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Abstract. The representation of curves by integral invariant signatures is an important step in
shape recognition and classification. Integral invariants are preferred over their differential counter-
parts due to their robustness with respect to noise. However, in contrast to differential invariants of
curves, it is currently unknown whether integral signatures offer unique representations of curves. In
this article, we prove some results on the uniqueness of the circular area signature. In particular, we
study the case for graphs of periodic functions. We show that the circular area signature is unique
if taken with respect to parameterization by the x-axis. Furthermore, we prove that the true circu-
lar area signature (parameterized by arclength) is unique in a neighborhood of constant functions.
Finally, we show uniqueness in the special case that the functions of interest agree on an interval of
width 2r.
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1. Introduction. Geometric invariance theory has played an important role
in computer vision over the past several decades. The aim of invariance theory in
computer vision is to construct functions of an image which are invariant under a
group of transformations. In general, the transformations of interest include changes
in perspective, lighting and scale. As generic viewpoint invariants do not exist, much
attention has been focused on studying invariants to projective transformations in
the plane, such as Euclidean or similarity transformations [15]. Such invariants have
found applications in shape representation [16, 4], shape matching [3, 13] and object
recognition [19, 1].

The first invariants used in shape analysis were functions of the curvature of the
shape’s boundary and are a special case of differential invariants [6, 5]. Such differen-
tial invariants offer simple reconstruction formula and well-known uniqueness results
from classical differential geometry [20]. However, as the numerical computations of
differential invariants involve computing high order derivatives, they are dominated
by the effects of small scale perturbations, such as noise. In an attempt to increase
robustness, semi-differential invariants were introduced [17, 21] which involve only
first derivatives and a reference point. Although semi-differential invariants are more
robust than the curvature-based invariants, they still suffer from susceptibility to
noise.

A more principled and robust approach is given by integral invariants which were
first introduced by by Manay et al. [15, 14] for shape matching and recognition, among
other applications in geometry processing (see also [22, 11, 8, 9, 18]). Integral invariant
signatures are integral functions of the data instead of differential ones. As such,
they retain the Euclidean and similarity invariances of their differential counterparts
but are less susceptible to random image fluctuations such as noise. However, the
questions of uniqueness of representations and continuity (or even existence) of the
reconstruction map are largely unanswered for many integral invariant signatures.

Two particularly interesting integral invariants are the circular and cone area
signatures [9, 15](see figure 1). The circular area signature measures the area of the
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(a) Circular area signature (b) Cone area signature

Fig. 1.1. Depiction of some integral invariant signatures.

intersection of a ball of radius r > 0 centered on each boundary point with the interior
of the object while the cone area signature uses a cone with aperture ε > 0 emanating
from a common point within the object’s interior and centered on each boundary
point. The vertex of the cone is commonly chosen to be the centroid of the object.
The cone area signature has been thoroughly studied by Fidler et al. [9]. They proved
that star-shaped regions are uniquely described by the cone area signature if and only
if ε/π is irrational. Furthermore, the inverse map, when it exists, is not continuous.

The circular area signature is perhaps more interesting as it is asymptotically
related (as r → 0) to the most popular differential signature, curvature [12]. As
such, there is reason to believe that similar uniqueness results to those obtained for
curvature may hold for the circular area signature. In fact, recently it has been
shown that the circular area signature satisfies a local uniqueness result, weaker than
local injectivity, within neighborhoods of circles [2]. However, any kind of global
uniqueness result remains elusive. Such a result would be of great interest as it would
justify the prominence of the circular area signature in the computer vision literature
and advocate its use as a robust invariant signature.

In this work, we study the circular area signature for graphs of periodic functions.
Although this is a different problem, it is intimately related to the circular area
signature of closed curves. As such, the uniqueness results we prove in this work,
aside from being interesting in their own right, indicate that similar results may hold
for the case of closed curves.

1.1. Summary of main results. In this work, we study the uniqueness problem
for the circular area signature for graphs of periodic functions. To simplify the layout
of the paper, we present the main results in this section and postpone the proofs to
section 3 after a series of preliminary results.

Let us first fix some notation.
Definition 1.1. For M = (m1, . . . ,m4) ∈ R4

+ we define

ΓM := {f ∈ C4(R) | f(x+ 2π) = f(x), ∀x ∈ R,
‖f (k)‖L∞(R) ≤ mk, k = 1, . . . , 4, f(0) = 0}. (1.1)

We will write C(m1, . . . ,mk) to denote a positive constant that depends on each of
m1, . . . ,mk in a nondecreasing way. Similarly, we will denote by R(m1, . . . ,mk) a
positive constant that depends on each of m1, . . . ,mk in a nonincreasing way. We will
often write Ck in place of C(m1, . . . ,mk) and Rk in place of R(m1, . . . ,mk). We will
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write ‖f‖∞ in place of ‖f‖L∞(Ω) when it is clear from the context what the domain of
f is. We will use the notation Ok(f) to denote a quantity that is bounded by Ck|f |.
We will use the notation Br(x, y) to denote the ball of radius r centered at the point
(x, y). We will write Br in place of Br(0, 0).

Definition 1.2 (Circular area signature). We define the circular area signature
with respect to parametrization via the x-axis by

Tr(f)(x) =
1

r3

(∫
Br(x,f(x))

1f (x) dx− πr2

2

)
(1.2)

where 1f denotes the indicator function of the set {(x, y) | y < f(x)}.
With this definition of Tr, we have that

Tr(f)(x) =
1

3
κf (x) +O(r2), as r → 0,

where κf = f ′′/(1+f ′2)3/2 is the curvature of f (see appendix A for proof). Our first
result is the following theorem.

Theorem 1 (Global injectivity). There exists R = R4, such that

‖f1 − f2‖L∞(R) ≤ C2

(
1 +

1

r
‖f1 − f2‖L∞(R)

)
‖Tr(f1)− Tr(f2)‖L∞(R), (1.3)

for all f1, f2 ∈ ΓM , r < R, and ‖Tr(f1)−Tr(f2)‖L∞(R) sufficiently small (in terms of
m2).

This theorem shows that Tr : ΓM → L∞(0, 2π) is injective for r < R and that
the inverse satisfies a local stability estimate. We note that the f(0) = 0 condition in
the definition of ΓM is merely reflective of the fact that the circular area signature Tr
is invariant with respect to vertical translation.

We denote by Ir(f) the true circular area signature which is parameterized by the
arclength parameter of f . For x ∈ [0, 2π], we have that Ir(f)(s) = Tr(f)(x) where

s =

∫ x

0

√
1 + f ′(ξ)2 dξ.

Before presenting our main results on Ir, we need the following definitions.
Definition 1.3. For M = (m1,m2,m3,m4) ∈ R4

+, L ∈ R+ and b ∈ R, we define

ΓLM :=
{
f ∈ ΓM |

∫ 2π

0

√
1 + f ′2 = L and f ′(0) = b

}
. (1.4)

Definition 1.4. For r ∈ R+, M = (m1,m2) ∈ R2
+, g ∈ C2(R) with ‖g′‖L∞([0,2r]) ≤

m1 and ‖g′′‖L∞([0,2r]) ≤ m2, we define

ΓM,r := {f ∈ C2(R+) | ‖f ′‖L∞(R+) ≤ m1,

‖f ′′‖L∞(R+) ≤ m2, f = g on [0, 2r]}. (1.5)

We have the following two theorems regarding Ir.
Theorem 2 (Local injectivity). There exists m3 > 0 small enough and R = R4

such that

‖f1 − f2‖L∞((0,2π)) ≤ C3‖Ir(f1)− Ir(f2)‖L∞(0,L)
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for any f1, f2 ∈ ΓLM , r < R, and ‖Ir(f1)− Ir(f2)‖∞ sufficiently small.

