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Abstract
Bar code reconstruction involves recovering a clean signal from an observed
one that is corrupted by convolution with a kernel and additive noise. The
precise form of the convolution kernel is also unknown, making reconstruction
harder than in the case of standard deblurring. On the other hand, bar codes are
functions that have a very special form—this makes reconstruction feasible. We
develop and analyse a total variation based variational model for the solution
of this problem. This new technique models systematically the interaction of
neighbouring bars in the bar code under convolution with a kernel, as well as
the estimation of the unknown parameters of the kernel from global information
contained in the observed signal.

1. Introduction

We study the problem of recovering a bar code from the noisy signal detected by a bar code
reader. Bar codes represent (finite) sequences of digits by (finite) sequences of dark parallel
‘bars’ of varying thickness, separated by ‘white spaces’ of varying size. As such, they can be
conveniently modelled as characteristic functions of measurable subsets of R (see figure 1).
We therefore introduce the set

S = {u(x) ∈ L2(R) : u(x) ∈ {0, 1} a.e. x}. (1)

The process that converts a given bar code from the set S to the signal that is actually detected
by a bar code reader depends, among other things, on the distance of the reader (the detector) to
the surface where the bar code appears [10, 11, 18]. The longer the distance, the more blurred
the observed signal. And depending on ambient illumination the optical sensor of the bar code
reader introduces an unknown gain factor. This process has been modelled [10, 11, 18] as the
convolution of the bar code u(x)with a Gaussian kernel of unknown amplitude α and standard
deviation σ , and is denoted by Tα,σ :

Tα,σ : u(x) −→ α · Gσ ∗ u(x) (2)

where α is a strictly positive constant, and

Gσ (x) = 1

σ
√

2π
exp

(
− x2

2σ 2

)
with σ > 0. (3)
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Figure 1. Top to bottom: a bar code, the function u(x) ∈ S that represents it, and a typical observed
signal f (x) obtained from u(x) via convolution by a Gaussian kernel followed by the addition of
noise.

Furthermore, in any practical situation, the observed signal f (x) is further corrupted by noise,
which is modelled to be additive:

f (x) = Tα,σ (u) + n(x). (4)

Therefore, in our model it is f (x) that represents the typical output of a bar code reader.

The goal of bar code reconstruction is to recover the bar code u(x) from the observed
signal f (x), without any knowledge of α and σ .

The bar code reconstruction problem thus differs from standard denoising problems of
image processing in that the convolution kernel is not completely known in advance. In this
regard, it is closer to the blind deconvolution problem.

2. Previous work and our approach

Previous work on the bar code reconstruction problem is based on finding local minima and
maxima in the derivative of f (x) (which we called the observed signal above) using edge
detector filters, and trying to relate them to the structure of the bar code they must have come
from: under favourable conditions, local extrema in the derivative of the convolved signal
correspond approximately to locations of discontinuities in the original bar code, and so help
locate the ‘bars’ in the code. A major difficulty with such an approach is sensitivity to noise.
Moreover, locations of local maxima and minima in f ′(x) are difficult to relate to the true
locations of edges of the ‘bars’ in the original bar code u(x) because the convolution operator
involved in the observation process tends to shift their positions depending on the configuration
of neighbouring bars and the amount of blurring (which is another unknown of the problem);
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this is known as ‘convolution distortion’ in bar code literature [18]. This effect is significant
when the standard deviation of the convolution kernel becomes comparable to the smallest
length scale of interest in the problem, namely the minimum of the thicknesses of bars and
their distances to each other. Joseph and Pavlidis describe in [10, 11] a modification of the
traditional edge detection technique to take into account this issue, but we believe it can be
addressed more systematically.

Furthermore, when the standard deviation of the convolution kernel is large enough (which
happens when, for example, the reader is held at a sufficiently large distance to the bar code),
‘edges’ of the bars that make up the bar code may have no corresponding local extrema in the
derivative of the convolved signal. In this situation, a traditional approach based on locating
extrema in the derivative of the convolved signal would be at a significant disadvantage even
in the absence of any noise.

