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Abstract

This paper proposes a natural and efficient way to achieve staircase reduction in texture extrac-
tion models of image processing. Moreover, we propose a precise framework for this amalgamation.
In a sense, we utilize the best of both worlds: (I) the use of higher order derivatives through a
variant of the Chambolle-Lions inf convolution energy (an image decomposition model in itself)
along with (II) approximations to Meyer’s G and E norms including the H−1 negative norm for
ameliorating staircasing in image decomposition and restoration problems.

1 Introduction

The problem of texture and structure decomposition is an important image processing task that has
seen much recent progress. In particular, much of this progress has been made through the use of
nonlinear partial differential equations (PDEs) to model oscillating patterns which represent texture.
In the seminal work [16], Meyer introduces the notion that image denoising can be thought of as image
decomposition for the application of texture extraction. Furthermore, he introduces a variant of the
popular model by Rudin, Osher, and Fatemi (ROF) [18] based on a space called the G space for this
very purpose. The idea here is to replace the L2 norm in the ROF model with a weaker norm that
better captures textures or oscillating patterns. The G space that Meyer introduces is essentially the
dual space of the space of functions of bounded variation (BV) and is defined as the space:

G = {v | v = ∂xg1(x, y) + ∂yg2(x, y), g1, g2 ∈ L∞(Ω)} (1)

induced by the norm:

‖v‖∗ = inf
g=(g1,g2)

{
‖
√

g1
2 + g2

2‖L∞ | v = ∂xg1 + ∂yg2

}
. (2)

Here, Ω ⊂ R2 is an open bounded domain (usually a rectangle in R2). Given a function f defined on
Ω, Meyer’s decomposition model then follows as:

inf
u

{
E(u) =

∫

Ω

|∇u|+ λ‖v‖∗, f = u + v

}
. (3)
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In this model, the u component represents the structure or “cartoon” part of the image while the v
component represents the texture part, thus, yielding the so called u + v decomposition: f = u + v. It
is shown numerically in [21, 17] that the ∗ norm indeed captures oscillatory patterns and texture better
than the standard ROF model.

In practice, the model (3) is difficult to implement due to the nature of the ∗ norm. However, Vese
and Osher [21] were the first to overcome this difficulty when they proposed an Lp approximation to
the norm ‖ · ‖∗ in the following energy:

inf
u,g1,g2

{
Ep(u, g1, g2) =

∫

Ω

|∇u|+ λ

∫

Ω

|f − u− ∂xg1 − ∂yg2|2dx + µ

[∫

Ω

(√
g1

2 + g2
2
)p

dx
] 1

p

}
. (4)

The first term enforces u ∈ BV (Ω) while the second and third terms enforce div(g) ≈ (f − u) ∈ G.
A central motivator for this energy is the Lp approximation to the L∞ norm of |g| =

√
g1

2 + g2
2, for

g1, g2 ∈ L∞(R2):
‖
√

g1
2 + g2

2‖L∞ = lim
p→∞

‖
√

g1
2 + g2

2‖Lp . (5)

In a subsequent work, Osher, Sole, and Vese (OSV) [17] consider using another Lp approximation
to the norm: ‖

√
g1

2 + g2
2‖L∞ and choose p = 2 where they consider enforcing |g| ∈ L2(Ω)2 instead

of |g| ∈ L∞(Ω). It then follows that this particular approximation to the ∗ norm reduces to using the
semi-norm in H−1:

‖v‖2H−1(Ω) =
∫

Ω

|∇∆−1v|2dx. (6)

Consequently, a new image decomposition model based on the negative norm H−1 follows:

inf
u

{
E(u) =

∫

Ω

|∇u|+ λ‖f − u‖2H−1(Ω)

}
. (7)

The authors show that this new model (7) is simpler than the one introduced in (4) in the sense that
there are fewer parameters to tune and only one unknown function to solve for. Moreover, arising from
the Euler-Lagrange equations is an interesting new 4-th order PDE. Furthermore, they also go on to
numerically show that the two models (4) and (7) have comparable texture removal properties and can
both be seen as improvements to the ROF model for image decomposition and restoration problems.

Another approach used to solve Meyer’s original model is introduced by Aujol, Aubert, Blanc-
Feraud, and Chambolle (AABC) [1] where the authors propose an approximation to (3) based on the
discrete G norm:

inf
(u,v)∈Ω×Ω

{
J(u) + J∗

(
v

µ

)
+

1
2λ

∫

Ω

(f − u− v)2 dx
}

. (8)

In this energy, J(u) =
∫
Ω
|∇u| the TV norm of u and

J∗
(

v

µ

)
=

{
0 if v

µ ∈ BG

+∞ otherwise
= χBG

(
v

µ

)
(9)

where BG = {z | ‖z‖G ≤ 1}. Moreover, the authors state that as λ −→ 0 then f −→ u + v and
(8) coincides with Meyer’s original model. Applications to non-textured SAR image restoration are
provided. We will refer to (8) as the AABC–G approximation.

In the same spirit as in the above approach (8), Aujol and Chambolle (AC) [2] propose a u + v
image denoising method (v represents noise) based on the E space introduced by Meyer in [16] where
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E = B∞
−1,∞, the dual to the standard Besov space B1

1,1. Meyer’s E norm model is similar to his original
model (3) except that the E norm replaces the ∗ norm and Aujol and Chambolle provide the following
approximation to this variant:

inf
(u,v)∈Ω×Ω

{
J(u) + B∗

(v

δ

)
+

1
2λ

∫

Ω

(f − u− v)2 dx
}

. (10)

Here, B∗ (
v
δ

)
= χBE

(
v
δ

)
where BE = {z | ‖z‖E ≤ 1} and J(u) is the standard TV norm as in (8).

In this setting, the v component represents noise and the authors go on to numerically show that the
approximation (10) is well suited to denoising textured images. We will refer to (10) as the AC–E
approximation.

In addition to u+ v (structure + texture) decompositions, one can also consider introducing a noise
component w, which leads to a u + v + w decomposition consisting of structure, texture, and noise
respectively. Recently, such a decomposition was introduced by Aujol and Chambolle (AC) in [2] which
has the following formulation:

inf
(u,v,w)∈Ω×Ω×Ω

{
J(u) + J∗

(
v

µ

)
+ B∗

(w

δ

)
+

1
2λ

∫

Ω

(f − u− v − w)2 dx
}

. (11)

Here J∗
(

v
µ

)
= χ{v | ‖v‖G≤µ} and B∗ (

w
δ

)
= χ{w | ‖w‖E≤δ} are as in the above approximations (8) and

(10) respectively. The key idea here is that the term B∗ (
w
δ

)
representing the E norm is used to model the

noise in a given image for its tendency to preserve texture components when used with a fidelity term as
in the approximation (10), see [2]. All the while, the term:

{
J(u) + J∗

(
v
µ

)
+ 1

2λ

∫
Ω

(f − u− v − w)2 dx
}

is an approximation to Meyer’s original G model seen in (8). We will refer to model (11) as the AC–UVW
model.