Theorem 3 (Non-local boundary condition). Let r < 1
m2

. Then Ir : ΓM,r →
L∞(R+) is injective.

Theorem 2 shows that, provided we remain near constant functions, Ir : ΓLM →
L∞(0, L) is injective for r < R and its inverse satisfies a local stability estimate. The
difficulty in proving global injectivity comes from the arclength parametrization which
substantially modifies Tr, making the methods of theorem 1 less effective. In the case
of near constant functions, Ir can be viewed as a perturbation of Tr and the injectivity
can be imported from Tr yielding theorem 2. Although we only have a partial result for
Ir, we would argue that parametrization via arclength is somewhat unnatural for the
case we are studying as the curves are all graphs of periodic functions. Parametrization
via the x-axis is much more natural for graphs and so theorem 1 seems to suggest
that a global injectivity result for curves may hold, but as we discuss in section 4,
the results of this paper cannot be directly applied for arbitrary curves. We should
note that there is an additional constraint in ΓLM that is not present in the previous
theorem, namely f ′(0) = b. This does not have a meaningful interpretation, aside
from fixing tangent vectors at the origin, but is necessary due to the fact that we
use a continuity result for the second order curvature differential equation and need
appropriate initial conditions.

Theorem 3 is somewhat expected. If the functions of interest agree on an interval
wider than the ball used for the circular area signature, then we can show injectiv-
ity without much of the machinery developed in this paper. This is somewhat less
interesting than theorems 1 and 2 as it says little about uniqueness up to geometric
transformations (in this case shifts), which is whole purpose of using geometrically
invariant signatures.

The proof of theorem 1 relies on linearizing Tr. We show that the linearization
satisfies a maximum principle and use this to bound its inverse. However, since Tr
is not a C1 mapping on any open set in L∞, we cannot directly apply the classical
inverse function theorem. Instead, we show that the linearization has quadratic error
and use a modified proof of the inverse function theorem to prove local injectivity.
Global injectivity follows from the fact that Tr is an approximation to curvature, and
so by standard ODE theory, if Tr(f1) = Tr(f2) then f1 = f2 + O(r2). By choosing r
small enough, we can deduce global injectivity from local.

This paper is organized as follows: In section 2 we introduce the linearization
of Tr and show that the linearization error is quadratic. In section 2.2 we prove the
required bounds on the inverse of the linearization. Finally, in section 3 we prove the
injectivity results and in section 4 we discuss extensions to the case of closed curves.

2. Linearization of the circular area signature. We now consider the lin-
earization of Tr. The main result of this section is theorem 2.8 which provides the
necessary bound on the inverse of the linearization for the inverse function theorem.
We first need some preliminary results on the linearization; in particular, we need to
carefully analyze the linearization error, which we do in the next section.

2.1. Linearization error. The main result of this section is theorem 2.3 which
shows that the linearization error is quadratic. This is a stronger result than necessary
for the classical inverse function theorem. It is necessary here because of the fact that
Tr does not have a continuous derivative and so the classical inverse function theorem
must be subtly modified.

The proposition below is immediate so we omit the proof.
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Fig. 2.1. Depiction of some quantities from theorem 2.3 and the definitions of p± and Jx. The
shaded area represents Ar(f + φ)(x) − Ar(f)(x) and the shaded area to the right of p+(x) and to
the left of p−(x) will constitute the linearization error.

Proposition 2.1. Let f ∈ C2(R), r < ‖f ′′‖−1
∞ and h ∈ R with |h| < r. Then for

each x ∈ R, the graph of f + h intersects the boundary of Br(x, f(x)) in exactly two
points.

From here on, we shall always assume that r < ‖f ′′‖−1
∞ so that proposition 2.1

always holds. Let us define p−f (x, h) < p+
f (x, h) to be the x-coordinates of the two

points of intersection from proposition 2.1. These are the two distinct solutions, p, of

(p− x)2 + (f(p) + h− f(x))2 = r2.

When h = 0, we will write p±f (x) in place of p±f (x, 0). When it is clear from the

context, we will write p± or just p in place of p±f . We also set Jx = (p−f (x), p+
f (x)) to

be the interval from p−f (x) to p+
f (x). See figure 2.1 for a depiction of some of these

quantities.
For each f ∈ C2(R) with ‖f ′′‖∞ ≤ 1/r, we define the linear map Lf,r : L∞(R)→

L∞(R) by

Lf,rφ(x) =
1

r3

(∫
Jx

φ(y) dy − |Jx|φ(x)

)
. (2.1)

As we shall see, Lf,r can be interpreted as the linearization of Tr at f . We first need
an estimate on p±f (x, h).

Lemma 2.2. If f ∈ C2(R) and 0 < α < 1 then

|p±f (x, h1)− p±f (x, h2)| ≤ 2

1− α
|h1 − h2|,

for |h1|, |h2| ≤ r(1− α)/4 and r ≤ α‖f ′′‖−1
∞ .

Proof. Fix x ∈ R. By the definition of p(h) ≡ p±f (x, h) we have

(p(h)− x)2 + (f(p(h)) + h− f(x))2 = r2.
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Differentiating in h we have

p′(h) =
−(f(p(h)) + h− f(x))

p(h)− x+ (f(p(h)) + h− f(x))f ′(p(h)))
.

Translating this problem into the notation of lemma B.1 in the appendix, we have

n̂(γ(ξ)) =
1

r
〈p(h)− x, f(p(h)) + h− f(x)〉,

and

γ′(ξ) =
〈1, f ′(p(h))〉√
1 + f ′(p(h))2

,

where γ is the arclength parametrization of x 7→ (x, f(x) + h) and ξ is such that γ(ξ)
intersects Br(x, f(x)) at (p(h), f(p(h) + h). By lemma B.1 we have that

|p′(h)| = |f(p(h) + h− f(x)|
r
√

1 + f ′(p(h))2|n̂(γ(ξ)) · γ′(ξ)|
≤ 1

|n̂(ξ) · γ′(ξ)|
≤ 2

1− α
,

for r ≤ α/‖f ′′‖∞ and |h| ≤ r(1− α)/4.
Theorem 2.3. Let f ∈ C2(R), φ ∈ C(R) and 0 < α < 1. Suppose that

r ≤ α‖f ′′‖−1
∞ and ‖φ− φ(x)‖L∞([x−r,x+r]) ≤ r(1− α)/4. Then

Tr(f + φ)(x) = Tr(f)(x) + Lf,rφ(x) +
1

r3
errf,r(φ)(x),

where

|errf,r(φ)(x)| ≤ C

1− α
‖φ− φ(x)‖2L∞([x−r,x+r].

Note that if φ ∈ C1(R), then |errf,r(φ)(x)| ≤ Cr2

1−α‖φ
′‖2L∞([x−r,x+r]).

Proof. Fix an x ∈ R and suppose that ‖φ − φ(x)‖C[x−r,x+r] ≤ r(1 − α)/4 and
r ≤ α‖f ′′‖−1

∞ . Since Tr and Lf,r are invariant under translations, we may assume
that φ(x) = f(x) = 0. Let h = ‖φ‖L∞([x−r,x+r]) and let Ar(f)(x) denote the area
inside B ≡ Br(x, f(x)) and under f . Then we have

Tr(f)(x) =
1

r3

(
Ar(f)(x)− πr2

2

)
.