We follow a completely different path based on the variational approach to image
processing: we write down an energy whose minimizer is the candidate solution. These
techniques are more robust than traditional edge detectors in the presence of noise: first, they
are more global in that they utilize information from all over the image domain to detect
transitions in the signal, and second they avoid working with the derivative of the signal which
is always an error prone quantity. Moreover, unlike previous approaches, the technique we
present systematically models interactions between neighbouring ‘bars’ under convolution with
a Gaussian kernel. Indeed, our model takes into account the interactions between all ‘bars’
in the signal under convolution, and not just the neighbouring few (although of course the
main contribution comes from the immediate neighbours). This is accomplished by explicitly
modelling the convolution process using the ‘fidelity’ term in the energy that we propose to
minimize.

Another way the model presented here differs from previous approaches is in how the
unknown parameter σ is handled. Our technique provides a systematic way of determining σ
from the global information contained in the observed signal and avoids having to estimate it
from an isolated peak or valley.

To be more specific, we introduce and study both analytically and numerically a version
of the total variation based denoising/deblurring technique of Rudin and co-workers [16, 17]
that is adapted to minimizing over functions that take only two values. The resulting algorithm
minimizes an energy functional via gradient descent, and is thus iterative. It does not require
a priori knowledge of the number of ‘bars’ expected in the reconstructed bar code.

This new algorithm does not require pronounced local extrema in the derivative of the
convolved signal in order to successfully reconstruct bar codes. It is robust under noise, even
at high blur. It is therefore a promising new approach to furthering the distance from which bar
codes can be reliably reconstructed by readers. Moreover, it can be extended very naturally to
two-dimensional signals.

Although we describe all the details of the numerical implementation, our emphasis in this
paper is not the speed of the algorithm but the accuracy of its reconstructions. In particular,
we should point out that there are other techniques besides gradient descent for minimizing
total variation based functionals that are potentially much more efficient; examples of other
optimization approaches can be found in [3–6, 9, 12, 14, 19, 20]. Many previous authors
studied total variation based regularization for denoising and deblurring (with a known kernel)
in image processing and related applications [1, 4, 16, 17, 19]. Furthermore, application
of total variation based reconstruction to blind deconvolution was previously introduced by
Chan and Wong [7]; that work deals with the situation where, unlike our setting, there
is no a priori information available about the unknown function u(x) and the convolution
kernel.
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3. Preliminary observations

We start with a uniqueness result which shows that in the absence of any noise, the signal
detected by a bar code reader contains enough information to determine the bar code it resulted
from:

Proposition 1. Let u1, u2 ∈ S be two bar codes such that Tα1,σ1(u1) = Tα2,σ2(u2) identically.
Then u1 = u2 identically. Furthermore, if u1 = u2 does not vanish identically, then α1 = α2

and σ1 = σ2.

Proof. First, it is plain that Tα1,σ1(u1) = Tα2,σ2(u2) vanishes if and only if u1 = u2 = 0. So
let us now assume that Tα1,σ1(u1) �= 0. Then, we can show that σ1 = σ2. To that end, suppose
not and, with no loss of generality, assume that σ1 > σ2. The equality

α1Gσ1 ∗ u1 = α2Gσ2 ∗ u2 (5)

implies:

u2 = α1

α2
Gσ ∗ u1 where σ =

√
σ 2

1 − σ 2
2 . (6)

That would mean u2 ∈ C∞, which is a contradiction. It follows that σ1 = σ2. With that, we
get α1u1 = α2u2, and the conclusion of the proposition follows. �

Let us note, on the other hand, that in the presence of noise the equation Tα,σu(x) = f (x)
cannot in general be solved for α, σ, u(x). Indeed, for any choice of α, σ, u(x), the right-hand
side either takes only two values (which happens if σ = 0, a value that we allow) or is smooth.
Hence, when f (x) is any non-smooth function that takes more than two values, there is no
corresponding solution.

Remark. Proposition 1 has an obvious higher-dimensional analogue. On the other hand,
there seems to be no clear way to adapt this argument to the discrete setting considered in the
subsequent sections.

4. Variational models

We will study a number of total variation based models for the solution of the bar code problem.
In applications, it makes more sense to pose the problem on a bounded interval I , which we
will take to be I = (0, 1). We then define the subset SI of S as

SI := {u ∈ S : u = 0 a.e. x ∈ R \ I }. (7)

We will assume that the observed signal f (x) satisfies f ∈ L2(R). Also, from here onwards
it is more convenient to let α � 0.

