of (2.1) with L(0)= (p/q)1/3+
O(µ) and G(0)= (p/q)1/3(1− e2)1/2 +O(µ) are given by l(0)= nlπ and
g(0)=ngπ , with nl = 0 and ng either 0 or 1 if p is odd, and with nl = 0
and ng either 0 or 1 if p is even. Since p and q are relatively prime, q

must be odd if p is even. By (2.11), (2.16), and (2.17), the coefficients of
e|p−q| in the power series of C(e,p, q) for the two families sum to zero.
Of course, there is still the possibility that both these coefficients are zero.
This possibility can be eliminated by evaluating (2.16) if p <q and (2.17)
if p >q, and also (2.11) if q=1.
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Figure 3. The plots use p/q=1/3 and p/q=2/7, respectively.

2.3. Statement of Results

The theorem below summarizes the results of this section.

Theorem 2.1. There exists a µ-dependent family of periodic solutions
of Hamilton’s equations (2.1) with the initial conditions L(0)= (p/q)1/3 +
O(µ),G(0)= (p/q)1/3(1−e2)1/2, l(0)=nlπ , and g(0)=ngπ , where p and q

are relatively prime positive integers, 0 < e < 1, and nl and ng are either 0
or 1, provided the solution at µ= 0 does not collide with the orbit of the
primary of mass µ. The existence holds for µ sufficiently small, the depen-
dence on µ is analytic, and there is only one such family as proved in [1,3].
Given p,q, and e there are four possible choices for nl and ng, but only two
of these give rise to distinct families. Two of the characteristic multipliers
are equal to 1±√C(e,p, q)µ+O(µ) in the limit µ→0, where C(e,p, q) is
given by (2.5). The quantity C(e,p, q) is analytic at e=0 and C(e,p, q)=
O(e|p−q|) as e→ 0, if p/q �= 1/1. The coefficient in front of e|p−q| in the
power series of C(e,p, q) is given by (2.11), (2.16), and (2.17). The coeffi-
cients for the two distinct families obtained for given p,q, and e sum to zero.

The numerical evaluation of C(e,p, q) defined by (2.5) can be carried
out with great accuracy at little expense. Figure 3 graphs C(e,p, q) against
e with two choices of p/q. In the graphs, C(e,p, q) has opposite signs
for the two distinct families. For µ> 0 and µ small, if the periodic solu-
tions of one family are hyperbolic, the periodic solutions of the other fam-
ily are elliptic in either plot of Figure 3. This corresponds to the situation
depicted in Figure 2.
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3. RETROGRADE PERIODIC MOTIONS

The convention for representing retrograde motions in the restricted
three-body problem depends upon the choice of variables. We will rep-
resent retrograde motions using negative L and G. The variation of
L,G, l, g with t is again obtained from Hamilton’s equations (2.1). The
dependence of r and θ on L,G, l, g is given by (1.4) and (1.5) without
a change. For the choice of variables to be valid, the condition 0 < e < 1
must hold. If the angles E,ν, and g are interpreted in the inertial frame,
say with µ= 0, they must all be measured in the counterclockwise sense.
However, for retrograde motion, unlike for direct motion, the angles E

and ν decrease with t .
There exists a µ-dependent family of retrograde periodic solutions of

(2.1) with initial conditions L(0)=−(p/q)1/3+O(µ),G(0)=−(p/q)1/3(1−
e2)1/2, l(0)=nlπ , and g(0)=ngπ , where p and q are relatively prime pos-
itive integers, 0 <e < 1, and nl and ng are either 0 or 1. The dependence
on µ is analytic and the existence holds for µ>0 and µ sufficiently small
provided the solution at µ=0 satisfies �1 >0. Given p,q, and e, there are
four possible choices for nl and ng. Of these only two give rise to distinct
families. If p is odd, the two distinct families can be obtained with ng=0
and nl either 0 or 1, and if p is even with nl=0 and ng either 0 or 1.

Up to terms of order µ, the dependence of periodic solutions of the
family determined by p,q, e, nl , and ng is given by

L(t) = −(p/q)1/3+O(µ),

G(t) = −(p/q)1/3(1− e2)1/2+O(µ),

l(t) = nlπ −qt/p+O(µ),

g(t) = ngπ − t+O(µ)

with the period being T =2πp+O(µ). To find the characteristic multipliers
of these periodic solutions, we choose the Poincaré section g= ngπ and
represent it using the L− l plane. As in Section 2, we may deduce that

∂(L(T ), l(T ))

∂(L(0), l(0))
=
(

1 0
6πq4/3

p1/3 1

)
+µ

(
� −C(e,p, q)

p1/3

6πq4/3

� �

)
+O(µ2).