It follows that

errf,r(φ)(x) = Ar(f + φ)(x)−Ar(f)(x)− r3Lf,rφ(x)

= Ar(f + φ)(x)−Ar(f)(x)−
∫
Jx

φ(ξ) dξ.

Hence, the error consists of the area between f + φ and f that is either inside B and
outside the interval Jx or outside B and inside Jx. See figure 2.1 for a depiction of
these regions. Let

errf,r(φ) = err+
f,r(φ) + err−f,r(φ),
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Fig. 2.2. Depiction of the sets A1, A2 and A3 from theorem 2.3.

where err+
f,r and err−f,r are the contributions to the error from the intervals (x, x+ r)

and (x − r, x) respectively. We first consider err+
f,r(φ), the error contributed from

the right side of B, the other case being similar. Fix x and let p(h) ≡ p+
f (x, h).

There are three qualitatively different ways in which f − h and f + h can intersect
the right side of B. The first case we will consider is when they both pass through
the lower hemisphere, in which case we have f(p(h)), f(p(−h)) ≤ 0. This implies that
p(−h) ≤ p(h). Now define

A1 ≡ {(x1, x2) | p(−h) ≤ x1 ≤ p(h), |f(x1)− x2| ≤ h}.

This is a tube above the interval (p(−h), p(h)) centered around f and bounded by
f + h above and f − h below. The error that contributes to err+

f,r is completely
contained inside A1. See figure 2.2 for a depiction of the region A1 as well as A2 and
A3 which are defined below. By lemma 2.2 we have that

|err+
f,r(φ)(x)| ≤ |A1| ≤ 2h|p(h)− p(−h)| ≤ Ch2

1− α
.

The second case is when f + h and f − h both pass through the upper hemisphere,
in which case f(p(h)), f(p(−h) ≥ 0 and p(h) ≤ p(−h). Then the error is contained in
the region

A2 ≡ {(x1, x2) | p(h) ≤ x1 ≤ p(−h), |f(x1)− x2| ≤ h},

and we get an identical conclusion. The final case is when f + h passes through the
upper hemisphere and f − h passes through the lower one. Here we have f(p(h)) >
0 > f(p(−h)) and we have no knowledge of the ordering of p(−h) and p(h). However,
we do know that the error contributing to err+

f,r is in this case contained in the region

A3 ≡ {(x1, x2) | min(p(h), p(−h)) ≤ x1 ≤ x+ r, |f(x1)− x2| ≤ h}.

Setting h̃ = −f(x+ r), we have p(h̃) = x+ r. Since h̃ ∈ (−h, h), we have

|x+ r −min(p(h), p(−h))| = |p(h̃)−min(p(h), p(−h))| ≤ Ch

1− α
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and hence we have that |err+
f,r(φ)(x)| ≤ Ch2

1−α . We can now apply the same reasoning

to err−f,r and can conclude that |errf,r(φ)(x)| ≤ Ch2

1−α .

Remark 1. This theorem can be interpreted as stating that Lf,r is the Fréchet
derivative of Tr at f provided that r < 1/m2. The condition r < 1/m2 is a sufficient
condition for differentiability of Tr but certainly not necessary. One can show that Tr
is differentiable at f provided each ball Br(x, f(x)) intersects f in exactly two points.
The condition r ≤ α/m2 provides us with uniform estimates on the linearization error
for all f ∈ ΓM in terms of α. If it is not explicitly stated, we will hereafter assume
that r < 1/m2.

2.2. Estimates for Lf,r. The main result of this section is theorem 2.8. This
provides the bound on the inverse of Lf,r required to use the inverse function theorem
in section 3. The main tool used in the proof is the maximum principle for Lf,r (lemma
2.4). In order to use the maximum principle in the classical way to bound the inverse
of an operator, we need to prove the existence of a function η with Lf,rη(x) ≥ 1 for
all x. For this, we require lemma 2.6 establishing the asymptotic behavior of Lf,r
as r → 0. The proof of lemma 2.6 is basic, but tedious, and so it is postponed to
appendix B.

We establish first the non-local maximum principle for the operator Lf,r.
Lemma 2.4 (Maximum principle). Let f ∈ ΓM and φ ∈ C(R). If Lf,rφ(x) ≥ 0

for all x ∈ [0, 2π] then

max
x∈[0,2π]

φ(x) ≤ max
x∈[p−(0),0]∪[2π,2π+p+(0)]

φ(x).

Proof. Suppose that Lf,rφ(x) ≥ 0 for all x ∈ [0, 2π] and let x∗ ∈ [p−(0), 2π+p+(0)]
satisfy

φ(x∗) = max
x∈[p−(0),2π+p+(0)]

φ(x).

Note that p+(0) = p+(2π) as f is 2π-periodic. Assume that x∗ ∈ (0, 2π). Since
Lf,rφ(x∗) ≥ 0, we have

φ(x∗) ≤ 1

p+(x∗)− p−(x∗)

∫ p+(x∗)

p−(x∗)

φ(y) dy.

It follows that φ(x) = φ(x∗) for all x ∈ [p−(x∗), p+(x∗)]. By iterating this argument,
we conclude that φ is constant on [0, 2π] and the result follows.

It is useful to isolate the follow proposition as it is used in lemma 2.6 and theorem
2.8.

Proposition 2.5. Let f ∈ ΓM . Then for every x ∈ R, we have

p+
f (x) = x+

r√
1 + f ′(x)2

− f ′(x)f ′′(x)

2(1 + f ′(x)2)2
r2 +O3(r3),

p−f (x) = x− r√
1 + f ′(x)2

− f ′(x)f ′′(x)

2(1 + f ′(x)2)2
r2 +O3(r3),
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Proof. It is easy to see that the osculating circle of f at x intersects the ball
Br(x, f(x)) at the x-coordinates

x±
r
√

1− r2κ2/4√
1 + f ′(x)2

− r2κf ′(x)

2
√

1 + f ′(x)2

= x± r√
1 + f ′(x)2

− r2f ′(x)f ′′(x)

2(1 + f ′(x)2)2
+O2(r3).

Noting that the osculating circle approximates f with an error of O3(r3) completes
the proof.

Lemma 2.6 gives an asymptotic representation of Lf,r as r → 0. The proof is
tedious, but comprised of basic calculations, and is postponed to appendix B.

Lemma 2.6. For every φ ∈ C3(R), we have

Lf,rφ(x) =
1

3(1 + f ′(x)2)3/2
φ′′(x)− f ′(x)f ′′(x)

(1 + f ′(x)2)5/2
φ′(x) + gφ(x)r,

where |gφ(x)| ≤ C3

(
‖φ′‖L∞([x−r,x+r]) + ‖φ′′‖L∞([x−r,x+r]) + ‖φ′′′‖L∞([x−r,x+r])

)
for

all x ∈ R.
Lemma 2.7. There exists η ∈ C∞(R) with ‖η‖C3(R) ≤ C2

1 such that

Lf,rη(x) ≥ 1,

for all x ∈ [0, 2π], r < R = R3 and f ∈ ΓM .
Proof. Set η(x) = eβx. By lemma 2.6 and proposition 2.5 we have

Lf,rη(x)− rgη(x) =
βeβx

3(1 + f ′(x)2)3/2

(
β − 3f ′(x)f ′′(x)

1 + f ′(x)2

)
.