Before considering total variation based models, let us note that the following natural
variational approach to the bar code problem in general does not have a solution; in other
words, the approach is not well-posed:

inf
u(x)∈SI
α,σ�0

E(u, α, σ ) where E(u, α, σ ) =
∫

R
(α · Gσ ∗ u − f )2 dx . (8)

In fact, without some regularization on u(x), even the simpler minimization problem with
α � 0 fixed has no solution in general. The following claim helps explain why.
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Proposition 2. Fix α > 0, and take any f (x) ∈ L∞(R) such that

f (x) = 0 for a.e. x ∈ I c, and f (x) ∈ [0, α] for a.e. x ∈ I. (9)

Then,

inf
u(x)∈SI
σ>0

E(u(x), α, σ ) = 0. (10)

Proof. First, we have

Gσ ∗ f −→ f in L2(R) as σ → 0+. (11)

Also, there exists a sequence bn(x) ∈ SI such that

αbn(x)
w−→ f (x) weakly in L2(R) as n → ∞. (12)

The last statement follows from a well-known generalization of the Riemann–Lebesgue lemma.
By compactness of the convolution operator,

αGσ ∗ bn −→ Gσ ∗ f strongly in L2(R) as n → ∞, (13)

for any σ > 0. Taking now a sequence {σ j }∞j=1 → 0+, we can take a diagonal sequence
{bn j (x)} such that

αGσ j ∗ bn j −→ f in L2(R) as j → ∞, (14)

which implies the desired conclusion. �
Combined with the uniqueness results of proposition 1, the last proposition shows that the

infimum in (8) is in general not attained, and therefore the approach is not well-posed.
As the foregoing discussion suggests, it is necessary to put some regularization on u(x).

With that in mind, we define the following energy:

Eλ(u, α, σ ) =
∫

R
|∇u| + λ

∫
R
(α · Gσ ∗ u − f )2 dx (15)

over functions u(x) ∈ SI , and constants α, σ � 0. Here, λ is a positive constant. The
regularization term, given by the first integral on the right-hand side is defined as∫

R
|∇u| = sup

φ(x)∈C1
c (R)|φ(x)|�1 ∀x∈R

∫
u(x)φ′(x) dx (16)

and agrees with its ordinary sense whenever u(x) is smooth.
A natural approach to recovering u(x) from f (x) would be to carry out the following

minimization:

inf
u(x)∈SI
α,σ�0

Eλ(u, α, σ ). (17)

However, we have the following proposition.

Proposition 3. In general, the infimum in (17) is not attained.

Proof. Take f (x) := Gσ0(x − 1
2 ) for some σ0 > 0, and find a λ > 0 large enough so that

Eλ(0, 1, 1) = λ

∫
R

f 2(x) dx > 2. (18)

On the other hand, any non-zero function u(x) ∈ SI has total variation at least 2, and as in the
uniqueness result of proposition 1 we can easily see that∫

R
( f (x)− α · Gσ ∗ u)2 dx > 0 (19)
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for all u(x) ∈ SI and α > 0, σ � 0. Therefore,

Eλ(u, α, σ ) > 2 (20)

for all u(x) ∈ SI and α, σ � 0. Now let

u j (x) = χ[− 1
2 j ,

1
2 j ](x − 1

2 ) for j = 1, 2, . . . . (21)

Consider the sequence {(u j , j, σ0)}∞j=1. We have

j · u j (x)
j→∞−→ δ 1

2
(x) (22)

weakly in the sense of measures. In fact,

j · Gσ0 ∗ u j
j→∞−→

L2
Gσ0(x) = f (x) (23)

so that

lim
j→∞

Eλ(u j , j, σ0) = inf
u(x)∈SI
α,σ�0

Eλ(u, α, σ ) = 2. (24)

This establishes the proposition. �
Perhaps the variational problem (17) has solutions for most choices of the original signal

f (x). Nevertheless, the proposition given above makes a strong argument against using it
to solve the bar code problem. We therefore look for alternative variational models. One
possibility is to put restrictions on the constant α � 0. To that end, let K be a compact subset
of positive real numbers, and consider instead of (17) the following variational problem:

inf
u(x)∈SI

α∈K and σ�0

Eλ(u, α, σ ). (25)

We then have the following proposition.

