
Fast and Accurate Redistancing by Directional Optimization

Matt Elsey Selim Esedoḡlu

September 6, 2012

Abstract

A fast and accurate algorithm for the reinitialization of the signed distance function in
two and three spatial dimensions is presented. The algorithm has computational complexity
O(N log N) for the reinitialization of N grid points. The order of accuracy of the reinitialization
is demonstrated to depend primarily on the interpolation algorithm used. Bicubic interpolation
is demonstrated to result in fourth-order accuracy for smooth interfaces. Simple numerical
examples demonstrating the convergence and computational complexity of the reinitialization
algorithm in two and three dimensions are presented as verification of the algorithm.

1 Introduction

The signed distance function dΣ(x) to a set Σ ⊂ R
n (possibly consisting of multiple connected

components) returns the standard Euclidean distance to the boundary ∂Σ of Σ with a sign bit
indicating whether the point x is inside or outside of Σ:

dΣ(x) =

{

infy∈∂Σ|x − y|, x ∈ Σ

− infy∈∂Σ|x − y|, x /∈ Σ
(1)

The signed distance function arises in a number of contexts in scientific computing. For example,
it is well known that evolving interfaces via the level set method can cause profiles of the level
set function to become too steep or too flat, leading to instabilities. Replacing the distorted
level set function φ by the signed distance function to the zero-level set of φ occasionally can
alleviate this problem. In addition, there are algorithms such as the signed distance function-
based diffusion-generated curvature motion, proposed in [9] and developed in the multiphase
setting in [6, 7, 8], that require the efficient and accurate construction of the signed distance
function at every time step.

It is of particular interest to be able to accurately and efficiently compute dΣ(x) from an
arbitrary level set representation φ(x) satisfying

Σ = {x : φ(x) ≥ 0}, (2)

which is termed the reinitialization [3] of φ(x). In this work, we present a fast (O(N log N) on
N grid points) and arbitrarily accurate algorithm for reconstructing the signed distance function
from a level set representation of Σ. Our implementation of the algorithm using bicubic inter-
polation obtains O(∆x4) accuracy for grid spacing ∆x given smooth interfaces. The algorithm
is closely related to Dijkstra’s algorithm [5] for finding shortest paths in a graph, the control
theoretic approach of Tsitsiklis [24], and to the fast marching method of Sethian [17]. Indeed,
the latter two of these are equivalent in their most basic form. These algorithms are revisited
in Section 2 to set the stage for the algorithm proposed here.

Intuitively, the proposed algorithm is based on the following ideas:
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1. If a good estimate for the closest point on the interface ∂Σ to a given grid point is known,
we can exploit the fact that the distance to the interface is the length of a line segment
connecting them, and optimize locally the coordinates of the closest point to obtain a very
accurate value for the distance, while using interpolation to represent the level set function
near the zero level set.

2. A good estimate for the closest point to each grid point can be obtained from an ordered
update scheme on the fly (fast marching style), where the update information passed is
the closest point on the interface to a neighboring grid cell whose distance to the interface
has already been fixed by the algorithm. As usual, information from the most trustworthy

neighbor is utilized.

3. The algorithm can be made arbitrarily high order simply by swapping the interpolation
used in representing the level set function in a neighborhood of its zero level set, without
having to deal with high order difference quotients.

Taken individually, ideas similar to these can be found in the literature. An interpolation-based
optimization is proposed and implemented in [4], but only utilized near the interface; essentially,
as a new way to initialize the standard fast marching algorithm. The idea of propagating closest
point information is suggested in [22], but only for a limited class of interfaces: isolated points
and piecewise linear interfaces. In this context, proper closest point information is sufficient to
compute the exact distance to the interface without any need for interpolation or optimization.

The new algorithm proposed in this paper differs from previous algorithms in that the
distance to the interface ∂Σ is directly computed via directional optimization, described fully
in Section 3, rather than by solving equations which depend on previously calculated values of
d at nearby grid cells. Instead, the local information obtained from neighboring grid cells via
the ordered update scheme is used only to provide the directional optimization routine with an
initial search direction.