Now choose β > 0 large enough so that

Lf,rη(x)− rgη(x) ≥ 2,

for all x ∈ [0, 2π] and f ∈ ΓM . Note that β = β(m1,m2) and so ‖η‖C3(R) ≤ C2

and ‖gη‖∞ ≤ C3. Now choose R = R3 small enough so that for r < R, we have
Lf,rη(x) ≥ 1 for all x ∈ [0, 2π].

We are now able to prove the main result of this section.
Theorem 2.8. There exists R = R3 such that

‖φ‖∞ ≤ C2‖Lf,rφ‖∞,

for all r < R, all 2π-periodic φ ∈ C(R) with φ(0) = 0, and all f ∈ ΓM .
Proof. Let φ̄ ∈ L∞(R) be 2π-periodic with φ̄(0) = 0 and let

φ = φ̄− min
x∈[0,2π]

φ̄(x).

Note that ‖φ̄‖∞ ≤ ‖φ‖∞ and Lf,rφ̄ = Lf,rφ. So it is enough to prove the estimate
for φ. We may also assume without loss of generality that

φ(0) = min
x∈[0,2π]

φ(x) = 0.

1The Ck-norm is defined by ‖f‖Ck(R) =
∑k

j=0 ‖f (j)‖L∞(R) for any nonnegative integer k.
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Let ψ = Lf,rφ and let R and η be as in lemma 2.7. Fix r < R and note that

Lf,r(φ+ ‖ψ‖∞η)(x) = ψ(x) + ‖ψ‖∞Lf,rη(x) ≥ ψ(x) + ‖ψ‖∞ ≥ 0

for all x ∈ [0, 2π]. By lemma 2.4 we have

‖φ‖∞ = max
x∈[0,2π]

φ(x) ≤ max
x∈[p−(0),0]∪[2π,2π+p+(0)]

(φ(x) + ‖ψ‖∞η(x))

≤ max
x∈[p−(0),p+(0)]

φ(x) + C2‖ψ‖∞

= ‖φ‖L∞(J0) + C2‖ψ‖∞.

If we were to have ‖φ‖L∞(J0) ≤ 7
8‖φ‖∞, then we would be done, so suppose that

‖φ‖L∞(J0) >
7
8‖φ‖∞. Hence there exists x̄ ∈ J0 such that

φ(x̄) >
7

8
‖φ‖∞. (2.2)

Let

Lφ(x) := φ(x)− 1

|Jx|

∫
Jx

φ(ξ) dξ.

Then Lf,rφ(x) = − |Jx|r3 Lφ(x). If Lφ(x̄) > 1
8‖φ‖∞, then ‖φ‖∞ ≤ C‖Lφ‖∞ ≤

C1r
2‖Lf,rφ‖∞ and we are done, so suppose that

Lφ(x̄) ≤ 1

8
‖φ‖∞. (2.3)

Then by (2.2) and (2.3), we have

7

8
‖φ‖∞ −

1

|Jx̄|

∫
Jx̄

φ(ξ) dξ < Lφ(x̄) ≤ 1

8
‖φ‖∞.

Hence

1

|Jx̄|

∫
Jx̄

φ(ξ) dξ ≥ 3

4
‖φ‖∞.

Without loss of generality, we may assume that x̄ > 0 (note that x̄ 6= 0). Then we
have that [p−(x̄), x̄] ⊂ J0. We have

1

|J0|

∫
J0

φ(ξ) dξ ≥ |Jx̄|
|J0|

1

|Jx̄|

∫ x̄

p−(x̄)

φ(ξ) dξ

=
|Jx̄|
|J0|

(
1

|Jx̄|

∫
Jx̄

φ(ξ) dξ − 1

|Jx̄|

∫ p+(x̄)

x̄

φ(ξ) dξ

)

≥ |Jx̄|
|J0|

(
3

4
− p+(x̄)− x̄

|Jx̄|

)
‖φ‖∞

=
1

|J0|

(
1

4
|Jx̄|+ x̄− 1

2
(p+(x̄) + p−(x̄))

)
‖φ‖∞.

By proposition 2.5 we have that∣∣∣∣x̄− 1

2
(p+(x̄) + p−(x̄))

∣∣∣∣ ≤ C2r
2.



ON THE CIRCULAR AREA SIGNATURE 11

Since ‖f ′‖∞ ≤ m1, we have that |Jx̄| ≥ r/
√

1 +m2
1. Since |J0| ≤ 2r, we have

1

|J0|

∫
J0

φ(ξ) dξ ≥

(
1

8
√

1 +m2
1

− C2r

)
‖φ‖∞.

Now choose r < 1/(16C2

√
1 +m2

1) so that

‖Lφ‖∞ ≥ |Lφ(0)| = 1

|J0|

∫
J0

φ(ξ) dξ ≥ 1

16
√

1 +m2
1

‖φ‖∞.

Hence we have

‖φ‖∞ ≤ C1r
2‖Lf,rφ‖∞.

3. Injectivity. Before proving our main result, we need a short technical lemma.
Lemma 3.1. Let f1, f2 ∈ ΓM . Then there exists g1, g2 ∈ ΓM such that g′1(0) =

g′2(0),

‖Tr(g1)− Tr(g2)‖∞ = ‖Tr(f1)− Tr(f2)‖∞,

and

1

2
‖f1 − f2‖∞ ≤ ‖g1 − g2‖∞ ≤ 2‖f1 − f2‖∞.

Proof. Since f1 − f2 is 2π-periodic, it has a maximum and minimum, and hence
there exists y ∈ [0, 2π] such that f ′1(y) = f ′2(y). Set

g1(x) = f1(x+ y)− f1(y), and g2(x) = f2(x+ y)− f2(y).

Since Tr is invariant under vertical shifts, we have

‖Tr(g1)− Tr(g2)‖∞ = ‖Tr(f1)− Tr(f2)‖∞.

Now set α = |f1(y)− f2(y)| ≤ ‖f1 − f2‖∞. We first have

‖g1 − g2‖∞ = ‖f1(·+ y)− f2(·+ y) + f2(y)− f1(y)‖∞ ≤ 2‖f1 − f2‖∞,

which is one side of the inequality. Now, suppose that α ≤ ‖f1 − f2‖∞/2. Then we
have

‖f1 − f2‖∞ = ‖g1(· − y)− g2(· − y) + f1(y)− f2(y)‖∞ ≤ ‖g1 − g2‖∞ +
1

2
‖f1 − f2‖∞.

Simplifying, we see that 1
2‖f1 − f2‖∞ ≤ ‖g1 − g2‖∞, which is the other side of the

inequality in the lemma.
Now suppose that α ≥ ‖f1 − f2‖∞/2. Then since f1(0) = f2(0) = 0, we have

1

2
‖f1− f2‖∞ ≤ α = |f1(y)− f2(y)| = |g2(−y)− g1(−y) + f1(0)− f2(0)| ≤ ‖g1− g2‖∞,

which again is the other side of the inequality in the lemma.
We now prove our first main result, theorem 1.
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Proof. Let f1, f2 ∈ ΓM . By lemma 3.1, we may assume that f ′1(0) = f ′2(0). If
this were not true, then we could use g1 and g2 from the lemma in place of f1 and
f2. The estimates proved in lemma 3.1 show that the statement of the theorem being
true for f1, f2 is equivalent to it holding for g1, g2.