Proposition 4. Problem (25) has a solution (infimum is attained).

Proof. Let {(u j , α j , σ j )} j be a minimizing sequence for (25). The sequence {u j} j lies in SI

and has bounded total variation. Therefore, by the standard compactness result (see e.g. [8])
for functions with bounded variation, and the fact that α j all lie in a compact set K , we can
assume by passing to a subsequence if necessary that u j andα j converge to u∞(x) andα∞ ∈ K
respectively. Since SI is a closed subset of L2(R), we have that u∞(x) ∈ SI .

If it happens that lim inf j→∞ σ j = ∞, then one can easily see that (u ≡ 0, α = 1, σ = 1)
is a minimizer. If lim inf j→∞ σ j < ∞, we pass to a further subsequence so that σ j → σ∞ � 0.
It is possible that σ∞ = 0, but no matter: in any case we have

α j Gσ j ∗ u j −→ α∞Gσ∞ ∗ u∞ in L2 (26)

even when σ∞ = 0. Existence of a minimizer (u∞, α∞, σ∞) follows from this continuity
property, and the lower semicontinuity of the total variation norm (first term). �
Remark. We allow σ = 0. This is to be interpreted to mean that

inf
u(x)∈SI

α∈K and σ�0

Eλ(u, α, σ ) =
∫

R
|∇v| + λ

∫
R
(αv − f )2 dx (27)

for some v(x) ∈ SI and α ∈ K .

We now list some possible variational models whose well-posedness follows immediately
from proposition 4. Which model among these is more applicable depends on what kind of
additional information is available in practice.
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Corollary 1. The following minimization problems have solutions.

(1) Given a fixed α0,

inf
u(x)∈SI
σ�0

Eλ(u, α0, σ ). (28)

(2) Given a continuous, strictly positive function ψ(x) such that ψ(x) → ∞ as |x | → ∞,

inf
u(x)∈SI
α,σ�0

(Eλ(u, α, σ ) + ψ(α)). (29)

(3) Given ε > 0,

inf
u(x)∈SεI
α,σ�0

Eλ(u, α, σ ) (30)

where

SεI := {u ∈ SI : u(x) = 1 ⇒ u(y) = 1 ∀y ∈ [x − β1, x + β2]

for some β1, β2 � 0 with β1 + β2 � ε}. (31)

(4) inf
u(x)∈SI
α,σ�0

Eλ(αu, 1, σ ).

Proof. Problem 1 is the same as the problem given in (25) with K = {α0}, so has a solution
by proposition 4. To see that problem 2 has a solution, observe that the minimum energy is
bounded from above by M := λ

∫
f 2 dx +ψ(0); that means, in particular, we only consider α

such that ψ(α) � M . By hypothesis on ψ , that constrains α to a compact subset of R, so that
reasoning of proposition 4 applies. For problem 3, the minimum energy is clearly bounded by
λ

∫
f 2 dx . For any u ∈ SεI , u �≡ 0 this restricts relevant α to a compact set (independent of u)

so that once again the reasoning of proposition 4 can be applied to find a minimizer. Finally, in
problem 4 the energy bounds the total variation of the function αu(x) so that the compactness
and continuity argument of proposition 4 can be applied to a minimizing sequence of these
functions. �

Remarks.

(1) The first variational problem in the corollary above is useful when the amplitude of the
kernel can be estimated a priori. We present a number of numerical experiments with this
approach in the subsequent sections.

(2) The third variational problem is over bar codes in which the thickness of each ‘bar’ is
bounded below by ε > 0. This is indeed the case with bar code signals in practice. On
the other hand, SεI can be described by a finite number of parameters, and penalizing the
total variation of the signal might be unnecessary.

We next consider whether solving the variational problem (25) indeed leads to the correct
bar code if the observed signal is noise free. To be precise, fix a b(x) ∈ SI such that b(x) �= 0.
Let f (x), the observed signal, be given by

f (x) = α0Gσ0 ∗ b(x) for some α0, σ0 > 0. (32)

The following proposition shows that indeed for every large enough choice of the parameter
λ the solution (minimizer) of the variational problem (25) recovers the correct bar code b(x)
and the parameters α0, σ0 from an observed signal of the form (32).
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Proposition 5. If α0 ∈ K and f (x) is given by (32), then there exists a λ∗ such that whenever
λ � λ∗ the unique minimizer of (25) is precisely (b(x), α0, σ0).