The quantity C(e,p, q) is given by

C(e,p, q) = −6πp5/3

q2/3

∫ 2πp

0
�gg

(
−(p/q)1/3,−(p/q)1/3(1− e2)1/2,

nlπ −qt/p,ngπ − t
)

dt.

(3.1)
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This expression for C(e,p, q) is similar in form to (2.4), but the arguments
of �gg in (2.4) and (3.1) are different. Use the change of variables from
t to F given by l=−qt/p+ nlπ, l=E− e sin E,dt =−(p/q)1/3r dE, and
qF =E, to get

C(e,p, q)=−6πp2
∫ 2π

0

(
r

�1

)
θθ

+ cos θ

r
dF, (3.2)

where �1 = (1 + r2 − 2r cos θ)1/2. This expression for C(e,p, q) looks
identical to (2.6), but the dependence of θ on t , and hence on F , is quite
different. The dependence of L,G, l, g on t here is as indicated by the
arguments of �gg in (3.1) and not as in (2.4). The variables r and θ

are obtained from L,G, l, g using (1.4) and (1.5) as before. We now con-
sider C1(e,p, q) and C2(e,p, q) which are defined as in (2.7) but with the
dependence of r and θ on F that is indicated here. We have C(e,p, q)=
−6πp2(C1(e,p, q)+C2(e,p, q)).

That C(e,p, q) is analytic in e follows from the assumption �1 > 0
as in Section 2. Here too C(e,p, q) is analytic at e= 0 if p/q �= 1/1. But
the power series of C(e,p, q) about e=0 looks quite different, as will be
shown now.

Let z= exp(iF ). Define β by e=2β/(1+β2) as before. We have

exp(iν) = zq(1−βz−q)(1−βzq)−1,

exp(−it) = exp(−iπnlp/q)zp exp
(

ep

2q
(z−q − zq)

)
, (3.3)

which has −t in place of the t in (2.8). From r= (p/q)1/3(1−e cosE), θ=
ν+ngπ − t , and (3.3), we have

r = (p/q)2/3(1+β2)−1(1−βz−q)(1−βzq),

exp(inθ) = exp(−iπnnlp/q)(−1)nng zn(p+q)(1−βz−q)n(1−βzq)−n

× exp
(

enp

2q
(z−q − zq

)
. (3.4)

The expression for exp(inθ) in (3.4) has a factor zn(p+q) while the
expression in (2.9) has the factor zn(q−p). A consequence of the difference
in the two expressions is that C(e,p, q) for retrograde motion is O(ep+q),
and not O(e|p−q|), in the limit e→0 for p/q �=1/1, as will be shown now.

The analysis of C2(e,p, q) is similar to that in Section 2 with the
difference that (3.4) and not (2.9) must be used to express cos(θ) in
terms of z. We can conclude that C2(e,p, q) = 0 if q �= 1 and that
C2(e,p, q)=O(ep+1) when q = 1. Besides,the sum of the coefficients of
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ep+1 in the power series of C(e,p, q) about e = 0 for the two distinct
families, obtained for given p,q, and e, is always zero.

We consider C1(e,p, q) with the assumption p < q. The p > q case
is similar and leads to the same conclusions. The integrand

(
r
�1

)
θθ

can
again be written as a sum of terms as in (2.14) and the operator Dα is
again given by (2.13). But the expression for the nth term in (2.14) is now
different. Instead of (2.15), we now have

−n2Dααbn(α) exp(inθ) = −(−1)nng exp(−iπnnlp/q)zn(p+q)

×Xn(−D,D+n,D−n)(αbn(α)), (3.5)

where Xn(A,B,C) = (1 + β2)A(1 − βz−q)B(1 − βzq)C exp(
enp
2q

(z−q − zq)).
The Laurent series of the nth term of (2.14), which is displayed in (3.5),
has a possibly nonzero constant term only if n=n0q, where n0 is an inte-
ger, and n0 �=0. That constant term is ±n2 times the coefficient of zn0(p+q)q

in Xn(−D,D + n,D − n), and therefore, if that term is expanded about
e=0 the lowest term with a possibly nonzero coefficient is e|n0(p+q)|. Thus
the lowest term with a possibly nonzero coefficient in the power series of
C1(e,p, q) about e=0 is ep+q and the only terms (2.14) which contribute
to its coefficient are obtained by setting n=±q in (3.5). We conclude that
C1(e,p, q)=O(ep+q) as e→0 for p/q �=1/1.