By the asymptotic expansion of the signature in appendix A, we have that

f ′′i (x)

(1 + f ′i(x)2)3/2
= Tr(fi)(x) +O4(r2), ∀x ∈ [0, 2π], i = 1, 2.

By a standard application of Gronwall’s inequality (see lemma D.1 in appendix D),
we have

‖φ‖∞, ‖φ′‖∞, ‖φ′′‖∞ ≤ C2‖Tr(f1)− Tr(f2)‖∞ + C4r
2, (3.1)

where φ(x) = f1(x)−f2(x). The fact that φ(0) = φ′(0) = 0 is used to apply Gronwall’s
inequality here. By theorem 2.3, we have that ‖errf,r(φ)‖∞ ≤ Cr2‖φ′‖2∞ for r ≤
1/(2m2) and ‖φ′‖∞ ≤ 1/4 by fixing α = 1/2. By (3.1), if we make ‖Tr(f1)−Tr(f2)‖∞
and R(m4) sufficiently small, then we will have ‖φ′‖∞ ≤ 1/4 for r < R(m4) and so
theorem 2.3 applies. By making R = R(m4) smaller if necessary, we can use theorem
2.8, and the interpolation estimate from lemma C.1 to obtain

‖φ‖∞ ≤ C2‖Lf1,rφ‖∞

= C2‖Tr(f2)− Tr(f1)− 1

r3
errf,r(φ)‖∞

≤ C2‖Tr(f1)− Tr(f2)‖∞ +
C

r
‖φ′‖2∞

≤ C2‖Tr(f1)− Tr(f2)‖∞ +
C

r
‖φ′′‖∞‖φ‖∞

≤ C2‖Tr(f1)− Tr(f2)‖∞ +
C

r

(
C2‖Tr(f1)− Tr(f2)‖∞ + C4r

2
)
‖φ‖∞,

for r < R and ‖Tr(f1)− Tr(f2)‖∞ sufficiently small. Hence we have

‖φ‖∞ ≤ C2

(
1 +
‖φ‖∞
r

)
‖Tr(f1)− Tr(f2)‖∞ + C4r‖φ‖∞.

Choosing R = R(m4) > 0 smaller, if necessary, completes the proof.
Aside from injectivity, the estimate in theorem 1 gives us a stability result on the

reconstruction of f from Tr(f). We also note the following corollary.
Corollary 3.2. Assume that the hypotheses of theorem 1 hold and in addition

that

‖Tr(f1)− Tr(f2)‖∞ ≤ Kr,

for some constant K > 0. Then we have that

‖f1 − f2‖∞ ≤ C2(1 +K)‖Tr(f1)− Tr(f2)‖∞. (3.2)

We now aim to prove theorem 2 on the local injectivity of Ir by viewing it as a
perturbation of Tr. We will first need some preliminary lemmas.
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Lemma 3.3. We have

∂xTr(f)(x) = Lf,r(f ′)(x) (3.3)

for f ∈ C2(R) and r < ‖f ′′‖−1
∞ .

Proof. For |h| < 1, let φh(y) = f(y + h) − f(y). Note that ‖φ′h‖∞ ≤ m1|h|
and that Tr(f)(x+ h) = Tr(f + φ)(x). By theorem 2.3, taking |h| small enough and
r < 1/m2 we have that

|Tr(f)(x+ h)− Tr(f)(x)− Lf,r(φh)(x)| = |Tr(f + φ)(x)− Tr(f)(x)− Lf,r(φh)(x)|

=
1

r3
|errf,r(φh)(x)|

≤ Ch2

r
.

As limh→0 φh/h = f ′, we have that ∂xTr(f)(x) = Lf,r(f ′)(x).
Corollary 3.4. There exists R = R2 such that

‖∂sIr(f)‖∞ ≤ Cm3 (3.4)

for r < R and all f ∈ ΓM .
Proof. Noting that ∂sIr(f) = ∂xTr(f)/

√
1 + f ′(x)2, we see that

‖∂sIr(f)‖∞ ≤ ‖∂xTr(f)‖∞.

Now, note that

∂xTr(f) = Lf,r(f ′) =
1

r3

(
f(p+)− f(p−)− (p+ − p−)f ′(x)

)
.

A Taylor expansion of f(p+) and f(p−) yields

|∂xTr(f)| ≤ Cm2

r3

∣∣(p+ − x)2 − (p− − x)2
∣∣+ Cm3.

By proposition 2.5, we see that (p+ − x)2 − (p− − x)2 = O2(r3), and the corollary
follows.

Note that it follows from the above corollary that Ir(f) is a Lipschitz function of
the arclength parameter s with a Lipschitz constant that depends on m1,m2,m3.

Now, define S : C1([0, 2π])→ C1([0, 2π]) by

S(f) =

∫ x

0

√
1 + f ′(ξ)2 dξ.

For any function f ∈ ΓLM , we can reparametrize f in terms of its arclength parameter
S(f). We will call this reparametrization f̄ . We can recover the x-parameter from f̄
as follows. If we let s(x) = S(f)(x), then we have that

(dx)2 + (f̄ ′(s)ds)2 = ds2.

Hence we have that dx =
√

1− f̄ ′(s)2ds. This motivates us to define X : C1([0, L])→
C1([0, L]) by

X(f) =

∫ s

0

√
1− f ′(ξ)2 dξ
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for any f ∈ C1([0, L]), with ‖f ′‖∞ < 1. Then X(f̄) is the x-parameter of f in terms
of the arclength s. We have the following identities:

f̄ = f ◦X(f̄), and f = f̄ ◦ S(f). (3.5)

We now need some estimates on X and S.
Lemma 3.5. For f1, f2 ∈ ΓM , we have

‖S(f1)− S(f2)‖∞ ≤ Cm2‖f1 − f2‖∞.

Proof. Set

g(t) =

∫ x

0

√
1 + (tf ′1 + (1− t)f ′2)2 dξ.

By considering the Taylor expansion of g, we find that

S(f1)− S(f2) = g(1)− g(0) = g′(0) +O(‖g′′‖∞).

Noting that

g′(0) =

∫ x

0

f ′2(f ′1 − f ′2)√
1 + f ′22

dξ, and

g′′(t) =

∫ x

0

(f ′1 − f ′2)2√
1 + (tf ′1 + (1− t)f ′2)2

dξ −
∫ x

0

(tf ′1 + (1− t)f ′2)2(f ′1 − f ′2)2

(1 + (tf ′1 + (1− t)f ′2)2)3/2
dξ,

we see that ‖g′′‖∞ ≤ C‖f ′1 − f ′2‖2∞ and |g′(0)| ≤ Cm2‖f1 − f2‖∞. Note that the
estimate on g′(0) involves integrating by parts. By lemma C.1, we have that

‖f ′1 − f ′2‖2∞ ≤ 2‖f1 − f2‖∞‖f ′′1 − f ′′2 ‖∞ ≤ Cm2‖f1 − f2‖∞.

Hence we have that

‖S(f1)− S(f2)‖∞ ≤ Cm2‖f1 − f2‖∞.

Lemma 3.6. Let f1, f2 ∈ ΓLM . Then we have

‖X(f̄1)−X(f̄2)‖∞ ≤ C2‖f̄1 − f̄2‖∞.

Proof. For any f ∈ ΓLM , note that |f̄ ′| = |f ′/
√

1 + f ′2| ≤ m1/
√

1 +m2
1. Hence,

we have that ‖f̄i‖∞ ≤ 1− δ, where

δ =

√
1 +m2

1 −m1√
1 +m2

1

.

