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† Mathematics Department, UCLA. Los Angeles, CA 90095.
? Centre de Mathematiques et de Leurs Applications, ENS de Cachan, France.

ABSTRACT

Restoring binary images is a problem which arises in various ap-
plication fields. In our paper, this problem is considered in a vari-
ational framework: the sought-after solution minimizes an energy.
Energies defined over the set of the binary images are inevitably
nonconvex and there are no general methods to calculate the global
minimum, while local minimziers are very often of limited inter-
est. In this paper we define the restored image as the global min-
imizer of the total-variation (TV) energy functional constrained
to the collection of all binary-valued images. We solve this con-
strained non-convex optimization problem by deriving another func-
tional which is convex and whose (unconstrained) minimum is
proven to be reached for the global minimizer of the binary con-
strained TV functional. Practical issues are discussed and a nu-
merical example is provided.

1. INTRODUCTION

In various applications we are given a binary-valued function f(x) :
RN → {0, 1}, N ≥ 2, which is known to be the corrupted ver-
sion of another binary-valued function u(x) that needs to be es-
timated. We can evoke text denoising and document processing,
two-phase image segmentation, shape restoration, channel-noise
cancellation in communications, fairing of surfaces in computer
graphics and others. This problem can be stated either as denois-
ing or as segmentation. Since both u and f are binary, they can
be represented as the characteristic function of a shape. The cor-
ruption incurred by f is thus in the geometry of the shape: Its
boundary might be very rough, and the user might be interested
in smoothing out its boundary, and perhaps removing small, un-
necessary connected components of the shape. This task is a com-
mon first step in many object detection and recognition algorithms.
Variational and partial differential equations based approaches to
denoising and segmentation have had great success, essentially be-
cause these models are well suited to impose geometric regularity
on the solutions sought. Among the best known and most influ-
ential examples are the Rudin-Osher-Fatemi (ROF) total variation
based image denoising model, and the Mumford-Shah image seg-
mentation model. These models are easily adapted to binary im-
ages. However, a common difficulty that arises is the presence of
spurious local minima that are not global minima. The reason is
that the constraint set—the family of all characteristic functions of
subsets of RN —is a non-convex collection. This is a much more
serious drawback than non-uniqueness of global minimizers be-
cause local minima of segmentation and denoising models often
have completely wrong levels of detail and scale: whereas global
minimizers of a given model are usually all reasonable solutions,
the local minima tend to be blatantly false. Many solution tech-
niques for variational models are based on gradient descent, and

are therefore prone to getting stuck in such local minima. This
makes initial guess for gradient descent based algorithms some-
times critically important for obtaining satisfactory results.

In this paper we propose a method that guarantees to reach
the global minimum of the ROF model restricted to the set of bi-
nary images. Our approach is to consider the unconstrained mini-
mization of a convex functional whose minimum is reached for the
constrained global minimizer of the ROF model. The theory in this
work relies on the results established in [1]. A similar idea in the
simpler context of images on a finite grid was used in [2] in order
to find quasi-binary solutions by minimizing a convex functional.

2. BINARY IMAGE RESTORATION USING
CONSTRAINED MINIMIZATION

Let f(x) : RN → [0, 1] denote the given (grayscale) possibly
corrupted (noisy) image. Since [3], an usual approach for image
restoration is to minimize an energy of the form

E(u) =

∫

RN

ϕ(|∇u|) + λ

∫

RN

(
u(x)− f(x)

)2

dx (1)

where λ > 0 is a parameter to be chosen by the user, or esti-
mated if the level of noise is known and ϕ : R+ → R is a func-
tion [4, 5, 6, 7]. One of the most popular examples is ϕ(t) = t
which corresponds to the Rudin-Osher-Fatemi (ROF) total varia-
tion based image denoising model [4]. In the binary image denois-
ing case, f(x) can be expressed as

f(x) = 1Ω(x)

where Ω is a bounded subset of RN whose boundary ∂Ω can be
very rough because of the noise. A natural way to solve such a
problem is to constraint the unknown u in (1) to be binary, i.e. to
have the form u(x) = 1Σ(x). This possibility was considered in
[8]. For the ROF model one then obtains the following constrained
optimization problem:

min
Σ⊂RN

u(x)=1Σ(x)