Many of the current PDE methods for image decomposition, including the aforementioned ones
(4), (7), (8), (10), and (11), utilize TV regularization for its beneficial discontinuity (edge) preserving
property. However, a particular caveat of such regularization is the staircasing effect in recovered
images. Generally speaking, staircasing occurs most severely in image reconstructions by functionals
that depend non-convexly on image gradients. A notable example is the Perona-Malik scheme which can
be construed as gradient descent on a non-convex functional depending sublinearly on image gradients
at infinity. The TV model is on the fringes of convexity; its dependence on image gradients is linear at
infinity. This feature is a two edged sword since it is responsible for its ability to reconstruct images with
discontinuities while also being responsible for staircasing. Some examples of staircasing in restorations
from the ROF model can be seen in Figure 1. It will be shown in this paper that visually, staircase
reduction is just as important a concept as that of the choice of appropriate norms for texture extraction.
Thus, ameliorating staircasing should be considered a priority in image decomposition problems.

One way of overcoming staircasing in reconstructions from TV regularization is to introduce higher
order derivatives into the energy. This approach is chosen by Chambolle and Lions (CL) [8], where they
introduce the notion of inf convolution between two convex functionals. Here, an image u is decomposed
into two parts: u = u1 +u2 where u1 is measured with the TV norm and u2 is measured using a higher
order norm. Thus, the minimization problem follows as:

inf
u1,u2

{
E(u) =

∫

Ω

|∇u1|+ α

∫

Ω

|∂2u2|+ λ

∫

Ω

(f − u1 − u2)2dx
}

. (12)

Minimizing this energy has the requisite that the discontinuous component of the image be allocated
to the u1 component while regions of moderate slopes are allocated to the u2 component. Since the
cost of regions of moderate but constant gradients is zero for the higher order norm, the allocation of
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Figure 1: Staircasing in Recovered Signals from the ROF Model: Top left, observed 1-d signal, SNR=10.
Bottom left, observed signal, σ = 20; σ2 denotes the variance of the Gaussian noise. Top and bottom
right, recovered signals from the ROF model [18]. Staircasing is observed in both recovered signals.

such regions to u2 is of small cost. This model reduces staircasing to a remarkable degree in the 1-d
examples presented in [8].

Blomgren, Mulet, Chan, and Wong [4] introduce another way of reducing staircasing in the model:

inf
u

{
E(u) =

∫

Ω

|∇u|L(|∇u|) + λ(f − u)2dx
}

. (13)

Here, the function L(ξ) : R → R is chosen to monotonically decrease from 2 when ξ = 0, to 0 as ξ
tends to infinity. The functional (13) is designed to be more convex in regions of moderate gradient
(e.g. away from edges) and behave like the standard ROF model near discontinuities thus preventing
staircasing.

The proposed framework naturally and efficiently amalgamates the two concepts of staircase re-
duction and texture extraction. We propose to incorporate a convex variant of the inf convolution of
two convex functionals found in the CL energy (12) into approximations to the Meyer models. Thus,
proving to be natural since both the variant and the CL model are already in decomposition form where
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the CL model splits an image f into f = u1 + u2 + v where u1, u2, v are the discontinuous, smooth,
and noise components respectively. Moreover, such a combination will be shown to be efficient since
solving for the additional smooth term u2 in our variant amounts to solving a linear elliptic equation.
This contrasts to the nonlinear 4-th order equation that results from the original CL model that is
often restricted by a CFL condition. Numerical simulations will also be shown to demonstrate that (a)
staircasing is clearly reduced, and that (b) the texture extraction properties of the Meyer norms will
be preserved.

Some related works include, a decomposition model based on the anisotropic ROF model seen in
[14] while another based on an L1 fidelity term can be found in [9]. Two multiscale decompositions
based on the TV model are introduced in [13, 20] while a simultaneous structure and texture image
inpainting model is found in [3]. The closest related work is the interesting work by Levine et al.
[15], where a model that combines the energy introduced by Blomgren, Mulet, Chan, and Wong (13)
with a negative norm is introduced for image decomposition and restoration problems. One of the
key differences between these two approaches is that the proposed functional in this paper is convex,
whereas the one introduced in [15] is non-convex.

2 Proposed Model I: CEP–H−1, U+V Decompositions

Higher order derivatives can easily be incorporated into the OSV model (7) to reduce staircasing from
the TV norm. We propose to replace the TV term:

∫
Ω
|∇u| with the following energy:

∫
Ω
|∇u1|+α|∂2u2|.

Furthermore, we also make the modification that u = u1 + u2 in the fidelity term of (7) to arrive at the
following model formulated as energy minimization:

inf
u1,u2

{
E(u1, u2) =

∫

Ω

|∇u1|+ α|∂2u2|+ 1
2λ
|∇(∆−1)(f − u1 − u2)|2dx

}
. (14)

Here, f is the given observed image and as in the CL model (12), the energy term
∫
Ω
|∇u1| + α|∂2u2|

is used to reduce the staircasing from the TV norm. In this context, u1 contains the discontinuous
component of the image f and u2 contains the smooth component so that the structure component
u = u1 + u2. The term involving the semi-norm in H−1 1

λ

∫
Ω
|∇(∆−1)(f − u1 − u2)|2dx from the OSV

model is used to better capture very oscillatory features in the texture component v = f − u1 − u2.
Instead of solving the original minimization in (14), we consider the slightly modified energy:

inf
u1,u2

{
E(u1, u2) =

∫

Ω

|∇u1|+ α

2

∫

Ω

|∆u2|2dx +
1
2λ
|∇(∆−1)(f − u1 − u2)|2dx

}
(15)

where the term |∆u2|2 is an approximation to the term |∂2u2| seen in (14). In fact, as is well known,
the two terms

∫
Ω
|∂2u|2dx and

∫
Ω
|∆u|2dx are identical on compactly supported smooth test functions:

∫

Ω

|∂2u|2dx =
∫

Ω

|∆u|2dx ∀ u ∈ C2
c (Ω).

This approximation allows for fast solvers for the smooth component u2 while still maintaining the
staircase reducing effects of the original model. In the latter claim, numerical results will be used to
further justify this approach. We will refer to the model proposed in (15) as the CEP–H−1 model.