For the remainder of the proof, we will write fi in place of f̄i to simplify notation.
Define

g(t) =

∫ s

0

√
1− (tf ′1 + (1− t)f ′2)2 dξ.



ON THE CIRCULAR AREA SIGNATURE 15

Then we have that

X(f1)−X(f2) = g(1)− g(0) = g′(0) +O(‖g′′‖L∞(0,1)).

Noting that

g′(0) = −
∫ s

0

f ′2(f ′1 − f ′2)√
1− f ′22

dξ, and

g′′(t) = −
∫ s

0

(f ′1 − f ′2)2√
1− (tf ′1 + (1− t)f ′2)2

dξ −
∫ s

0

(tf ′1 + (1− t)f ′2)2(f ′1 − f ′2)2

(1− (tf ′1 + (1− t)f ′2)2)3/2
dξ,

we see that ‖g′′‖L∞(0,1) ≤ C1

δ3/2 ‖f ′1 − f ′2‖2∞ and |g′(0)| ≤ C2

δ1/2 ‖f1 − f2‖∞. Using the
fact that

‖f ′1 − f ′2‖2∞ ≤ 2‖f1 − f2‖∞‖f ′′1 − f ′′2 ‖∞,

we have that

‖X(f1)−X(f2)‖∞ ≤
C2

δ3/2
‖f1 − f2‖∞ ≤ C2‖f1 − f2‖∞.

We can now prove our second main result, theorem 2.
Proof. Let f1, f2 ∈ ΓLM , let c1, c2 be the curves traced out by the graphs of f1,f2,

parametrized by arclength and let κ1, κ2 be their curvatures as a function of arclength.
Then c1(0) = c2(0) = (0, 0) and c′1(0) = c′2(0) = (1, b)/

√
1 + b2. By the asymptotic

expansion of Ir (appendix A), we have that

‖κ1 − κ2‖L∞(0,L) ≤ ‖Ir(f1)− Ir(f2)‖L∞(0,L) + C4r
2.

Note that one can obtain the explicit reconstruction formula

f̄i(s) = a+

∫ s

0

sin

(
arctan(b) +

∫ τ

0

κi(ξ) dξ

)
dτ.

It follows that

‖f̄1 − f̄2‖L∞(0,L) ≤ C‖κ1 − κ2‖L∞(0,L) ≤ C‖Ir(f1)− Ir(f2)‖L∞(0,L) + C4r
2.

Hence, we have

‖f1 − f2‖∞ = ‖f1 ◦X(f̄1)− f2 ◦X(f̄1)‖L∞(0,L)

≤ ‖f1 ◦X(f̄1)− f2 ◦X(f̄2)‖L∞(0,L) + ‖f2 ◦X(f̄2)− f2 ◦X(f̄1)‖L∞(0,L)

≤ ‖f̄1 − f̄2‖∞ +m1‖X(f̄1)−X(f̄2)‖L∞(0,L)

≤ C2‖Ir(f1)− Ir(f2)‖L∞(0,L) + C4r
2.

Now note that

‖Tr(f1)− Tr(f2)‖∞ = ‖Ir(f1) ◦ S(f1)− Ir(f2) ◦ S(f2)‖L∞(0,2π)

≤ ‖Ir(f1) ◦ S(f1)− Ir(f1) ◦ S(f2)‖L∞(0,2π)

+‖Ir(f1) ◦ S(f2)− Ir(f2) ◦ S(f2)‖L∞(0,2π)

≤ Cm3‖S(f1)− S(f2)‖L∞(0,2π) + ‖Ir(f1)− Ir(f2)‖L∞(0,L)

≤ Cm3m2‖f1 − f2‖L∞(0,L) + ‖Ir(f1)− Ir(f2)‖L∞(0,L). (3.6)
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Fig. 3.1. Depiction of some quantities from theorem 3.

Suppose that ‖Ir(f1) − Ir(f2)‖∞ ≤ Cr. Then we have that ‖f1 − f2‖∞ ≤ C2r for
r < R = R4 where R4 is sufficiently small. It follows that

‖Tr(f1)− Tr(f2)‖L∞(0,2π) ≤ C3r.

Hence, provided r ≤ R for R = R4 small enough, we obtain from corollary 3.2 that

‖f1 − f2‖∞ ≤ C3‖Tr(f1)− Tr(f2)‖∞.

Combining this with (3.6), we have that

‖f1 − f2‖∞ ≤ C2m2m3‖f1 − f2‖L∞(0,L) + C3‖Ir(f1)− Ir(f2)‖L∞(0,L). (3.7)

By choosing m3 > 0 small enough, we conclude that

‖f1 − f2‖∞ ≤ C3‖Ir(f1)− Ir(f2)‖∞.

We finally have the proof of theorem 3
Proof. Let f1, f2 ∈ ΓM,r such that Ir(f1) ≡ Ir(f2) and take r < 1

m2
. Let

c = sup{t > 0 | f1(x) = g1(x) ∀x ∈ (0, t)}.

and set J = (0, c). For x ∈ (0, c) we will denote the common value of f1(x) and f2(x)
by f(x) Note that we have 2r ≤ c ≤ ∞. Now assume c <∞. Let a ∈ [r, c) such that
p+
f1

(a) = p+
f2

(a) = c. Since Tr(f1)(x) = Tr(f2)(x) for x ∈ (r, c) and r < 1/m2, we
have by lemma 3.3 that Lf1,r(f

′
1)(x) = Lf2,r(f

′
2)(x) for x ∈ (r, c) and hence

f1(p+
f1

(x))− f1(p−f1
(x))− (p+

f1
(x)− p−f1

(x))f ′(x)

= f2(p+
f2

(x))− f2(p−f2
(x))− (p+

f2
(x)− p−f2

(x))f ′(x)

for x ∈ (r, c). Since f1 ≡ f2 on (0, c), we find that p−f1
(x) = p−f2

(x) for x ∈ (r, c). It
follows from the above expression that

f ′(x)(p+
f1

(x)− p+
f2

(x)) = f1(p+
f1

(x))− f2(p+
f2

(x)), (3.8)
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for x ∈ (r, c). Let I = (a, a + ε) for ε > 0. If p+
f1

(x) = p+
f2

(x) for all x ∈ I, then

from (3.8), we find that f1(p+
f1

(x)) = f2(p+
f2

(x)) for x ∈ I. This contradicts the
definition of J as the largest interval on which f1 ≡ f2. Hence there exists x ∈ I
such that p+

f1
(x) 6= p+

f2
(x). Since this is true for every ε > 0, we can find a sequence

x1 > x2 > x3, . . . such that xn → a, xn > a, and p+
f1

(xn) 6= p+
f2

(xn) for all n. Note

that p+
f1

(xn), p+
f2

(xn)→ c as n→∞. It follows from (3.8) that

f ′(a) = lim
n→∞

f ′(xn) = lim
n→∞

f1(p+
f1

(xn))− f2(p+
f2

(xn))

p+
f1

(xn)− p+
f2

(xn)
.

