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Abstract. In this paper, we propose a new nonparametric region-based
active contour model for clutter image segmentation. To quantify the
similarity between two clutter regions, we propose to compare their re-
spective histograms using the Wasserstein distance. Our first segmenta-
tion model is based on minimizing the Wasserstein distance between the
object (resp. background) histogram and the object (resp. background)
reference histogram, together with a geometric regularization term that
penalizes complicated region boundaries. The minimization is achieved
by computing the gradient of the level set formulation for the energy.
Our second model does not require reference histograms and assumes
that the image can be partitioned into two regions in each of which the
local histograms are similar everywhere.

Key words: image segmentation, region-based active contour, Wasser-
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1 Introduction

Parametric region-based active contour models have been widely used in image
segmentation. One of their advantages is that they incorporate region informa-
tion with boundary information. For example, the Chan-Vese model is able to
carry out foreground and background segmentation without any explicit ref-
erence to edges [4]. However, the standard Chan-Vese model is based on the
assumption that the foreground (resp. background) intensity is fairly homoge-
neous, i.e. the probability density functions of object intensities and background
intensities are both Gaussian with the same variance. This can be a significant
restriction in applications. Other parametric region-based active contours mod-
els, including certain generalizations of the Chan-Vese model, assume that the
histogram of image intensities in different regions of the segmentation are Gaus-
sian. For example, in [15], the segmentation models distinguish the object from
the background by intensity means and/or variances of image regions.

Clutter features are often found in natural scenes, such as trees and grass.
They are highly nonhomogeneous in intensity and their corresponding histograms
do not necessarily have particular statistical structure – for example, they may
not obey a Gaussian distribution. They also usually do not have a particular
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geometric content. Therefore, parametric methods are not suitable for segmen-
tation of cluttered regions. In this paper, we use image intensity histograms to
drive the segmentation process, which makes no simplifying assumptions about
the statistics of the image intensity values. It also does not rely on any geometric
content found in the regions. We thus segment images purely based on histogram
information found within its various regions.

There are a number of nonparametric segmentation models in the literature
that are closely related to our work. In [9, 6], the authors propose to maximize
the mutual information between the region labels and the image intensities. In
[3, 1], the proposed model is to minimize the chi-2 comparison function between
the object (resp. background) histogram and the object (resp. background) ref-
erence histogram. The experimental results presented in this paper show that
their model is effective for segmentation of slightly-textured images (e.g. human
faces). However, the chi-2 comparison function is not a metric and is not suit-
able for comparing histograms in many situations. As a simple demonstration, if
we have two histograms that are two delta functions with disjoint supports, the
chi-2 distance between them is the same no matter how far apart the supports
are; this is a situation that arises often in segmentation applications, since for
example images consisting of two objects with approximately constant but dif-
ferent intensities would fall into this category. To overcome this issue, we propose
to use the Wasserstein distance (Monge-Kantorovich distance) to compare his-
tograms. The Wasserstein distance (also called earth mover’s distance) between
two functions is the least work that is required to move the region lying under
the graph of one of the functions to that of the other (where it is assumed that
the area under the graph of both functions is the same). It extends as a metric
to measures such as the delta function. We believe this to be the more natural
and appropriate way to compare histograms, since it does not suffer from the
shortcoming mentioned above concerning pointwise metrics such as the standard
Lp norms or the chi-2 comparison function. Hence, all our proposed models in
this paper use the Wasserstein distance to compare histograms. Experimental
results show that there is indeed a significant benefit in doing so, and that our
models are quite effective in segmenting images consisting of cluttered regions.
Optimal transport ideas have been used in other context in image processing,
such as [7] on image registration and morphing and many others [2], [5] and [13].

The layout of the paper is as follows. Section II presents some facts from op-
timal transportation theory used in this paper; in particular, we describe briefly
the Monge-Kantorovich problem and how to solve it. Section III consists of two
subsections, each one devoted to one of proposed new models. Also, level set
formulations of these new models and their associated optimality conditions and
gradient descent equations are given here. Section IV shows the algorithms and
discretization for solving the proposed models. Section V shows experimental
results and comparison with other methods in both synthetic and real images.
Section VI presents summary and future work.
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2 Wasserstein Distance

The original Monge-Kantorovich problem was first posed in 1781 by G. Monge
in [10]: what is the minimum work required to move a pile of dirt into a hole
with the same volume? The original mathematical formulation turned out to be
a difficult problem, and Kantorovich proposed a relaxed version, which is stated
on the probability measure space with some admissible conditions [8]. Let (X, µ)
and (Y, ν) be two probability measure spaces. Let π be a probability measure on
the product space X × Y and Π(µ, ν) = {π ∈ P (X × Y ) : π[A× Y ] = µ[A], and
π[X × B] = ν[B] hold for all measureable sets A ∈ X and B ∈ Y } be the set
of admissible transference plans. For a given cost function c : X → Y , the total
transportation cost associated to π ∈ Π(µ, ν) is I[π] =

∫
X×Y

c(x, y)dπ(x, y).
The optimal transportation cost between µ and ν is Tc(µ, ν) = infπ∈Π(µ,ν)I[π].
More detail can be found in [16], which is a good exposition on this subject.