Proof. Begin by noting that

Eλ(b(x), α0, σ0) =
∫

R
|∇b| = 2N (33)

where N ∈ N. Therefore, the claim is proved if we show that for any α, σ � 0 and any
u(x) ∈ SI with

∫ |∇u| � 2N and u(x) �= b(x) we have Eλ(u, α, σ ) > 2N .

Case 1:
∫ |∇u| = 2N . Then, by the uniqueness result,∫

(αGσ ∗ u − f )2 dx = 0 only if (u(x), α, σ ) = (b(x), α0, σ0). (34)

Therefore, for any other u(x), we have

Eλ(u, α, σ ) = 2N + λ
∫
(αGσ ∗ u − f )2 dx > 2N. (35)

Case 2:
∫ |∇u| < 2N . The set of all such u(x) lie in a finite-dimensional space; indeed, any

such u(x) can be written as

u(x) =
N−1∑
j=1

χ(a j ,b j )(x) where a j � b j < a j+1 for all j, (36)

and a j , b j ∈ [0, 1]. The function F of 2N variables defined as

F(a1, . . . , aN−1; b1, . . . , bN−1; α; σ) ≡ Eλ

(∑
j

χ(a j ,b j )(x), α, σ

)
(37)

is continuous for α ∈ K and σ � 0. Moreover,

lim
σ→∞αGσ ∗ u = 0 in L2 (38)

uniformly in u ∈ SI and α ∈ K . Recalling once again that by the uniqueness result
Eλ(u, α, σ ) > 0 for all u that fall under this case, these imply

m ≡ inf
u∈SI and

∫ |∇u|<2N
α∈K and σ�0

‖αGσ ∗ u − f ‖2
L2 > 0. (39)

Choosing λ∗ = 2N/m, the conclusion of the proposition follows. �

5. Computation

We start by describing a numerical technique for minimizing the following special instance
of (25):

inf
u(x)∈SI
σ�0

Eλ(u, α, σ ) (40)

whereα > 0 is kept fixed. Our approach is to approximate this problem by a ‘diffuse interface’
model that involves a small parameter. This allows us, among other things, to impose the two-
valuedness constraint on u(x) via a penalty term in the energy and minimize over all functions
instead. To that end, we introduce the following energies:

Eε,λ(u, σ ) :=
∫

R

(
ε(u′(x))2 +

1

ε
W (u(x))

)
dx + λ

∫
R
(αGσ ∗ u(x)− f (x))2 dx . (41)
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Here, ε is the positive small parameter, and W (x) is the ‘double-well’ function W (x) =
x2(1 − x)2. Then, the following minimization problem:

inf
u(x)=0 for a.e. x �∈I

σ�0

Eε,λ(u, σ ) (42)

approximates (40) as ε → 0+. The idea for this well-known approximation technique comes
from the work of Modica and Mortola [13], which deals with the more interesting setting
of (n − 1)-dimensional interfaces in Rn . (See [2] and [15] for other examples of such
approximations in different contexts.)

We propose to minimize the approximate energies Eε,λ via gradient descent, starting with
an initial guess for u(x) and σ . In particular, we initialize u(x) so that it has as many interfaces
as can be resolved, and let it coarsen as the descent progresses.

The Euler–Lagrange equations for these energies lead to the following gradient descent
equations:

ut = 2εuxx − 1

ε
W ′(u)− 2λαGσ ∗ (αGσ ∗ u − f ) (43)

and

σt = −α
∫

R
(αGσ ∗ u − f )

((
∂Gσ

∂σ

)
∗ u

)
dx . (44)

If we minimize also over α, the optimal choice for it at any given t � 0 would be given by

α(t) =
(∫

f (x)(Gσ ∗ u) dx

)(∫
(Gσ ∗ u)2 dx

)−1

(45)

for as long as α(t) ∈ K .
Numerically, these equations are discretized and solved for a large value of t . The

important feature is how the variable u is handled. Let un(x) be the numerical solution at
the nth time step (i.e. at t = nδt , where δt is the time step size). The time discretization used
for u is as follows:

un+1 − 2(δt){εun+1
xx − λα2Gσ ∗ Gσ ∗ un+1} = un − (δt)

(
1

ε
W ′(un)− 2λαGσ ∗ f

)
. (46)

The right-hand side of this equation is completely in terms of un, while the left-hand side is
given by a linear operator acting on un+1. We discretize this equation also in space, and solve
the resulting fully discrete equation via the fast Fourier transform. Note that the nonlocal term
in the left-hand side of course has the pleasant expression

(Ĝσ )
2(ξ)ûn+1(ξ) (47)

in terms of the Fourier transform of the quantities involved.