One way of minimizing the energy (15) is by solving the two coupled problems:

for u2 fixed, solve:

inf
u1

{∫

Ω

|∇u1|+ 1
2λ

∫

Ω

|∇∆−1 (f − u1 − u2) |2dx
}

, (16)

5



for u1 fixed, solve:

inf
u2

{
α

2

∫

Ω

|∆u2|2dx +
1
2λ

∫

Ω

|∇∆−1 (f − u1 − u2) |2dx
}

. (17)

The discontinuous component u1 can be obtained in two different manners. The first way is by
driving the Euler-Lagrange equation of (16) to steady state:

∂

∂t
u1 = −∆

[
div

( ∇u1

|∇u1|
)]

+
1
λ

(f − u1 − u2). (18)

The second way of obtaining u1 is introduced in [2] and follows a dual formulation of the OSV model.
We first recall the dual form of the TV norm given in the following definition:

∫

Ω

|∇u| = sup
{∫

Ω

u(x)divξ(x)dx | ξ ∈ C1
c (Ω;R2), |ξ(x)| ≤ 1 ∀ x ∈ Ω

}
. (19)

Thus, we may define (16) as:

inf
u1

sup
ξ

{∫

Ω

u1divξdx +
1
2λ

∫

Ω

|∇∆−1 (f − u1 − u2) |2dx | ξ ∈ C1
c (Ω;R2), |ξ(x)| ≤ 1 ∀ x ∈ Ω

}
. (20)

Swapping inf and sup and setting v = div(ξ) yields:

sup
v,v=div(ξ)

inf
u1

{∫

Ω

u1vdx +
1
2λ

∫

Ω

|∇∆−1 (f − u1 − u2) |2dx | ξ ∈ C1
c (Ω;R2), |ξ(x)| ≤ 1 ∀ x ∈ Ω

}
.

(21)
Then, for each v, the quantity

inf
u1

{∫

Ω

u1vdx +
1
2λ

∫

Ω

|∇∆−1 (f − u1 − u2) |2dx
}

(22)

becomes defined point-wise for u1. Thus, for each v, minimizing said quantity yields a minimizer ũ1:
ũ1 = f − u2 + λ∆v. Substituting this back into (21) and rewriting sup = − inf yields the following
minimization with respect to v:

inf
v,v=div(ξ)

{∫

Ω

(u2 − f)vdx +
λ

2

∫

Ω

|∇v|2dx | ξ ∈ C1
c (Ω;R2), |ξ(x)| ≤ 1 ∀ x ∈ Ω

}
(23)

and can be reformulated as:

inf
ξ

{∫

Ω

∇(f − u2)ξdx +
λ

2

∫

Ω

|∇div(ξ)|2dx | ξ ∈ C1
c (Ω;R2), |ξ(x)| ≤ 1 ∀ x ∈ Ω

}
. (24)

In the discrete setting, equation (24) can be set as a constrained minimization problem with inequality
constraints:

min
p,|p|≤1

{∫

Ω

∇(f − u2)pdx +
λ

2

∫

Ω

|∇div(p)|2dx
}

(25)

whose Euler equation reads:

∇(f − u2)i,j + λ∇∆div(p)i,j + αi,jpi,j = 0 (26)
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where the αi,j ’s are the Lagrange multipliers for each i, j. Here, we would like to point out that the
approach of solving a similar equation arising from the ROF model in the dual framework was pursued
in [5, 11]. By the complementary slackness condition, either αi,j = 0 (where ∇(f−u2)i,j +λ∇∆div(p)i,j

is also 0) and |pi,j | < 1 or αi,j > 0 and |pi,j | = 1. Using the observation and essential contribution in
[6], we see that in either case, the Lagrange multipliers are:

αi,j = |∇(f − u2)i,j + λ∇∆div(p)i,j |

and the Euler equation (26) reduces to:

Ai,j + |Ai,j |pi,j = 0

where Ai,j = ∇( f−u2
λ )i,j +∇∆div(p)i,j . This equation can be solved by the semi-implicit fixed point

(gradient descent) iteration scheme introduced in [2, 6]:

pn+1 = pn − τ
(
An

i,j + |An
i,j |pn+1

i,j

)

where An
i,j = ∇( f−u2

λ )i,j +∇∆div(pn)i,j . Thus, the final iteration method reduces to:

p0 = 0, pn+1
i,j =

pn
i,j − τ

(
∇

(
∆div(pn) + f−u2

λ

))
i,j

1 + τ

∣∣∣∣
(
∇

(
∆div(pn) + f−u2

λ

))
i,j

∣∣∣∣

where f − u2 + λ∆pn −→ ũ1 as n −→∞ for τ small enough, with ũ1 a solution to (16).

The smooth component u2 can be obtained by solving the Euler-Lagrange equation from the mini-
mization problem in (17):

(
1
λ

∆−1 − α∆2)u2 =
1
λ

∆−1(f − u1), (27)

a linear elliptic PDE which can be solved fast via Fourier Analysis.

3 Proposed Models II: CEP–G and CEP–E, U+V Decompo-
sitions

We make a modification to the the model proposed by Meyer [16] to ameliorate the staircasing in the
structure component u = u1 + u2, f = u + v due to the TV reconstruction. Our proposed model II for
u + v decompositions then becomes a variation of Meyer’s G norm model:

inf
f=u+v, u=u1+u2

{∫

Ω

|∇u1|+ α

2

∫

Ω

|∆u2|2 + β‖v‖∗
}

. (28)

We will refer to this model as the CEP-G model for the utilization of the G norm.
In practice, minimizing (28) is difficult due to the nature of the ∗ norm. Nonetheless, we may utilize

a variant of the approximation proposed by Aujol et al. [1] to minimize said energy (28). Thus, our
proposed approximation to (28) is called the CEP–G approximation:

inf
{(u,v)∈Ω×Ω, u=u1+u2}

{∫

Ω

|∇u1|+ α

2

∫

Ω

|∆u2|2 + J∗
(

v

µ

)
+

1
2λ

∫

Ω

(f − u1 − u2 − v)2 dx
}

. (29)
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Here, the term
∫
Ω
|∇u1| + α

2

∫
Ω
|∆u2|2 with u = u1 + u2, replaces the TV norm

∫
Ω
|∇u| to re-

duce staircasing in the structure component. The term J∗
(

v
µ

)
+ 1

2λ

∫
Ω

(f − u1 − u2 − v)2 dx with

J∗
(

v
µ

)
= χ{v | ‖v‖G≤µ} remains almost as in the AABC-G approximation with the only difference

being the additional u2 component in the fidelity. As λ −→ 0, using similar arguments as in [1], one
can show that solving problem (29) yields a solution to the CEP–G model (28). Adopting the notation
in [2], the discrete G space can be defined as:

G = {v ∈ X | ∃ g ∈ Y such that v = div(g) } (30)

with norm

‖v‖G = inf
{
‖g‖∞ | v = div(g), g = (g1, g2) ∈ Y, |gi,j | =

√
(g1

i,j)2 + (g2
i,j)2

}
. (31)

We take for definition the set µBG:

µBG = {v ∈ G | ‖v‖G ≤ µ} . (32)

One way of minimizing the energy (29) amounts to solving the following minimization problems:

for u1 and v fixed, find solution u2 of:

min
u2

{
α

2

∫

Ω

|∆u2|2 +
1
2λ

∫

Ω

(f − u1 − u2 − v)2 dx
}

, (33)

for u1 and u2 fixed, find solution v of:

min
v∈µBG

{∫

Ω

(f − u1 − u2 − v)2 dx
}

, (34)

for u2 and v fixed, find solution u1 of:

min
u1

{∫

Ω

|∇u1|+ 1
2λ

∫

Ω

(f − u1 − u2 − v)2 dx
}

. (35)

A solution ũ2 of (33) can be found by solving the linear elliptic equation:
(

∆2 +
1
λ

I

)
u2 =

1
λ

(f − u1 − v) (36)

for which there are many efficient solution techniques, such as the fast Fourier transform. Minimizing
(34) is equivalent to the following minimization problem:
for u1 and u2 fixed, find a solution v of:

min
‖ v

µ‖G≤1

{
1
2

∫

Ω

(f − u− v)2 dx
}

. (37)

One can get a handle on the G norm in the discrete setting since the constraint: ‖ v
µ‖G ≤ 1 in the above

minimization amounts to finding g such that v = µdiv(g), |g| ≤ 1. Thus, the problem in equation (37)
amounts to solving the constrained minimization:

min
|p|≤1

{
1
2

∫

Ω

(f − u− µdiv(p))2 dx
}

. (38)
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The Euler equation for this problem reads:

−∇ (µdiv(p)− (f − u1 − u2))i,j + αi,jpi,j = 0.

Again, as in section §2 and in [2, 6], the Lagrange multipliers αi,j = |µdiv(p)− (f − u1 − u2)|i,j , and
the Euler equation reduces to

−Ai,j + |Ai,j |pi,j = 0

where Ai,j =
(
div(p)− f−u1−u2

µ

)
i,j

. Once again, this equation can be solved by a semi-implicit fixed

point (gradient descent) iteration:

p0 = 0, pn+1
i,j =

pn
i,j + τAn

i,j

1 + |An
i,j |

so that for τ small enough, vn = µdiv(pn) −→ ṽ as n −→∞, where ṽ is a solution to (37).
One way of minimizing (35) amounts to solving the dual formulation of this problem:
for u2 and v fixed, find solution u1 of:

min
u1

sup
ξ

{∫

Ω

u1div(ξ) +
1
2λ

∫

Ω

(f − u− v)2 dx | ξ ∈ C1
c (Ω;R2), |ξ| ≤ 1

}
. (39)

Following the framework in [5, 11], we can rewrite the above problem as:

sup
ξ

min
u1

{∫

Ω

u1div(ξ) +
1
2λ

∫

Ω

(f − u− v)2 dx | ξ ∈ C1
c (Ω;R2), |ξ| ≤ 1

}
(40)

where for each ξ, the inner quantity minu1

{∫
Ω

u1div(ξ) + 1
2λ

∫
Ω

(f − u− v)2 dx
}

is now defined point-
wise with respect to u1. Thus, u1 = f − u2 − v − λdiv(ξ), for each ξ and problem (40) is equivalent
to:

min
ξ,|ξ|≤1

{∫

Ω

(λdiv(ξ)− (f − u2 − v))2
}

.

In the discrete setting, the above problem becomes a constrained minimization problem with inequality
constraints. In this setting, if we let ξ = p, then the above equation has Euler equation:

−∇ (λdiv(p)− (f − u2 − v))i,j + αi,jpi,j = 0

where αi,j are the Lagrange multipliers. Once again, using the observation and essential contribution in

[6], the Lagrange multipliers αi,j =
∣∣∣∇ (λdiv(p)− (f − u2 − v))i,j

∣∣∣. Then, the Euler equation reduces
to

−Ai,j + |Ai,j |pi,j = 0

where Ai,j = ∇
(
div(p)− f−u2−v

λ

)
i,j

. Again, this equation can be solved by a semi-implicit fixed point

(gradient descent) iteration scheme:

p0 = 0, pn+1
i,j =

pn
i,j + τAn

i,j

1 + |An
i,j |

so that for τ small enough, un
1 = f−u2−v−λdiv(pn) −→ ũ1 as n −→∞, where ũ1 is a solution to (39).

9



Of course, we can also replace the G norm ‖ · ‖∗ in the above CEP–G model (28) with the E norm,
E = B∞

−1,∞ to arrive at:

inf
{(u,v)∈Ω×Ω, u=u1+u2}

{∫

Ω

|∇u1|+ α

2

∫

Ω

|∆u2|2 + β‖v‖E

}
. (41)

We will call this proposed model the CEP–E model.
Again, as in the G norm case, problem (41) cannot be solved directly due to the nature of the

E norm. However, we may also utilize a variant of the approximation proposed by Aujol et al. [1] to
minimize the above energy (41). Our proposed approximation then becomes the CEP–E approximation:

inf
{(u,v)∈Ω×Ω, u=u1+u2}

{∫

Ω

|∇u1|+ α

2

∫

Ω

|∆u2|2 + B∗
(v

δ

)
+

1
2λ

∫

Ω

(f − u− v)2 dx
}

. (42)

One way of minimizing the above energy (42) amounts to solving the following minimization prob-
lems:

for u1 and v fixed, find solution u2 of:

min
u2

{
α

2

∫

Ω

|∆u2|2 +
1
2λ

∫

Ω

(f − u− v)2 dx
}

, (43)

for u2 and v fixed, find solution u1 of:

min
u1

{∫

Ω

|∇u1|+ 1
2λ

∫

Ω

(f − u− v)2 dx
}

, (44)

for u1 and u2 fixed, find solution v of:

min
v∈δBE

{∫

Ω

(f − u− v)2 dx
}

. (45)

Minimizing (43) and (44) follow in exactly the same manner as the methods used above in the
CEP–G model (29). We use the same method as in [2] for finding a minimizer ṽ of equation (45). Here,
ṽ can be given by ṽ = f − u1 − u2 − WST (f − u1 − u2, δ), where WST stands for the wavelet soft
thresholding algorithm given in [7] with threshold δ.