In this paper, we are interested in the case when the probability is on the real
line. Let µ and ν be two probability measures on IR, with respective cumulative
distribution functions F and G. Then, it is known that for a convex cost function
c(x, y), the optimal transportation cost is Tc(µ, ν) =

∫ 1

0
c(F−1(t), G−1(t))dt. In

particular, the optimal transportation cost for the linear cost function c(x, y) =
|x− y| is T1(µ, ν) =

∫ 1

0
|F−1(t)−G−1(t)|dt and by Fubini’s Theorem, T(µ, ν) =∫ 1

0
|F (t)−G(t)|dt.
In the proposed models, we use the Wasserstein distance to compare two

normalized image histograms. Let Pa(y) and Pb(y) be two normalized histograms
and let Fa(y) and Fb(y) be their corresponding cumulative distributions. The
linear Wasserstein distance (W1 distance) between Pa(y) and Pb(y) is defined
by

W1(Pa, Pb) = T1(Pa, Pb) =
∫ 1

0

|Fa(y)− Fb(y)|dy . (1)

An important consequence of this definition is that, unlike chi-2 function, Wasser-
stein distance is a metric. If two δ-functions are close by, the Wasserstein distance
between them is small, because the area between their corresponding cumulative
distribution functions is small .

3 Proposed Models

In this paper, we propose two segmentation energy models. By minimizing these
energies, we hope to find an optimal region such that the region boundaries
match the object boundaries. The first proposed model requires reference object
(resp. background) histograms as inputs;this is the same setting as in [1] The
second model do not require any reference histograms. For both models, we use
the Wasserstein distance to compare the similarity between histograms. The first
model is to minimize the Wasserstein distance between object (resp. background)
histogram and the object (resp. background) reference histogram, together with
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a geometric regularization term on the interface. The second model assumes that
the local histograms within the object region (resp. background region) are sim-
ilar everywhere. We use the notion of neighborhood histogram of a pixel point.
This model is to find an optimal region such that the object (resp. background)
histogram is similar to all the neighborhood histograms inside (resp. outside)
the region.

Given a grey scale image I : Ω → [0, 255], the normalized image histogram
restricted on the region Σ and the associated cumulative distribution function
can be written in the following level set representation

PΣ(y) =

∫
Ω

H(φ(z))δ(y − I(z))dz∫
Ω

H(φ(z))dz
(2)

and

FΣ(y) =

∫
Ω

H(φ(z))H(y − I(z))dz∫
Ω

H(φ(z))dz
, (3)

where y ∈ [0, 255] is an intensity value, φ is a level set function [12] such that
Σ = {x ∈ Ω : φ(x) > 0}, and δ and H are the Dirac and Heaviside function,
respectively. Similarly, using the same φ for outside the region Σc, we have

PΣc(y) =

∫
Ω

[1−H(φ(z))]δ(y − I(z))dz∫
Ω

[1−H(φ(z))]dz
(4)

and

FΣc(y) =

∫
Ω

[1−H(φ(z))]H(y − I(z))dz∫
Ω

[1−H(φ(z))]dz
. (5)

We use the level set method [12], because it allows changes of topology, such as
merging and splitting.

3.1 Histogram Segmentation with Reference Histograms

For the first segmentation model, we are given a foreground reference histogram
Pf (y) and a background reference histogram Pb(y). The model is

inf
Σ

E1(Σ) = Per(Σ) + λ{W1(PΣ , Pf ) + W1(PΣc , Pb))} ,

where W1 is the W1 distance described in (1). The first term is the length of
the boundary of Σ, as a regularization term. The second (resp. third) is a fitting
term that compare the similarity between object (resp. background) histogram
and object (resp. background) reference histogram. The level set formulation of
(6) is

inf
φ

E1(φ) =
∫

Ω

|∇H(φ(x))|dx+λ{
∫ 255

0

|FΣ(y)− Ff (y)|dy

+
∫ 255

0

|(FΣc(y)− Fb(y)|dy} ,
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where we plug in FΣ and FΣc by (3) and (5), respectively.
To minimize the energy, we derive the associated Euler-Lagrange equation.