6. Numerical results

We applied the numerical technique described in the previous section to a number of bar codes.
One crucial point in such numerical experiments is that the constants involved (such as the
fidelity weight constant λ) should be kept fixed; in other words, once a good value for the
constants have been chosen, they should work for all (or at least a wide range of) test signals
without any change.

We therefore fixed the constants in table 1. These values were used verbatim for all our
experiments.
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Figure 2. Top to bottom: the bar code, corresponding corrupted signal, and the reconstruction
found by the algorithm of this paper, under the assumption that the kernel amplitude α is known.
Standard deviation of the kernel used to generate the corrupted signal was σ = 0.0118. The
algorithm found σ = 0.0115. Root mean square signal to root mean square noise ratio was about
19.3 dB.

Table 1. Values of variables adopted for experiments.

Variable Value

ε 0.001 07
λ 7500

In each experiment, a ‘clean’ bar code signal was corrupted by convolving it with a kernel
of known standard deviation, followed by the addition of some noise. Then, the algorithm of
this paper was carried out to see if it could recover the correct bar code and the correct standard
deviation of the convolution kernel. In the experiment of figure 6, α was also treated as an
unknown and recovered by the algorithm. We experimented with three different choices of
standard deviation for the kernel, which were approximately 0.012, 0.013 and 0.014. These
values were chosen because σ = 0.014 seems to be about when the technique starts yielding
erroneous results at signal to noise ratios of about 20 dB; for values of the standard deviation
much smaller than these, the reconstruction is almost perfect at moderate noise levels. Figures 2
and 3 present results from two of these experiments, where the former is an example of
completely successful reconstruction, and the latter an example of how the algorithm begins
to fail when the noise level and/or the blur factor get too high.

The initial guess for the bar code (required by the gradient descent algorithm) was taken
to be an alternating sequence of 1 and 0. We made the following empirical observation
concerning the initial guess for the variance: It is better to start with a low initial guess for the
standard deviation of the convolution kernel.
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Figure 3. Top to bottom: the bar code, corresponding corrupted signal, and the reconstruction
found by the algorithm of this paper, under the assumption that the kernel amplitude α is known.
Notice that it failed to reconstruct one of the bars, located at around the 800th grid point. Standard
deviation of the kernel used to generate the corrupted signal was σ = 0.0129. The algorithm found
σ = 0.0124. Root mean square signal to root mean square noise ratio was about 15.7 dB.

This prevents the initial guess for the signal from coarsening too rapidly and ending up
with very few ‘bars’: presumably, there are local minima associated with large values of the
standard deviation. In the experiments presented, we took 0.0079 or 0.0088 as our initial guess.
Starting with even lower initial values seems to make no difference in the final result; it only
takes the algorithm longer to reach it.

Figure 4 makes an important point. Its top row shows the derivative of the bar code signal
used in figures 2 and 3 after convolution with a kernel of standard deviation σ = 0.014 14.
Some of the discontinuities in the original bar code have no corresponding local extrema in
the derivative of the convolved signal; for example, see the thin bars located near the 495th
and 530th grid points. Hence, a traditional reconstruction technique that attempts to locate
extrema of the signal’s derivative would be at a very significant disadvantage at this level of
blur even in the absence of any noise. The middle row shows the observed signal, which is
obtained from the convolved signal by adding a moderate amount of noise. The last (bottom)
row shows the reconstruction obtained by the algorithm of this paper (under the assumption
that α is known) from the corrupted signal shown in the middle row.