For given p,q, and e, the two distinct families are given by ng = 0
and nl either 0 or 1 if p is odd, and by nl=0 and ng either 0 or 1 if p is
even. Inspection of (3.5) with n=±q leads to the conclusion that the sum
of the coefficients of ep+q in the power series of C1(e,p, q) about e=0 for
the two families is zero.

The theorem below is about retrograde periodic motions.

Theorem 3.1. There exists a µ-dependent family of periodic solutions
of Hamilton’s equations (2.1) with the initial conditions L(0)=−(p/q)1/3+
O(µ),G(0)=−(p/q)1/3(1− e2)1/2, l(0)=nlπ , and g(0)=ngπ , where p and
q are relatively prime positive integers, 0<e<1, and nl and ng are either 0
and 1, provided the solution at µ= 0 does not collide with the orbit of the
primary of mass µ. The existence holds for µ sufficiently small, the depen-
dence on µ is analytic, and there is only one such family. Given p,q, and e,
the four possible choices for nl and ng give rise to only two distinct families.
Two of the characteristic multipliers are equal to 1±√C(e,p, q)µ+O(µ) in
the limit µ→0, where C(e,p, q) is given by (3.2). The quantity C(e,p, q) is
analytic at e=0 and C(e,p, q)=O(ep+q) as e→0, if p/q �=1/1. The sum
of the coefficients of ep+q in the power series of C(e,p, q) about e= 0 for
the two families is zero.
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4. PERIODIC MOTIONS NEAR COLLISION

In this section, we consider periodic motions near collision with the
primary of mass 1 − µ. Consider the Hamiltonian H defined by (1.1).
The generating function S = (−µ+ ξ2 − ν2)px + (2ξν)py can be used to
effect the Levi–Civita transformation from the variables px,py, x, y to the
variables pξ ,pν, ξ, ν. The Hamiltonian becomes

H = p2
ξ +p2

ν

8(ξ2+ν2)
+ 1

2
(νpξ − ξpν)+ µ

2
(ξpν +νpξ )

(ξ2+ν2)

− 1−µ

ξ2+ν2
− µ

((ξ2−ν2−1)2+4ξ2ν2)1/2
.

Suppose we are interested only in solutions of Hamilton’s equations with
H =C. Consider K= (ξ2+ν2)(H −C) or

K = p2
ξ +p2

ν

8
+ ξ2+ν2

2
(νpξ − ξpν −2C)−1

+µ

2
(ξpν +νpξ )+µ− µ(ξ2+ν2)

((ξ2−ν2−1)2+4ξ2ν2)1/2
.

The solutions of Hamilton’s equations formed using K with K= 0 corre-
spond to solutions of Hamilton’s equations of H with H =C, but with
time rescaled from t to τ such that dt= (ξ2+ν2)dτ . Hamilton’s equations
of K admit solutions with K = 0 that pass through or close to ξ = ν= 0.
These can be interpreted as analytic continuations of the solutions of the
equations formed using H through the singularity of H at the location of
the primary of mass 1−µ. When µ=0

K= p2
ξ +p2

ν

8
+ ξ2+ν2

2
(νpξ − ξpν −2C)−1. (4.1)

The quantity G= ξpν−νpξ , is a first integral of the Hamilton’s equations
of K shown in (4.1). If a solution of those equations passes through ξ =
ν=0, then G=0. In terms of px,py, x, y,G=2(xpy−ypx). Therefore the
quantity denoted by G in this section is twice the angular momentum.

The Hamilton–Jacobi equation of K shown in (4.1) was solved in [6]
in the region of phase space with G= 0 or G≈ 0. There is a gap in that
solution when G=0. In this section, we discuss that gap and make minor
corrections to the solution given in [6] for G �=0. We follow the geometric
approach to the construction of action-angle variables described in [2]. All
references to [2] in this section are to the last chapter of that book.