4 Proposed Model III: CEP–UVW, U+V+W Decompositions

In this section, we utilize the AC–UVW model (11) that decomposes a given image f into three com-
ponents: f = u + v + w. The u and v components remain structure and texture respectively and the
additional component w represents the noise. However, to reduce staircasing in the structure compo-
nent u, we again introduce the energy:

∫
Ω
|∇u1| + α

2

∫
Ω
|∆u2|2 that further splits u into u = u1 + u2.

Thus, the proposed decomposition model becomes:

inf
u1,u2,v,w

{∫

Ω

{
|∇u1|+ α

2
|∆u2|2

}
+ J∗

(
v

µ

)
+ B∗

(w

δ

)
+

1
2λ

∫

Ω

(f − u1 − u2 − v − w)2dx
}

, (46)

where J∗
(

v
µ

)
and B∗ (

w
δ

)
are defined as in model (29) and (42) respectively. We will refer to this

proposed model as the CEP-UVW model.
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One way of minimizing the CEP–UVW energy (46) amounts to solving the following minimization
problems:

for u1, v and w fixed, find solution u2 of:

min
u2

{
α

2

∫

Ω

|∆u2|2 +
1
2λ

∫

Ω

(f − u1 − u2 − v − w)2 dx
}

, (47)

for u2, v and w fixed, find solution u1 of:

min
u1

{∫

Ω

|∇u1|+ 1
2λ

∫

Ω

(f − u1 − u2 − v − w)2 dx
}

, (48)

for u1, u2 and w fixed, find solution v of:

min
v∈µBG

{∫

Ω

(f − u1 − u2 − v − w)2 dx
}

, (49)

for u1, u2 and v fixed, find solution w of:

min
w∈δBE

{∫

Ω

(f − u1 − u2 − v − w)2 dx
}

. (50)

A solution ũ2 of (47) can be found by solving the linear elliptic equation:
(

∆2 +
1
λ

I

)
u2 =

1
λ

(f − u1 − v − w) (51)

which can be solved by the fast Fourier transform. A solution ũ1 of (48) can be found in almost the
exact manner as in the CEP–G (29) solver for u1. If we set Ai,j = ∇

(
div(p)− f−u2−v−w

λ

)
i,j

, then the

semi-implicit fixed point iteration scheme:

p0 = 0, pn+1
i,j =

pn
i,j + τAn

i,j

1 + |An
i,j |

has the property that for τ small enough, un
1 = f − u2 − v − w − λdiv(pn) −→ ũ1 as n −→ ∞. Again,

a minimizer ṽ of (49) can be found in almost the exact same way as in the CEP–G (29) solver for v. If
we set Ai,j =

∣∣∣ f−u1−u2−w
µ − div(p)

∣∣∣
i,j

, then the fixed point iteration:

p0 = 0; pn+1
i,j =

pn
i,j + τAn

i,j

1 + |An
i,j |

has the property that for τ small enough, vn = µdiv(pn) −→ ṽ as n −→ ∞. Finally, a minimizer w̃ of
(50) can be found by computing w̃ = f−u1−u2−v−WST (f−u1−u2−v, δ) where WST (f−u1−u2−v)
is wavelet soft thresholding of f − u1 − u2 − v with threshold δ (see [2, 7]).

5 Parameter Selection

Coupling the energy:
∫
Ω
{|∇u1|+ α|∆u2|} with the Meyer models introduces an additional parameter

α that controls the smoothness of the component u2 in the structural part of the image u, u = u1 + u2.
We have found that in practice, this parameter is not difficult to tune and one just needs to set α > 1.

11



A possible explanation for this is that the semi-norm:
∫ |∆u2|2 measures zero for linear regions. Hence,

the allocation of regions of moderate but constant slope comes at very little cost to this energy, making
it less sensitive to these regions, and in return, less sensitive to α. In all of the proposed models in this
paper, the parameter α has exhibited this beneficial insensitivity.

The parameters for the CEP–H−1 model (15) include α and λ. α is easily tuned by setting α > 1,
as addressed above. The parameter λ controls the amount of oscillatory features being extracted from
a given image; the larger λ is, the more the geometric features in the component u = u1 + u2 will be
averaged. The value of λ depends on how much texture is to be extracted and can be tuned by the
user, depending on the texture properties of the image.

The parameters for the CEP-G approximation (29) include α, µ, and λ. As mentioned earlier, we
simply set α > 1. As for λ, convergence to the original model (28) is expected to take place as λ −→ 0;
thus, λ should be chosen as small as possible. The parameter µ is a little more difficult to tune since
it controls the quantity of the G norm. The larger µ is, the more the information is averaged in the
structural component u = u1 + u2, and the more texture is extracted. Again, this depends upon the
texture properties of the image.

The parameters for the CEP–E approximation (42) include α, δ, and λ. Again, α is easy to tune
and we set α > 1. As for λ, once again, convergence to the original model (41) is expected to take place
as λ −→ 0; thus, λ should be chosen as small as possible. The parameter δ, in the case of denoising,
controls the amount of noise removal and we can use the popular threshold σ

√
2log(MN) where M×N

is the size of the image, see [7, 16, 19]. For better visual results, we adopt the approach chosen by Aujol
and Chambolle [2] and introduce a weighting parameter η and set δ = ησ

√
2log(MN). In practice, η

is equal or slightly smaller than 1.
The parameters for the CEP–UVW model (46) are α, δ, µ, η, and λ respectively. The choices for

these parameters follow the same guidelines as above for the CEP–G and CEP–E approximations (29)
and (42) respectively.

6 Numerical Experiments

6.1 1-d Experiments

Since staircasing is often easier to see in the 1-d setting, we include some experiments to better illustrate
this phenomenon. Staircasing is reduced to a remarkable degree in the 1-d examples presented by the
authors in [8]. The purpose of the next experiments is to show that the effective staircase reducing
properties of the CL model (12) carry over in the context of image decomposition when combined with
suitable norms for texture removal like the G, E, or H−1 norms.

Figure 1 exhibits the staircasing effect. On the left a noisy signal and on the right the recovered
denoised signal from the ROF model. Staircasing is observed in the recovered signal and illustrates this
particular caveat of TV regularization.