∫

RN

|∇u|+ λ

∫

RN

(
u(x)− 1Ω(x)

)2

dx

︸ ︷︷ ︸
E2(u)

(2)

Problem (2) is non-convex because the minimization is over a non-
convex set of functions. Notice that (2) in equivalent to the follow-
ing geometry problem:

min
Σ⊂RN

Per(Σ) + λ|Σ4 Ω| (3)

where Per(·) denotes the perimeter, |·| is the N -dimensional Lebesgue
measure, and S1 4 S2 denotes the symmetric difference between
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the two sets S1 and S2. The unknown set Σ in (3) can be de-
scribed by its boundary ∂Σ. So a common approach of solving (3)
has been to use some curve evolution process, sometimes referred
to as active contours, where ∂Σ is updated iteratively, usually ac-
cording to gradient flow for the energy involved.

Numerically, there are several ways of representing ∂Σ. Ex-
plicit curve representations as in Kass, Witkin, Terzopoulos [9] are
not appropriate since such methods do not allow changes in curve
topology (and have a number of other drawbacks). Actually, the
most successful algorithms are those based on either the level set
method of Osher and Sethian [10], or on the variational approx-
imation approach known as Gamma convergence theory [11]. In
the level set formulation, ∂Σ is represented as the 0-level set of a
(Lipschitz) function φ : RN → R: Σ =

{
x ∈ RN : φ(x) > 0

}

so that ∂Σ = {x ∈ RN : φ(x) = 0}. The functional E2 in (2)
can then be expressed as follows:

∫

RN

|∇H(φ(x))| dx + λ

∫

RN

(
H(φ(x))− 1Ω(x)

)2

dx (4)

where H :R→R is the Heaviside function, H(x) = 0 if x < 0
and H(x) = 1 if x ≥ 0. In practice, one takes a smooth (or
at least Lipschitz) approximation Hε to H , such that Hε(x) →
H(x) as ε → 0. The Euler-Lagrange equation for (4) leads to
the following gradient flow:

φt(x, t)=H ′
ε(φ)

{
div

(∇φ

|∇φ|
)
+2λ

(
1Ω(x)−Hε(φ)

)}
. (5)

When (5) is simulated using reinitialization for the level set func-
tion φ(x) and a compactly supported approximation Hε(x) to H(x),
it is observed to define a continuous evolution (with respect to,
say, the L1-norm) for the unknown function u(x) = 1Σ(x) and
decreases the objective energy (2) through binary images.

In the Gamma-convergence approach, E2 is replaced by a se-
quence of approximate energies Eε of the form

Eε(u) =

∫

RN

ε|∇u|2 +
1

ε
W (u)

+ λ
{

u2(c1 − f
)2

+ (1− u)2
(
c2 − f

)2
}

dx

where Eε → E2 as ε → 0. Here, W (ξ) is a double-well potential
with equidepth wells at 0 and 1; e.g., a simple choice is W (ξ) =
ξ2(1− ξ)2. The term 1

ε
W (u) is a penalty that forces the function

u to be approximately 0 or 1 on most of RN . The term ε|∇u|2, on
the other hand, puts a penalty on the transitions of u between 0 and
1. Taken together, these terms constraint u to be a characteristic
function, and approximate its total variation. For rigorous details,
see [12].

However, these techniques are prone to get stuck in spurious
local minima, thus leading to images with wrong level of detail.
This fact is familiar to researchers working with these techniques
and is confirmed by the example below.