Naturally, the level of noise that the algorithm can tolerate depends on the level of blur:
as the standard deviation of the convolution kernel gets large, the amplitude of noise that can
be tolerated for a reasonable reconstruction decreases. For example, when the parameters
ε, λ are casually selected to have the values quoted above, and when σ is about 0.01, the
algorithm yields accurate reconstructions at signal to noise ratios as low as 13 dB. When σ is
about 0.013, the algorithm starts to fail, as shown in figure 3, at signal to noise ratios below
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Figure 4. Top to bottom: derivative of a convolved bar code signal, the convolved signal after
addition of noise, and the bar code reconstructed by the algorithm, under the assumption that
α is known. Standard deviation of the kernel used was σ = 0.014 14. The algorithm found
σ = 0.014 08. Root mean square signal to root mean square noise ratio was about 21.55 dB.

16 dB. The failure in figure 3 seems to be typical: one or more of the thinner bars do not get
reconstructed. It is also possible to end up with extraneous thin bars. These are the types of
error that would adversely affect recognition; otherwise, tiny discrepancies in the location of
bars are inconsequential, since they are easy to compensate for by using additional a priori
information about bar codes. At a blur level of about σ = 0.014, a signal to noise ratio of
about 21 dB seems to be the threshold for reliable reconstructions. With a more careful tuning
of the parameters ε, λ, we expect that the performance of the algorithm can be improved.

Most of our numerical experiments correspond to model 1 of corollary 1, where the
amplitude α of the kernel is assumed known a priori, and therefore is not minimized over
(however, see figure 6). We chose this simplest model for the bulk of our experiments because
at this stage we would like to leave open the issue of how to treat minimization over α, since
this decision involves knowing what kind of additional information is available in practice
about this parameter. Right now, it is not clear which model among models 2 through 4 of
corollary 1 would be the most appropriate, and so we do not wish to commit to any one in
particular.

In general, we of course cannot expect to have a perfect estimate for the kernel amplitude
α (but it is easy to get some estimate: for instance, the amplitude of the observed signal).
In figure 5 we investigate the sensitivity of the results to errors in the assumed value of this
parameter. When the width (standard deviation) of the convolution kernel and the noise level
are moderate, we see that the results are quite stable under perturbations inα: the method seems
to be resilient up to about 25% error. However, results get more sensitive to such perturbations
if the original signal is corrupted by a wider kernel. This is to be expected. Once we allow α

to be updated (i.e. minimize also with respect to α), we would expect these results to improve.
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Figure 5. Top to bottom: bar codes reconstructed by the algorithm under the assumption that
the kernel amplitude α is known, when the assumed amplitude is off by 10%, 20% and 25%,
respectively, from the true value. The solid curve corresponds to the reconstruction, and the dashed
curve to the original (correct) bar code. The noise level and variance of the kernel used to corrupt
the original bar code was the same as in figure 2.

Indeed, figure 6 shows a sample computation where the amplitude of the moderately
degraded signal is treated as another unknown,and the initial estimate for it is off by about 40%.
Therefore, minimization is now carried out also over α, as explained in the previous section:
the optimal choice of the constant α is prescribed at every time step according to formula (45).
The results show the improvement obtained by minimizing over α versus keeping α fixed (at
a wrong value) as in the experiments of figure 5.

7. Conclusion

In this paper we developed a variational approach for blind deconvolution of bar code signals.
It is based on the total variation restoration model of image processing. The analysis we
presented motivates and substantiates our approach, and suggests several related variational
models that can be used for the solution of the bar code problem. These models require no prior
information about the number of bars expected in the code, and are well suited for recovering
bar codes from very blurred and noisy observed signals.

By concentrating on a specific one of our proposed models, we demonstrated how these
variational models can be implemented in practice. This involves, among other things, using
approximate functionals that are numerically more easily treated. Results of some of the
numerical experiments, along with all details of how they were obtained, are included. These
suggest that our technique can recover bar codes from highly degraded signals.
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Figure 6. Top graph shows the original noisy signal obtained using a kernel whose standard
deviation and amplitude were about 0.0118 and 1.4 respectively. The middle graphs shows the
result of bar code reconstruction with the amplitude of kernel assumed known to be 1. The standard
deviation found was 0.0072. In contrast, the bottom graph shows the reconstruction obtained when
the amplitude of the signal is assumed to be unknown and is minimized over starting from an initial
guess of 1. The standard deviation found by the algorithm was 0.0116, and the amplitude found
was 1.41.
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