The gradient descent for φ is given by the following evolution equations

φt = δ(φ)
[
∇ ·

( ∇φ

|∇φ|
)
− λ(A−B)

]
, (6)

where

A =
1

Area(Σ)

∫ 255

0

FΣ(y)− Ff (y)
|FΣ(y)− Ff (y)| [H(y − I(x))− (FΣ(y))]dy

and

B =
1

Area(Σc)

∫ 255

0

FΣc(y)− Fb(y)
|FΣc(y)− Fb(y)| [H(y − I(x))− (FΣc(y))]dy .

3.2 Histogram Segmentation with Neighborhood Histograms

We modify the first segmentation model (6) so that input reference histograms
are not required. For simplicity, we assume that the image of interest has two
regions, object and background region, each of which has the same histograms
locally (e.g. clutter features). The histogram restricted on a small region (neigh-
borhood histogram) is similar to either the object histogram or the background
histogram. Therefore, we compare the object (resp. background) histogram with
all the neighborhood histograms in the object (resp. background) region.

For each point x ∈ Ω, we compute the neighborhood cumulative distribution
function

Fx,r(y) =
Area({x ∈ Br(x) : I(x) ≤ y})

Area({Br(x)}) .

The size r of the neighborhood is chosen according to the clutter features in an
image. It needs to be greater than or equal to the size of the clutter feature. For
an accurate result, it should not be too large. In this paper, the selection of the
size is specified by the user. The proposed model is

inf
Σ

E2(Σ) = Per(Σ) + λ{
∫

Σ

W1(P1, Px,r)dx +
∫

Σc

W1(P2, Px,r)dx} . (7)

In a level set formulation, (7) becomes

inf
Σ

E2(Σ) =
∫

Ω

|∇H(φ(x))|dx

+λ {
∫

Ω

H(φ(x))
∫ 255

0

|F1(y)− Fx,r(y)|dydx

+
∫

Ω

[1−H(φ(x))]
∫ 255

0

|F2(y)− Fx,r(y)|dydx} . (8)
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Note that Fx,r(y) needs to be computed only once before optimization. F1(y) and
F2(y) are two constant cumulative distribution to be determined, independent
of φ.

To minimize this energy, we first fix φ and minimize with respect to F1(y)
and F2(y), respectively. Then, we fix F1(y) and F2(y) and minimize with respect
to φ. The evolution equations are

F1(y) =

∫
Ω

H(φ(x))Fx,r(y)dx∫
Ω

H(φ(x))dx

F2(y) =

∫
Ω

[1−H(φ(x))] Fx,r(y)dx∫
Ω

[1−H(φ(x))]dx

φt = δ(φ)
[
∇ ·

( ∇φ

|∇φ|
)
− λ

∫ 1

0

(|F1(y)− Fx,r(y)| − |F2(y)− Fx,r(y)|) dy

]
.(9)

As the evolution equations suggest, the object (resp. background) cumula-
tive distribution function F1 (resp. F2) is the average of all the neighborhood
cumulative distribution functions Fx,r inside (resp. outside) the curve. The min-
imization forces the 0-level curve of φ to move toward the boundaries of the
object, so that the object (resp. background) cumulative distribution function is
similar to all the neighborhood cumulative distribution histograms inside (resp.
outside) the curve.

4 Numerical Method

For numerical implementation, we use a C∞ regularized Heaviside function and
the corresponding regularized Dirac function as follows

Hε(z) =
1
2

(
1 +

2
π

arctan
(z

ε

))
, and δε(z) =

1
π

ε

ε2 + z2
.

The evolution equations (6) and (9) for both proposed models have the following
form

φt = δ(φ)
[
∇ ·

( ∇φ

|∇φ|
)

+ λA(φ)
]

.

We compute φ by the following discretization

φn+1 − φn

4t
= δε (φn)

[
4−

x

(4+
x φn

|∇φn|
)

+4−
y

(4+
y φn

|∇φn|
)

+ A(φn)
]

,
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where

|∇φn| =
√(4+

x φn
)2

+
(4+

y φn
)2

+ ε ,

4−
x φi,j = φi,j − φi−1,j ,4+

x φi,j = φi+1,j − φi,j ,

4−
y φi,j = φi,j − φi,j−1 ,4+

y φi,j = φi,j+1 − φi,j .

In the evolution equation (6), the corresponding A(φ) term can be written as
∫

B(y) [H (y − f(x))− C(y)] dy =
∫

B(y)C(y)dy +
∫

B(y)H(y − f(x))dy , (10)

for some functions B(y) and C(y).
Note that the first term is independent of x, while the second term can be
simplified as

∫
B(y)H(y − f(x))dy =

∫ 255

f(x)

B(y)dy .