This first experiment demonstrates how staircasing carries over into texture extraction problems and
also shows how it can be alleviated with the proposed CEP–H−1 model while preserving the texture
extraction properties of the H−1 norm. In Figure 2 left, a clean 1-d signal consisting of structure and
texture is observed while on the right, a noisy version of this signal is also observed, the signal to noise
ratio (SNR) is 10. Figure 3 exhibits on the left, the structure component u, f = u + v, of the image
obtained from the OSV model (7) and on the right, the component u = u1 + u2 obtained from the
proposed CEP–H−1 model (15). Clearly, staircasing is observed in the structure component obtained
from the OSV model in regions away from the oscillations. These staircased regions starkly contrast
with the smooth regions found in the clean image seen in Figure 2. In the solution obtained from the
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(a) Clean Image (b) Observed Image, SNR=10

Figure 2: Signal Containing Structure Texture and Noise: A clean 1-d signal containing structure
(ramps) and texture (oscillatory parts) is observed in (a). In (b), the same 1-d signal containing
structure and texture is observed except in the presence of noise, SNR=10.

proposed model, the staircasing has been effectively reduced in the regions away from the oscillations
and resembles more closely the smooth regions observed in the clean image in Figure 2.

The texture components v of these signals are comparable as demonstrated in Figure 4. Here, the
component v = f − u obtained from the OSV model is exhibited on the left while that of the proposed
CEP–H−1 model, v = f −u1−u2 is seen on the right. In both cases, the texture is effectively removed
from the image and closely resemble each other. However, in the case of the proposed model, the
texture is removed while resolving staircasing. Thus, staircase reduction seems to have no ill effects on
the texture extraction properties of the H−1 norm.

In the 1-d experiments, for comparison purposes, the parameters for the OSV model (7) and the
proposed CEP–H−1 (15) are chosen so that the L2 norm of the texture components v have the same
value.

6.2 2-d Experiments

In 1-d, both the proposed CEP–H−1 model and the CL model are effective at reducing staircasing in
image reconstructions. The following experiments demonstrate that the modified energies incorporating
higher order derivatives indeed capture texture as well as the non-modified ones and surpass the stan-
dard denoising models, while at the same time alleviating the staircasing phenomenon. For comparison
purposes, the parameters for the models are chosen so that, in the case of f = u + v models, the L2

norm of the texture components v have the same value and in the case of f = u + v + w models, the
L2 norm of the texture (v) + noise (w) have the same value.

The purpose of this first experiment is to show that staircasing can be resolved in the structure
component u while not affecting the texture component v in the sense that the v component is compa-
rable to current texture removal models, in particular the OSV model. In Figure 5(a), a clean 408×408
Barbara image containing both structure and texture parts is observed while Figure 5(b) exhibits a
noisy version of the image with σ = 20, σ2 the variance of the noise.

Figure 6 showcases the structure components: left, the OSV model (7) and right, the proposed
CEP–H−1 model (15). Here, even without zooming, one can still detect some “terracing” in the u
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U : OSV Model (7) U = U1 + U2: CEP–H−1 Model (15)

Figure 3: Structure Components U , f = U + V Decompositions: Left, the structure component u,
f = u + v obtained from the OSV model. Staircasing is observed in regions away from the oscillations.
These “terraced” regions starkly contrast to the piecewise linear regions in the clean image seen in
Figure 2(a). Right, the structure component u = u1 + u2, f = u + v obtained from the proposed CEP–
H−1 model. Staircasing is greatly reduced in regions away from the oscillations and resemble more
closely the piecewise linear regions in the clean image observed in Figure 2(a). The texture components
v have ‖v‖2 = 15.3 for both models.

component obtained from the OSV model, particularly on the left side of the face (Barbara’s left) and
her arms. The staircasing detected in the component from the OSV model has been successfully reduced
in the component u = u1 + u2 obtained from the proposed model while still maintaining sharp edges.
In the same ordering, the texture components are observed in Figure 7. On the left is the component
v = f − u + 150 from the OSV model while on the right, the component v = f − u1 − u2 + 150
obtained from the proposed model. The texture components appear comparable with mostly texture
(oscillating patterns) and very few structural (geometric) features visible. For example, the features of
the face, arms, and hands of Barbara are almost nonexistent (as desired), only the oscillating patterns
of texture from her pants, shawl, and hood along with the wicker patterns of the chair are visible.
Thus, we conclude that staircase reduction in the structure component u = u1 + u2 from the proposed
model does not affect the texture removal properties of the H−1 norm. The L2 norm of the texture
components v is ‖v‖2 = 1662 for both models.

Some zoom-ins of the structural (geometric) components found in 6 are shown in Figures 8 and 9
for comparison with the OSV model. In Figure 8 top left, we see the zoom-in of Barbara’s face from
the OSV model. A large amount of staircasing is observed, particularly on the left side of Barbara’s
face (her left). The same zoom-in of the face obtained from the proposed CEP–H−1 model is observed
on the top right. Staircasing is reduced and the image has both smooth and discontinuous regions with
a more natural appearance than image obtained from the OSV model. The same effects are observed
in the images, bottom left and bottom right. In particular, in the region near the underarm, staircasing
is observed in the component obtained from the OSV model and appears “terraced” and not natural.
Once again, this phenomenon is reduced in the component from the proposed model. Observed in Fig-
ure 9 are more zoom-ins of the structure components found in Figure 6. Top and bottom left are from
the OSV model. Top left, staircasing is observed on the hand while in the bottom left, “terracing” is
observed on the forearm that looks almost scale-like. Top and bottom right, zoom-ins of the result from
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Figure 4: Texture Components V , f = U +V Decompositions: Left, the texture component v, f = u+v
obtained from the OSV model. Right, the texture component v, f = u1 + u2 + v obtained from the
proposed CEP–H−1 model (15). Here, we make the observation that the models have comparable
texture extraction properties even though staircasing is reduced in the component u = u1 +u2 obtained
from the proposed model (15). In this experiment, we observe that staircase reduction does not affect
the texture extraction properties of the negative norm.

the proposed model, staircasing has been successfully alleviated. We remind the reader that staircase
reduction is accomplished with the proposed model while not affecting the texture removal properties
of the negative norm. Thus, visually, staircase reduction makes a significant difference in the overall
quality of the structural (geometric) components in the image decomposition.

We compare the proposed model with the standard denoising models, particularly the CL model,
to ensure that the proposed CEP–H−1 model indeed captures texture better. In Figure 10 we observe
the structure components obtained from, clockwise from top left, the OSV model, the ROF model, the
CL model, and the proposed model. Even without zooming in, one can still detect staircasing in the
u components obtained from the OSV and ROF models respectively. On the other hand, staircasing
is resolved in the components u = u1 + u2 obtained from the C-L and proposed CEP–H−1 models.
In all of the models, The texture is successfully removed from the given image, however, in the case
of the CL and ROF models, some geometric features are also taken. In particular, in the components
u and u = u1 + u2 from the ROF and Chambolle-Lions models respectively, many facial features are
smeared out and not as well defined. These features are better preserved in the components u and
u = u1 + u2 obtained from the OSV and proposed CEP–H−1 models respectively. Now, we consider
the texture components v obtained from these models in Figure 11, with the same ordering. Here, we
observe that all of the models successfully remove the texture from the Barbara image, however, more
geometric features are observed in the texture components obtained from the ROF and CL models.
In particular, more features from the face, arms, and hands are observed in these components. In the
other hand, the texture components from the OSV and proposed CEP–H−1 models mostly contain
oscillatory patterns and very little geometric features. From these experiments, we deduce that the
proposed model removes texture cleaner than both the ROF and CL models. Moreover, the proposed
and OSV models have comparable texture removal properties even though staircasing is ameliorated in
the structural component u = u1 + u2 obtained from the proposed model.