Example: Let f(x) = 1Ω(x) where Ω = BR(0) ⊂ R2 is a
ball of radius R centered at the origin. Implementing the gradi-
ent descent algorithm defined by (5) requires to choose an initial
guess for the set Σ that is represented by φ(x). A common choice
being to take the observed image, we initially set Σ = BR(0).
The evolution defined by (5) will maintain radial symmetry of
φ(x). That is, at any given time t ≥ 0, the set represented by

φ(x) (i.e. the candidate for minimization) is of the form
{

x ∈

R2 : φ(x) > 0
}

= Br(0) for some radius r ≥ 0. We can

write the energy of u(x) = 1Br(0)(x) in terms of r, as follows:
E(r) := E2(1Br(0)(x)) = 2πr +λπ|R2− r2| A simple calcula-
tion shows that if 0 < λ < 2

R
, then the minimum of this function

is at r = 0. Hence, the denoising model prefers to remove disks
of radius smaller than the critical value 2

R
. If in addition R > 1

λ
,

it is easy to find that E(r) has a local maximum at rmax(λ) = 1
λ

.
(see Figure 1). Thus the energy minimization procedure described
by (5) cannot shrink disks of radius R ∈ ( 1

λ
, 2

λ
) to a point, even

though the global minimum of the energy for an original image
given by such a disk is at u(x) ≡ 0.

We can easily say a bit more: There is δ > 0 such that if Σ ⊂
RN satisfies |Σ4BR(0)| < δ then E2(1Σ(x)) > E2(1BR(0)(x)).
In words, all binary images nearby, but not identical with, the ob-
served image 1BR(0)(x) have strictly higher energy.

To summarize: If f(x) = 1BR(0)(x) with R ∈ ( 1
λ
, 2

λ
), and

if the initial guess for the continuous curve evolution based mini-
mization procedure (5) is f(x), then the procedure gets stuck in the
local minimizer u(x) = f(x) while the unique global minimizer
is u(x) ≡ 0.
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Fig. 1. Energy (2) of u(x) = 1Br(0)(x) as a function of r ∈ [0, 2] when

the observed image is given by f(x) = 1BR(0)(x). Here, R = 3
2

and the
parameter λ was chosen to be λ = 1. There is clearly a local minimum,
corresponding to r = R = 3

2
.

3. FINDING THE GLOBAL MINIMUM USING
ANOTHER (CONVEX) ENERGY

The crux of our approach is to consider minimization of the follow-
ing convex energy, defined for any given observed image f(x) ∈
L1(RN ) and λ ≥ 0:

E1(u) :=

∫

RN

|∇u|+ λ

∫

RN

|u(x)− f(x)| dx (6)

This energy differs from the standard ROF model in the fidelity
term: The L2-norm square of the original model is replaced by
the L1-norm as a measure of fidelity. It was previously introduced
and studied in signal and image processing applications in [13, 14,
15, 16, 17, 1]. The energy E1 has many interesting properties and
uses [1]. It is easy to show that the set of the minimizers of E1 is
non-empty, closed and convex.

The relevance of (6) for our purposes comes from the fact that
E1 is convex, hence its minimum can practically be reached, and
from the equivalence theorem stated below.

Theorem 1 (Equivalence) Let f = 1Ω where Ω ⊂ RN is a
bounded domain. Then we have the following:
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(i) If v = 1Σ is a (global) solution to (2), then E1 reaches its
minimum at v.

(ii) If E1 reaches its minimum at w, then for almost every µ ∈
(0, 1) the function v = 1Σ where Σ = {x ∈ RN : w(x) >
µ} is a (global) solution to (2).

These statements come from the obvious fact that the energies in
(2) and (6) agree on binary images, i.e. E2(1Σ) = E1(1Σ) for
any bounded Σ ⊂ RN , and from Theorem 2 which is taken from
[1]:

Theorem 2 If f = 1Ω where Ω ⊂ RN in bounded, then there is
Σ ⊂ RN (possibly Σ 6= Ω) such that E1 reaches its minimum at
v = 1Σ.