Now, we only need to compute once

G(i) =
∫ 255

i

A(y)dy

for i ∈ {0, 1, ..., 255}. Then, the second term of the right hand side of (10) can
be obtained fast by looking up G(f(x)) and by linear interpolation.

5 Experimental Results

We show and compare the proposed segmentation methods with some of existing
methods. Figure 1 shows a 144 × 144 synthetic image, which has three regions
with different distributions, as shown in Fig. 2. The inner region and the mid-
dle region look distinct, as well as their corresponding histograms, even though
the histograms overlap 50 percents. On the other hand, the middle region and
the outer region look similar, as well as their corresponding histograms, even
though the histograms do not overlap at all. In both cases, the degree of simi-
larity in image regions agree with the degree of similarity in their corresponding
histograms. Figure 3 shows results of proposed and existing segmentation meth-
ods. The first row is the final contour, corresponding histograms, and cumulative
distributions (from left to right) of proposed segmentation with reference his-
tograms. The foreground and background reference histograms are calculated on
the inner and outer region, respectively. The final contour shows that the pro-
posed model is able to segment the middle and the outer region as background.
The second row is the final contours, corresponding histograms, and cumulative
distributions of proposed segmentation model with neighborhood histograms.
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This proposed method is also able to distinguish the foreground (inner region)
from the background (middle and outer region). This shows that the W1 dis-
tance is effective in histogram segmentation. The third row is the final contour,
corresponding histograms, and cumulative distributions of segmentation with
reference histograms using chi-2 function. Since this model strongly favors over-
lapping histograms, the middle region is segmented falsely as foreground. The
fourth and fifth columns are the final contours, corresponding histograms, and
cumulative distributions of Chan-Vese segmentation, with different fidelity pa-
rameters. The fourth row shows that the Chan-Vese segmentation is not able to
come close to a correct segmentation. The fifth row shows that the Chan-Vese
segmentation, with larger fidelity parameters, segments at a pixel level, in or-
der to distinguish foreground and background intensity values. In any case, the
standard Chan-Vese segmentation fails the task because the average intensity of
any region in this image is the same.

Figure 4 shows segmentation results of various methods for a 135× 175 real
image. The foreground (cheetah) and the background of this image has the same
intensity average and different corresponding histograms. The first row is the fi-
nal contour, corresponding histograms, and cumulative distributions of proposed
histogram segmentation with reference histograms. The given foreground refer-
ence histogram is obtained by calculating the histogram on a small patch of the
cheetah. By the proposed model, it is expected to segment a region that looks
like the cheetah pattern but not necessarily the entire cheetah. The second row
is the final contours, corresponding histograms, and cumulative distributions by
segmentation with neighborhood histograms. Both proposed models are able to
segment the cheetah from the background. The third row is the final contour,
corresponding histograms, and cumulative distributions of segmentation with
reference histograms using chi-2 function. The fourth row is the final contour,
corresponding histograms, and cumulative distributions of Chan-Vese segmen-
tation. Both of the three existing segmentation methods fail to segment the
cheetah pattern from the background.

6 Conclusion and Future Work

In this work, we propose a novel nonparametric region-based active contour
model for segmenting clutter images. It is based on the use of Wasserstein mass
transfer metrics in comparing histograms of different regions in the image. Our
numerical results corroborate that these metrics are more suitable for histogram
comparisons than what has been utilized previously in the existing literature,
and lead to substantially better segmentations. Wasserstein metrics can be in-
corporated into a variety of histogram and curve evolution based segmentation
models; we give two examples of such in this paper in order to substantiate our
claims.
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Fig. 1. Left: synthetic image. Right: boundaries between inner, middle, and outer re-
gions.
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Fig. 2. From top to bottom. Left column: inner, middle, and outer region histograms.
Right column: inner, middle, and outer region cumulative distributions
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Fig. 3. Comparison of proposed histogram segmentation and existing methods. The
first column is the final contour of different segmentation methods. The second (resp.
third) columns are corresponding foreground a nd background histograms (resp. cumu-
lative distributions). First row: proposed histogram segmentation with reference his-
tograms. Second row: proposed histogram segmentation with neighborhood histograms.
Third row: histogram segmentation using chi-2 function with reference histograms.
Fourth row: Chan-Vese segmentation. Fifth row: Chan-Vese segmentation.
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Fig. 4. Comparison of proposed histogram segmentation and existing methods. The
first column is the final contour of different segmentation methods. The second (resp.
third) columns are corresponding foreground a nd background histograms (resp. cumu-
lative distributions). First row: proposed histogram segmentation with reference his-
tograms. Second row: proposed histogram segmentation with neighborhood histograms.
Third row: histogram segmentation using chi-2 function with reference histograms.
Fourth row: Chan-Vese segmentation.
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