Note that the points (p+
f1

(xn), f1(p+
f1

(xn))) and (p+
f2

(xn), f2(p+
f2

(xn))) both lie on the

boundary of Br(xn, f(xn)) by definition. Hence, the points (y1
n, y

2
n) and (z1

n, z
2
n),

defined by

y1
n = p+

f1
(xn) + a− xn, and y2

n = f1(p+
f1

(xn)) + f(a)− f(xn),

and

z1
n = p+

f2
(xn) + a− xn, and z2

n = f2(p+
f2

(xn)) + f(a)− f(xn),

lie on the boundary of Br(a, f(a)). Furthermore, (y1
n, y

2
n), (z1

n, z
2
n) → (c, f(c)) as

n→∞. It follows that

f ′(a) = lim
n→∞

y2
n − z2

n

y1
n − z1

n

=
a− c

f(c)− f(a)
,

the final quantity being precisely the slope of the tangent line to Br(a, f(a)) at
(c, f(c)). See figure 3.1 for a depiction of some of these quantities. Note that since
f ′ is continuous and a 6= c, we cannot have f(c) = f(a) nor can we have f ′(a) = 0.
Now, by the mean value theorem, there exists b ∈ (a, c) such that

f ′(b) =
f(c)− f(a)

c− a
.

Noting that

|f ′(b)− f ′(a)| = r2

|c− a||f(c)− f(a)|
≥ 1,

we have

1 ≤ |f ′(b)− f ′(a)| ≤
∫ b

a

|f ′′(ξ)| dξ ≤ rm2.

Hence r ≥ 1/m2 which is a contradiction.

4. Discussion and extensions. It is natural to ask if the results in this paper
can be extended to closed planar curves. To this end, we consider a simple closed
smooth curve γ of unit length parametrized by arclength. We define

Ir(γ)(s) = area (Br(γ(s)) ∩ γ) ,
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where γ denotes the interior of γ. Now, consider the curve γ+φn, where n is the unit
normal to γ and φ : S1 → R is a smooth normal perturbation. Then we can define

Tr(γ + φn) = area
(
Br(γ(s) + φ(s)n) ∩ γ + φn

)
.

Hence Tr is the circular area invariant parametrized by the arclength parameter of γ.
One can then show that the linearization of Tr is given by

Lγ,rφ(s) =

∫
Js

φ(ξ) dξ − g(s)φ(s),

where Js = (p−(s), p+(s)) with p±(s) the arclength coordinates of the points of inter-
section of Br(γ(s)) and γ and g(s) is the length of the projection of γ(p+(s))−γ(p−(s))
onto the tangent line, i.e.,

g(s) = 〈γ(p+(s))− γ(p−(s)), γ′(s)〉.

Note that we are assuming that Br(γ(s)) intersects γ in exactly two points for all s.
Since |Js| ≥ 2r ≥ g(s), and equality cannot hold for all s if γ is closed, we see that
Lγ,r does not satisfy a maximum principle. This is the main difference between the
case of closed curves and periodic functions. In the special case that γ is a circle, Lγ,r
is a constant coefficient linear operator and its kernel can be analyzed via Fourier
analysis in order to prove a local uniqueness result [2]. In the general case, it is not
clear how one would study the kernel of Lγ,r and this is perhaps the biggest obstacle
in generalizing these results to closed curves.

The other obstacle is the same as the one encountered in this paper, that is, how
can we extend injectivity from Tr to Ir. One can easily see that the arclength of
γ + φn, call it sφ, can be written in terms of the arclength parameter of γ, call it s,
as follows:

sφ(s) =

∫ s

0

√
(1 + κγ(s)φ(s))2 + φ′(s)2 ds,

where κγ is the curvature of γ. Then we can write

Tr(γ + φn)(s) = Ir(γ + φn)(sφ(s)).

By differentiating with the chain rule, one can see that the linearization of Ir is given
by

DIrφ(s) = Lγ,rφ(s)− (∂sIr(γ))(s)

∫ s

0

κγ(ξ)φ(ξ) dξ.

Even if the kernel of Lγ,r were completely characterized, it is unclear how that knowl-
edge would help one study the kernel of DIr, except in the special case where ∂sIr
is zero or sufficiently small. The special case of a circle, where ∂sIr ≡ 0 has been
thoroughly studied [2]. We note that DIr first appeared in [2], but in a different
form.

Acknowledgments. We would like to thank the anonymous referees whose de-
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Appendix A. Asymptotic expansion of signature. We now compute the
asymptotic expansion of the area invariant Ar for a C4 curve c. We may assume
that the curve c is the graph of a C4 function f with f ′(0) = f(0) = 0. Let mk =
‖f (k)‖L∞(−r,r) for k = 1, 2, 3, 4 and note that κ = f ′′(0). Let p−(r) < p+(r) be
the x-coordinates of the points of intersection of Br with f . We will assume that
r < 1/m2 ≤ 1/κmax.

Theorem A.1. Ar = πr2

2 + 1
3κr

3 +O4(r5).
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Proof. For simplicity, we assume that f(p±) < 0. The proofs for the other cases
proceed identically. Then we have that

Ar =

∫ p+

p−
f(x) +

√
r2 − x2 dx.

By proposition 2.5 and the fact that f ′(0) = 0 we have

p± = ±r +O3(r3).

It follows that ∫ p+

p−
f(x) dx =

∫ p+

p−

1

2
κx2 +

1

6
f ′′′(0)x3 dx+O4(r5)

=
1

6
κ(p+3 − p−3

) +O4(r5)

=
1

3
κr3 +O4(r5).

Also, we have∫ p+

p−

√
r2 − x2 dx =

∫ r

−r

√
r2 − x2 dx+

∫ −r
p−

√
r2 − x2 dx+

∫ p+

r

√
r2 − x2 dx.

Hence∣∣∣∣∣
∫ p+

p−

√
r2 − x2 dx− πr2

2

∣∣∣∣∣ ≤ |p−+r|

(
sup

−r≤x≤p−

√
r2 − x2

)
+|r−p+|

(
sup

p+≤x≤r

√
r2 − x2

)
.

Note that the supremum in each case above occurs at x = p± so we have√
r2 − p±2 =

√
r2 − (r +O3(r3))2 = O3(r2).

Since |r − p+| = O3(r3) and |p− + r| = O3(r3), we have that∫ p+

p−

√
r2 − x2 dx =

πr2

2
+O3(r5).

It follows that

Ar =
πr2

2
+

1

3
κr3 +O4(r5).

We note that a similar result (with O(r4) error) has already appeared in the litera-
ture [12]. The fact that one can improve the error (to O(r5)) by bounding the curve
in C4 is of critical importance to our main result.

Appendix B. Technical lemmas and proofs. Below is a useful, but standard,
lemma on the geometry of curves.

Lemma B.1. Let γ = (x1, x2) be a C2 curve in R2 parameterized by arclength
with maximum absolute value of curvature κmax. For 0 < α < 1, let r ≤ α/κmax and
suppose that γ(0) = (0, h) where |h| ≤ r(1 − α)/2. Let ξ > 0 be the smallest positive
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number for which γ(ξ) intersects the boundary of Br. Let n̂(x, y) be the outward unit
normal to Br. Then we have

|n̂(x1(ξ), x2(ξ)) · γ′(ξ)| ≥ 1

2
(1− α).

Proof. Let a(s) = x1(s)x′1(s) + x2(s)x′2(s) and suppose 0 < s ≤ ξ. Suppose that
r ≤ α/κmax where 0 < α < 1. Then we have

a′(s) = 1 + x1(s)x′′1(s) + x2(s)x′′2(s).

By the Cauchy-Schwarz inequality2 we have

|a′(s)−1| = |x1(s)x′′1(s)+x2(s)x′′2(s)| ≤
√
x1(s)2 + x2(s)2

√
x′′1(s)2 + x′′2(s)2 ≤ r|κ(s)|.