The discontinuous and smooth structural components u1 and u2 from the proposed CEP–H−1 and
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(a) Clean Barbara Image (b) Observed Image, σ = 20

Figure 5: Image Containing Structure, Texture, and Noise: (a) Clean Barbara image containing struc-
ture and texture components. (b) Noisy observed image, σ = 20.

CL models are shown in Figure 12. More geometric features are observed in both components obtained
from the proposed model. In particular, the facial features including Barbara’s eyes and mouth are
better defined in both the smooth u2 and discontinuous u1 components obtained from the proposed
model.

In the next experiment, we compare the AABC–G approximation (8) to the proposed CEP–G
approximation (29). In Figure 13(a), a clean 311 × 311 Barbara image containing both structure and
texture parts is observed while Figure 5(b) exhibits a noisy version of the image with σ = 20, σ2 the
variance of the noise. Figure 14 exhibits the structure components u for the AABC-G approximation
(8) (left) and u = u1 + u2 for the proposed CEP–G approximation (29) (right). Without zooming in,
staircasing can already be detected on the face (Barbara’s left side) and arms of the image obtained from
the AABC-G approximation while these “terraced” regions are alleviated in the component obtained
from the CEP–G approximation. In the same ordering, the texture components are observed in Figure
15 for both the AABC–G and the proposed CEP–G approximations. Comparable texture components
v are observed even though staircasing is alleviated in the structure component u = u1 + u2 obtained
from the proposed method. The L2 norm of the texture components v is ‖v‖2 = 1105 for both methods.
For better visualization, in Figure 16, we display some zoom-ins of the structure components found in

Figure 14. Top left we see the zoom-in of the face obtained from the AABC-G approximation (8 and a
fair amount of staircasing is observed, particularly on the left side of the face (Barbara’s left). In the
same zoom-in of the face obtained from the proposed CEP–G approximation (29), staircasing has been
reduced. The same effects are observed in the images, bottom left and bottom right. Particularly in the
region near the underarm where staircasing is observed in the component obtained from the AABC–G
approximation while being reduced in the component obtained from the proposed approximation. The
discontinuous and smooth components u1 and u2 from the proposed approximation are shown in Figure
17. From these experiments, we deduce that the proposed approximation removes texture comparably
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U : OSV Model (7) U = U1 + U2: CEP–H−1 Model (15)

Figure 6: Structure Components U , f = U+V : Left, structure component u, f = u+v obtained from the
OSV model. Even without zooming, one can still detect some staircasing in this component, particularly
on the left side of Barbara’s face (her left) and arms. Right, structure component u = u1 +u2, f = u+v
obtained from the proposed CEP–H−1 model (15). The staircasing detected in the component from
the OSV model appears to have been reduced while sharp edges are still maintained. The texture
components v have ‖v‖2 = 1662 for both models.

to the AC–G approximation while simultaneously ameliorating the staircase effect.

In this last experiment, we show that the same staircase reduction that occurs in the structure (u)
+ texture (v) case also takes place when modelling structure (u) + texture (v) + noise (w). In Figure
18 left, we observe the structure components from the AC-UVW model (11) and right, the proposed
CEP–UVW model (46) obtained from the noisy image observed in Figure 13. Once again, as in the
f = u+v case, without zooming in, staircasing can already be detected on the face (Barbara’s left side)
and arms of the image obtained from the AABC-UVW model. These “terraced” regions are alleviated
in the component obtained from the proposed CEP–UVW model while maintaining sharp edges. For
better visualization, a zoom-in of the same regions are exhibited in Figure 20 where similar conclusions
are reached. Again, in Figure 19, the models exhibit comparable texture and noise decomposition
properties even though staircasing is reduced in the structural (geometric) component u−u1 +u2 from
the CEP–UVW model. For comparison purposes, the texture (v) + noise (w) components v + w for
both of the models have the same L2 norm, ‖v + w‖2 = 1057.

7 Discussions and Future Works

In this paper, we proposed a natural and practical framework for reducing staircasing in image de-
composition models, particularly in conjunction with the Meyer norms. Some future works include
a fast solver for the term

∫
Ω
|∂2u1| (found in the original model by Chambolle and Lions [8]) when
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V : OSV Model (7) V : CEP–H−1 Model (15)

Figure 7: Texture Components V , f = U + V : Left and right, texture components v + 150 for the
OSV model and the proposed model (15) respectively. Both models appear to have comparable texture
extraction properties. Thus, staircase reduction in the structure component u from the proposed CEP–
H−1 model does not affect the texture removal properties of the H−1 norm. The texture components
v have ‖v‖2 = 1662 for both models.

amalgamated with texture extraction models in image processing.
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U : OSV Model (7) U = U1 + U2: CEP–H−1 Model (15)

U : OSV Model (7) U = U1 + U2: CEP–H−1 Model (15)

Figure 8: Zoom-In of Structure Components U , f = U + V : Left top and left bottom, zoom-in of
the solution to the OSV model. Right top and right bottom, zoom-in of the solution to the proposed
CEP–H−1 model (15). In the zoom-ins obtained from the OSV model, staircasing is observed on the
left side of Barbara’s face (her left) and arm affecting the quality of the image. In the zoom-ins obtained
from the propose model, staircasing is ameliorated while maintaining sharp edges in the image.
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U : OSV Model (7) U = U1 + U2: CEP–H−1 Model (15)

U : OSV Model (7) U = U1 + U2: CEP–H−1 Model (15)

Figure 9: Zoom-In of Structure Components U , f = U + V : Left top and left bottom, zoom-in of the
solution to the OSV model. Right top and right bottom, zoom-in of the solution to the proposed CEP–
H−1 model (15). Again, staircasing is observed in the zoom-ins obtained from the OSV model. This
is particularly noticeable on the hand and forearm where a scale-like appearance occurs. In the same
zoom-ins from the proposed model, staircasing has been ameliorated while maintaining sharp edges.
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U : OSV Model (7) U : Standard ROF Model

U = U1 + U2: CEP–H−1 Model (15) U = U1 + U2: CL Model (12)