The generating function S = pξ (r cos θ)+ pν(r sin θ) can be used to
effect a change from the variables pξ ,pν, ξ, ν to the variables R,G, r, θ .
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The change to the polar variables r, θ and the corresponding generalized
momenta R,G is well defined only if r �=0, or equivalently, ξ2+ν2 �=0. The
Hamiltonian K becomes

K = 1
8

(
R2+ G2

r

)
+ r2

2
(−G−2C)−1+ µ

2
(Rr sin(2θ)+G cos(2θ))

+µ− µr2

(1+ r4−2r2 cos(2θ))1/2
.

When µ=0

K= 1
8

(
R2+ G2

r

)
+ r2

2
(−G−2C)−1. (4.2)

We will find the action-angle variables of K at µ=0 using (4.2).
The action-angle variables will be found in the region of R,G, r, θ

space or of pξ ,pν, ξ, ν space where the following conditions are satisfied:

G+2C <0, K+1>0, (K+1)2+ G2(G+2C)

4
>0 (4.3)

with C < 0. The necessity of these conditions will become clear shortly.
We are interested in solutions that are near a collision with the primary
of mass 1 − µ. Therefore, G ≈ 0 in the region of interest. Further, the
solutions of interest are bounded and satisfy K = 0. Therefore C < 0 and
K+1≈1 in the region of interest. It is obvious that all points in the
region of interest meet the conditions (4.3).

As a first step to the derivation of action-angle variables, we visualize
the set of points in R,G, r, θ for fixed values of K and G satisfying (4.3)
and G �=0. Using (4.2), we deduce that rmin � r � rmax, where

r2
min+ r2

max=
2(K+1)

(−G−2C)
, r2

minr2
max=

G2

4(−G−2C)
. (4.4)

The last of the conditions (4.3) ensures 0� rmin <rmax. The condition G �=
0 implies 0<rmin. For later use, we introduce variables a and e defined by

r2
min=a(1− e), r2

max=a(1+ e). (4.5)

For r within the allowed range, any value of θ is allowed in the set. Thus
the projection of the set looks like the annulus in Figure 4. The variable G

is of course fixed. For a given point in the annulus in the r−θ plane, R can
have two values of equal magnitude but opposite sign. On the boundary
of the annulus, R=0. Therefore the set of points is a torus.
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Figure 4. The cycles used to obtain action-angle variables are shown above.

The set of points with G= 0 and a fixed value of K, such that the
conditions (4.3) are met, includes points with ξ = ν = 0. The change to
polar variables is invalid at those points and the R,G, r, θ space cannot
be used to visualize that set. By (4.1), the set of points in the pξ ,pν, ξ, ν

space is given by the conditions

ξpν −νpξ =0, ξ2+ν2 � (K+1)/(−C), p2
ξ +p2

ν =8(K+1+C(ξ2+ν2)).

This set of points is also homeomorphic to a torus. It is easy to check that
the differential 1-forms dG and dK are linearly independent on this torus.

We return to Figure 4 and the assumption G �=0 and find the action-
angle variables. As explained in [2], the action variables are functions of
K and G obtained as 1

2π

∫
R dr+G dθ , with the integral taken over two

linearly independent cycles on the torus. Our choice of cycles is shown in
Figure 4. The cycle with fixed r and θ varying from 0 to 2π gives G as
an action variable. The other cycle increases from rmin to rmax with R �0
and then decreases to rmin with R�0. The variable θ is fixed on this cycle.
The action variable L� given by this cycle is

L�= 1
π

∫ rmax

rmin

(
8K+8− G2

r2
+4r2(G+2C)

)1/2

dr.

Substitute u= r2 to get

L�= 1
π

(−G−2C)1/2
∫ a(1+e)

a(1−e)

((a(1+ e)−u)(u−a(1− e)))1/2

u
du.

Evaluate the integral and use (4.4) and (4.5) to get

L�= K+1
(−G−2C)1/2

− |G|
2

. (4.6)
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Instead of L�, we use L defined by

L= K+1
(−G−2C)1/2

(4.7)

as the other action variable.
The angle variables parametrize the surface of the torus obtained in

R,G, r, θ space by fixing the action variables L and G. As proved in [2],
the angle variables can be derived from the following generating function:

S(r, θ,L,G)=
∫ r,θ

rmin,0
Gdθ +R dr.