More precisely, if w is any minimizer of E1, then for almost
every µ ∈ [0, 1] the function v = 1Σ where Σ = {x : w(x) > µ}
is also a minimizer of E1.

Its proof is based on the following proposition, established in [1],
that expresses energy E1 in (6) in terms of the level sets of u and f .

Proposition 1 The energy E1 can be rewritten as follows:

E1(u) =

∫ ∞

−∞
Per

({x : u(x) > µ})

+λ
∣∣∣{x : u(x) > µ} 4 {x : f(x) > µ}

∣∣∣ dµ

Since E1 is only non-strictly convex, its (global) minimizers
are not unique in general. Nevertheless, all its minimizers are
global. By the statements above, E1 necessarily has a binary min-
imizer: if there is a non-binary minimizer, it is then nonstrict and
it is connected with another minimizer which is binary.

Algorithm To find a solution (i.e. a global minimizer) v(x) of the
non-convex variational problem (2), it is sufficient to carry out the
following three steps:

1. Find any minimizer w(x) of the convex energy (6).

2. Determine Σ = {x ∈ RN : w(x) > µ} for some µ ∈
(0, 1).

3. Set w(x) = 1Σ(x): then v is a global minimizer of (2) for
almost every choice of µ.

The most involved step in the solution procedure above is find-
ing a minimizer of (6). One can approach this problem in many
ways; for instance, one possibility is to simply carry out subgradi-
ent descent. Further details can be found in a recent report of the
authors [18].

On the Premises of our Work

Our analysis is inherently related to the following result of Strang
[19, 20]: for f a given function, the solutions of the constrained
minimization problem

inf
{u:

∫
fu dx=1}

∫
|∇u| (7)

are characteristic functions of sets. The main idea involved is to
express both the functional to minimize and the constraint in terms
of the level sets of u and f . The coarea formula of Fleming and
Rishel [21] is the primary tool. In our work, we apply the idea
of expressing the functionals in terms of level sets. However, our
problem is “opposite” to that of [20, 19] in the sense that we are
looking for functionals whose minimizers are characteristic func-
tions.

4. NUMERICAL EXAMPLE

We show a sample computation on a synthetic image. The image
of Figure 2 represents the given binary image f(x), which is a
simple geometric shape covered with random (binary) noise. The
initial guess was an image composed of all 1’s (an all white im-
age). In the computation, the parameter λ was chosen to be quite
moderate, so that in particular the small circular holes in the shape
should be removed while the larger one should be kept. The result
of the minimization is shown in Figure 3; in this case the mini-
mizer is automatically very close to being binary, and hence the
thresholding step of the algorithm in Corollary 3 is almost unnec-
essary.

Figure 4 shows the histograms of intermediate steps during
the gradient descent based minimization. As can be seen, the in-
termediate steps themselves are very far from being binary. The
histogram in the lower right hand corner belongs to the final result
shown in Figure 3. Thus the gradient flow goes through non-binary
images, but in the end reaches another binary one. Although this
is not implied by Theorem 2, it seems to hold in practice.

Fig. 2. Original binary image.

Fig. 3. Final result found (no need to threshold in this case).
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Fig. 4. Histograms for intermediate images as the gradient descent
proceeds. As can be seen, the intermediate images themselves are
not binary; however, by the time the evolution reaches steady state,
we are back to a binary image.

5. CONCLUSIONS AND PERSPECTIVES

in this work we provide a convergent method how to solve the
non-convex problem of the finding of a minimizer of the regular-
ized total-variation functional constrained to the collection of all
binary-valued images. The key point is to propose a convex func-
tional that is minimized for the sought-after solution. These results
can be extended to piecewise constant Mumford-Shah segmenta-
tion energy [22], which requires extension to given images f that
are not binary. However, we will not dwell on this further here.
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