Figure 10: Comparison of Structure Components U , f = U + V : Clockwise, from top left: structure
components u obtained from the OSV, ROF, CL, and proposed CEP–H−1 models. More geometrical
features are observed in the components obtained from the OSV and proposed models. This behavior
is expected since the H−1 norm has the beneficial property that it tends to preserve such features while
extracting texture. The components obtained from the ROF and CL models have less geometrical
features since the standard L2 fidelity term does not isolate the texture features as well as the H−1

norm. Moreover, some staircasing can also be detected in the components obtained from the OSV and
ROF models. The parameters have been tuned in all of the models such that the L2 norm of the texture
components are the same, ‖v‖2 = 1662.
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V : OSV Model (7) V : Standard ROF Model

V : CEP–H−1 Model (15) V : CL Model (12)

Figure 11: Comparison of Texture Components V , f = U + V : Clockwise, from top left: Texture
components v obtained from the OSV, ROF, CL, and proposed CEP–H−1 models. The components
obtained from the OSV and Proposed models have cleanly isolated the texture with few geometric
features visible. This is expected since the H−1 norm tends to better extract such oscillatory features.
The texture is also extracted in the components obtained from the CL and ROF models, however, more
geometrical features are observed and the texture is not as well isolated. This behavior is expected
since the ROF and CL models use a standard L2 fidelity term that does not isolate oscillatory features
as well. The parameters have been tuned in all of the models such that ‖v‖2 = 1662.
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U1: CEP–H−1 Model (15) U2: CEP–H−1 Model (15)

U1: CL Model (12) U2: CL Model (12)

Figure 12: Discontinuous and Smooth Components U1 and U2, U = U1 + U2, f = U + V : Top left and
top right, discontinuous and smooth components u1 +150 and u2 respectively from the proposed CEP–
H−1 model (15). Bottom left and bottom right, discontinuous and smooth components u1 +150 and u2

respectively obtained from the CL model (12). More features are observed in the components u1 and u2

obtained from the proposed model versus those obtained from the C-L model. For example, the facial
features seem better defined in the components from the proposed model. The texture components v
for both of the models have the same L2 norm, ‖v‖2 = 1662.
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(a) Clean Barbara Image (b) Observed Image, σ = 20

Figure 13: Images Containing Structure, Texture, and Noise: (a) Clean Barbara image containing
structure and texture components. (b) Noisy observed image, σ = 20.

U : AABC–G Approximation (8) U = U1 + U2: CEP–G Approximation (29)

Figure 14: Structure Components U , f = U + V : From left to right, structure components u for the
AABC–G approximation (8) and proposed CEP–G approximation (29) respectively. Without zooming
in, staircasing can already be detected on the face (Barbara’s left side) and arms of the image obtained
from the AABC–G approximation. These “terraced” regions are alleviated in the component obtained
from the proposed approximation. The texture components v for both methods have the same L2 norm,
‖v‖2 = 1105.
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V : AABC–G Approximation (8) V : CEP–G Approximation (29)

Figure 15: Texture Components V , f = U + V : Left and right, texture components v + 150 for the
AABC–G approximation (8) and the proposed CEP–G approximation (29) respectively. Both methods
appear to have comparable texture extraction properties even though staircasing is reduced in the
structure component u obtained from the proposed approximation. Here, we observe that staircase
reduction does not affect the texture removal properties of the G norm. Parameters have been tuned
in both methods such that the L2 norm of the texture components are the same, ‖v‖2 = 1105.
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U : AABC–G Approximation (8) U = U1 + U2: CEP–G Approximation (29)

U : AABC–G Approximation (8) U = U1 + U2: CEP–G Approximation (29)

Figure 16: Zoom-In of Structure Components U , f = U + V : Left top and left bottom, zoom-in of
the solution to the AABC–G approximation (8). Right top and right bottom, zoom-in of the solution
to the proposed CEP–G approximation (29). Staircasing is observed in the components from the
AABC–G approximation (8) while being ameliorated in the component obtained from the proposed
approximation. This is particularly noticeable on the left side of Barbara’s face (her left) and arm.
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U1: CEP–G Approximation (29) U2: CEP–G Approximation (29)

Figure 17: Discontinuous and Smooth Components U1 and U2, U = U1+U2, f = U +V : Left and right,
the discontinuous and smooth components u1 + 150 and u2 respectively obtained from the proposed
CEP–G approximation (29).
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U : AC–UVW Model (11) U = U1 + U2 CEP–UVW Model (46)

Figure 18: Structure Components U , f = U + V + W : From left to right, structure components u
for the AC–UVW model (11) and u = u1 + u2 for the proposed CEP–UVW model (46) respectively.
Again, as in the f = u + v model case, without zooming in, staircasing can already be detected
on the face (Barbara’s left side) and arms of the image obtained from the AC–UVW model. These
“terraced” regions are alleviated in the component obtained from the proposed model while sharp
edges are still maintained. The texture (v) + noise (w) components for both models have the same L2

norm, ‖v + w‖2 = 1057.
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V : AC–UVW Model (11) V : CEP–UVW Model (46)

W : AC–UVW Model (11) W : CEP–UVW Model (46)

Figure 19: Texture V and Noise W Components, f = U + V + W : Top left and top right, texture
components v +150 for the AC–UVW (11) and proposed CEP–UVW (46) models respectively. Bottom
left and bottom right, noise components w +150 for the AC–UVW (11) and proposed CEP–UVW (46)
models respectively. Both models appear to have comparable texture and noise extraction properties,
even though staircasing has been reduced in the structure component u = u1 + u2 obtained from the
proposed model. Here, we observe that staircase reduction does not affect either the texture removal
properties of the G norm or the noise removal properties of the E norm. Parameters have been tuned
in both models such that the L2 norm of the texture (v) + noise (w) components are the same,
‖v + w‖2 = 1057.
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U : AC–UVW Model (11) U = U1 + U2: CEP–UVW Model (46)

U : AC–UVW Model (11) U = U1 + U2: CEP–UVW Model (46)

Figure 20: Zoom-In, Structure Components U , f = U + V + W : Left top and left bottom, zoom-in of
the solution to the AC–UVW model (11). Right top and right bottom, zoom-in of the solution to the
proposed CEP–UVW model (46). Staircasing, particularly on the left side of Barbara’s face (her left)
and arm, is observed in the components obtained from the AC–UVW model (11), while being reduced
in the component obtained from the proposed model.
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U1: CEP–UVW Model (46) U2: CEP–UVW Model (46)

Figure 21: The Discontinuous U1 and Smooth U2 Components Obtained from the Proposed CEP–UVW
Model (46), f = U + V + W , U = U1 + U2.
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