In this expression, R must be expressed in terms of L,G, and r using (4.2)
and (4.7). From this expression, it might seem that S(r, θ,L,G) is a func-
tion on the annulus shown in Figure 4 for fixed L and G. It is actually a
function on the torus as R can be either positive or negative.

S(r, θ,L,G)=Gθ ±
∫ r

r min

(
8L(−G−2C)1/2− G2

r2
+4r2(G+2C)

)1/2

dr,

where the sign is + if R � 0 and − otherwise. The generating function
S(r, θ,L,G) is a multiple valued function on the surface of the torus
as there are many nonhomotopic paths from the base point R = 0, r =
rmin, θ = 0 to any point on the torus. In the calculations below, we con-
sider the paths for which both r and θ increase monotonically.

The value of one of the angle variables on a point on the torus is
equal to the value of ∂S

∂L
at that point on the torus as proved in [2].

∂S

∂L
=±4(−G−2C)1/2

∫ r

rmin

(
8L(−G−2C)1/2− G2

r2
+4r2(G+2C)

)−1/2

dr,

where the sign is + if R � 0 at the point on the torus and – otherwise.
Change variable to u= r2 to get

∂S

∂L
=±

∫ r2

a(1−e)

du

((a(1+ e)−u)(u−a(1− e)))1/2
.

Change variable to l defined by u= a(1− e cos l) with 0 � l � π to get
∂S
∂L
=±l. If we adopt the convention 0 � l � π if R � 0 and −π < l < 0 if

R <0, we get

∂S

∂L
= l, (4.8)

where l is an angular variable that is measured modulo 2π .
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The value of the other angle variable at a point on the torus is equal
to the value of ∂S/∂G at that point on the torus.

∂S

∂G
= θ ± 1

2

∫ r

rmin

(
−4L(−G−2C)−1/2− 2G

r2
+4r2

)

×
(

8L(−G−2C)1/2− G2

r2
+4r2(G+2C)

)−1/2

dr,

where the sign is + if R � 0 at the point on the torus and − otherwise.
Change variable to u= r2 to get

∂S

∂G
= θ ± 1

4(−G−2C)1/2

∫ r2

a(1−e)

(−2L(−G−2C)−1/2−G/u+2u
)

((a(1+ e)−u)(u−a(1− e)))1/2
du.

Change variable to l defined by u=a(1−e cos l) with the same convention
as in (4.8). By (4.4), (4.5), and (4.7),

−2L(−G−2C)1/2−G/u+2u=− G

a(1− e cos l)
−2ae cos l.

Denote ∂S/∂G by g to get

g= θ − G

4L

∫ l

0

dl

(1− e cos l)
− (L2−G2/4)1/2

2(−G−2C)
sin l, (4.9)

where e=
(

1− G2

4L2

)1/2
.

If L�, defined by (4.6), and G are used as the action variables, the
corresponding angle variables are l and g± l/2 – the sign is + if G>0 and
− if G<0. It is easily verified that along each of the two cycles depicted
in Figure 4 one of these angle variables increases by 2π while the other
doesn’t change. This must be the case as proved in [2] and the verification
is a check of the correctness of our derivation of action-angle variables.

The quantities denoted by G and g in [6] are twice and half of the
quantities denoted by G and g in this section, respectively. The factor 2
that appears in the coefficient of sin l in (19) of [6] must be moved to
the denominator. Further, in (20) of [6] (1− e2)1/2 must be replaced by
G/L. Although |G/L|= (1− e2)1/2 in the notation of [6], the sign of G is
significant.

When G= 0 the change to polar variables is not valid as we have
shown in this section. Therefore the derivation of action-angle variables
using a change to polar variables given in [6] is also not valid when G=0.

The existence of µ-dependent families of periodic solutions of Ham-
ilton’s equations of K with the initial conditions L(0)= (p/q)1/3+O(µ),
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G(0)=−2C− (q/p)2/3+O(µ), l(0)=0, and g(0)= 0 was proved in [10].
The solutions in these families depend analytically on µ and K = 0 at all
points along the solutions. The methods of Sections 2 and 3 can be used
to carry out linear stability analyses of these periodic solutions. However,
a new derivation of action-angle variables is necessary for the crucial G=0
case.
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