Since |x′2(0)| ≤ 1, the above bound yields

s− |h| − |a(s)| ≤ |a(s)− s− hx′2(0)| ≤
∫ s

0

|a′(τ)− 1| dτ ≤ κmaxrs ≤ αs.

Hence |a(s)| ≥ s(1 − α) − |h|. Now suppose that |h| ≤ βr, with 0 < β < 1. Noting
that ξ ≥ r − |h|,

|n̂(x1(ξ), x2(ξ)) · γ′(ξ)| = 1

r
|a(ξ)| ≥ 1

r
(ξ(1− α)− |h|) ≥ 1− α− 2β.

Setting β = (1− α)/4 completes the proof.
The proof of lemma 2.6 is below.
Proof. Let a(x) = r(1 + f ′(x)2)−1/2 and note that we can write

Lf,rφ(x) =
1

r3

(∫ p+(x)

p−(x)

φ(y) dy − |Jx|φ(x)

)

=
1

r3

(∫ x+a(x)

x−a(x)

φ(y) dy − 2a(x)φ(x)

)

+
1

r3

(∫ x−a(x)

p−(x)

φ(y) dy +

∫ p+(x)

x+a(x)

φ(y) dy + (2a(x)− |Jx|)φ(x)

)
=: A+B.

Since φ ∈ C3(R), we can expand φ via a Taylor series

φ(y) = φ(x) + (y − x)φ′(x) +
1

2
(y − x)2φ′′(x) +

1

6
g1(y)(y − x)3,

where ‖g1‖L∞([x−r,x+r]) ≤ ‖φ′′′‖L∞([x−r,x+r]). Hence, for A we have

A =
1

r3

(∫ x+a(x)

x−a(x)

φ(x) + (y − x)φ′(x) +
1

2
(y − x)2φ′′(x)

+
1

6
g1(y)(y − x)3 dy − 2a(x)φ(x)

)
=

1

3
(1 + f ′(x)2)−3/2φ′′(x) +

1

6r3

∫ x+a(x)

x−a(x)

g1(y)(y − x)3 dy.

2the Cauchy-Schwarz inequality used here is |a1b1 + a2b2| ≤
√
a21 + a22

√
b21 + b22.
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For B, we expand φ via a first order Taylor series as

φ(y) = φ(x) + (y − x)φ′(x) +
1

2
g2(y)(y − x)2,

where ‖g2‖L∞([x−r,x+r]) ≤ ‖φ′′‖L∞([x−r,x+r]). Then we have∫ x−a(x)

p−(x)

φ(y) dy +

∫ p+(x)

x+a(x)

φ(y) dy

=

∫ x−a(x)

p−(x)

φ(x) + (y − x)φ′(x) +
1

2
g2(y)(y − x)2 dy

+

∫ p+(x)

x+a(x)

φ(x) + (y − x)φ′(x) +
1

2
g2(y)(y − x)2 dy

= φ(x)(|Jx| − 2a(x)) +
1

2
φ′(x)

(
(p+(x)− x)2 − (p−(x)− x)2

)
+

1

2

∫ x−a(x)

p−(x)

g2(y)(y − x)2 dy +
1

2

∫ p+(x)

x+a(x)

g2(y)(y − x)2 dy

Hence we have

B =
1

r3

(
1

2
φ′(x)

(
(p+(x)− x)2 − (p−(x)− x)2

)
+

1

2

∫ x−a(x)

p−(x)

g2(y)(y − x)2 dy +
1

2

∫ p+(x)

x+a(x)

g2(y)(y − x)2 dy

)
.

Also, note that by proposition 2.5 we have

(p+(x)− x)2 − (p−(x)− x)2 = − 2f ′(x)f ′′(x)

(1 + f ′(x)2)5/2
r3 +O3(r4).

So we have

Lf,rφ =
1

3
(1 + f ′(x)2)−3/2φ′′(x)− f ′(x)f ′′(x)

(1 + f ′(x)2)5/2
φ′(x) + rgφ(x), (B.1)

where

gφ(x) =
1

6r4

∫ x+a(x)

x−a(x)

g1(y)(y − x)3 dy +
1

2r4

(∫ x−a(x)

p−(x)

g2(y)(y − x)2 dy

+

∫ p+(x)

x+a(x)

g2(y)(y − x)2 dy

)
+ C3φ

′(x).

An elementary calculation (using proposition 2.5) shows that

|gφ(x)| ≤ C3

(
‖φ′‖L∞([x−r,x+r]) + ‖φ′′‖L∞([x−r,x+r]) + ‖φ′′′‖L∞([x−r,x+r])

)
.

Appendix C. Interpolation. The following interpolation lemma can be found
in [10]. We include it here for completeness.
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Lemma C.1 (Interpolation). For any 2π-periodic f ∈ C2(R) with f(x) = 0 for
some x ∈ [0, 2π), we have

‖f ′‖2∞ ≤ 2‖f‖∞‖f ′′‖∞. (C.1)

Proof. Note that if ‖f ′′‖∞ = 0 or ‖f‖∞ = 0, then ‖f ′‖∞ = 0 and so (C.1) is
satisfied. So we may assume that ‖f ′′‖∞ and ‖f‖∞ are nonzero. For a, b > 0, define
f̄(x) = af(bx). Then we have that

‖f̄ ′‖2∞ = a2b2‖f ′‖2∞, and ‖f̄‖∞‖f̄ ′′‖∞ = a2b2‖f‖∞‖f ′′‖∞.

Hence, f satisfies (C.1) if and only if f̄ satisfies (C.1) for any a, b > 0. Since we can
choose a, b > 0 so that ‖f̄ ′‖∞ = ‖f̄ ′′‖∞ = 1, we may assume that ‖f ′‖∞ = ‖f ′′‖∞ = 1
and must show that ‖f‖∞ ≥ 1/2. By translating f we may assume that sup |f ′| occurs
at the origin. By reflecting f about either axis, we may assume that f(0) ≥ 0 and
f ′(0) = sup |f ′| = 1. By the mean value theorem, we have that

f(1) = f(0) + f ′(0) +
1

2
f ′′(ξ),

for some ξ ∈ [0, 1]. Hence we have

‖f‖∞ ≥ f(1) ≥ 1− 1

2
=

1

2
.

Appendix D. Other estimates.
Lemma D.1. Suppose that f1, f2 ∈ ΓM and let

gi(x) =
f ′′(x)

(1 + f ′i(x)2)3/2
, i = 1, 2

and φ = f1 − f2. Then we have that

‖φ‖∞, ‖φ′‖∞, ‖φ′′‖∞ ≤ C(m2)‖g1 − g2‖∞.

Proof. Let ai(x) = (1 + f ′i(x)2)3/2. Then we have that

f ′1(x)− f ′2(x) =

∫ x

0

f ′′1 (ξ)− f ′′2 (ξ), dξ (D.1)

=

∫ x

0

a1(ξ)(g1(ξ)− g2(ξ)) + (a1(ξ)− a2(ξ))g2(ξ) dξ. (D.2)

Hence

|φ′(x)| ≤ C1‖g1 − g2‖∞ + C2

∫ x

0

|φ′(x)| dξ.

By applying Gronwall’s inequality (see [7]), we have

|φ′(x)| ≤ C2‖g1 − g2‖∞.

The other estimates follow immediately.