2 Previous Work

The signed distance function (1) arises as a solution to a simplified version of the eikonal
equation, which is defined by

|∇u(x)| = g(x), x ∈ Ω, (3)

subject to the boundary condition u(x) = φ(x), for x ∈ Γ ⊂ Ω. (1) arises when g(x) ≡ 1,
φ(x) ≡ 0, and Γ = ∂Σ.

There are two major approaches to reinitialization. First is the PDE-based approach pi-
oneered in [14, 20] and improved in [2, 15], which advocates calculating the signed distance
function d(x) as the steady-state solution of

dt = sgn(φ)(1 − |∇d|), (4)

with initial condition d(x, 0) = φ(x). Steady states to (4) have |∇d| = 1 almost everywhere,
and maintain the restriction that d(x) > 0 iff. φ(x) > 0. Solutions are numerically computed
by discretizing (4) and numerically integrating until a steady-state is achieved. These schemes
can converge quickly when φ ≈ d, as information is preserved far from the interface Γ. A major
drawback of these schemes is that the entire function d is updated at each time step. This
becomes very computationally demanding when many time steps are needed to achieve a steady
state.

The second approach includes well-known algorithms such as Dijkstra’s algorithm [5], Tsit-
siklis’s algorithm [24], and the fast marching method [17]. These approaches attempt to solve
the boundary value problem

|∇d| = 1 (5)
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subject to the constraint d(x) = 0 on Γ by propagating information outwards from the interface
via an ordered update scheme. The basic structure of this scheme can be described as a three-part
procedure:

1. Initialize F = ∅ to be the set of grid points for which d(x) is fixed, and T = {all grid points}
to be the set of grid points whose value is tentative. Set d(x) = sgn(φ(x)) ·∞ for all x ∈ T .

2. For each grid point in a neighborhood of the interface, assign its signed distance d(x)
via some interpolation scheme designed to leave the interface unmoved. Move all of these
points from T to F . Update the values d(x) of all first-neighbors x to the interface points
in F via UPDATE, leaving these points in T .

3. While T is non-empty, move the “minimal” element y ∈ T , defined by |d(y)| ≤ |d(x)| for
all x ∈ T , to F , and update the values of all first-neighbors of y via UPDATE.

Assuming that UPDATE is an O(1) (or even O(log N)) process, the runtime of this class of
algorithms is O(N log N) when a heap structure is used to manage ordering of the elements in
T . The difference between Dijkstra’s algorithm, the fast marching method, Tsitsiklis’s algorithm,
and the directional optimization method proposed here is in the details of UPDATE.

Dijkstra’s algorithm was initially proposed for finding shortest paths in a graph, where edges
between vertices are all assigned weights. If first-nearest neighbors on a uniform grid (four in
2D, six in 3D) are considered to have edges between them, with edge weight 1, Dijkstra’s algo-
rithm gives the ℓ1 (taxicab) distance. Providing additional edge connectivity (with appropriate
weighting) allows for better approximation of the standard Euclidean metric, albeit at the cost
of additional work.

For the basic fast marching method, UPDATE consists of solving a quadratic equation related
to a first-order accurate upwind discretization of (5). On a uniform grid, this update is exactly
the same as that proposed by Tsitsiklis. These methods can be applied to the wider class of
problem described by the eikonal equation, with arbitrary “speed” function f(x) = g−1(x).
A simple piecewise formula for the solution of this quadratic is presented in [25]. Higher-order
versions of the fast marching method can be obtained by the use of more accurate approximations
to the gradient. Second-order accurate versions are described and demonstrated in [18, 19]. The
interpolation-based initialization proposed by Chopp [4] allows for even higher-order versions of
the scheme, requiring larger stencils for the high-order accurate discretization of derivatives.

The fast sweeping method [23, 25] uses a similar update to the fast marching method but
takes advantage of the fact that there are a limited number of directions in which information
can propagate. In this algorithm, one simply “sweeps” over the grid in appropriate patterns
a fixed number of times (the number depends on the dimensionality of the problem and, for
general Hamilton–Jacobi equations, the speed function f(x)), resulting in an algorithm which
has optimal complexity scaling O(N). Recently, Benamou et al. [1] have obtained a second-order
accurate version of fast sweeping while using a simple 9-point stencil. However, the authors state
that they do not expect their approach to be generalizable to higher-order methods. We refer
the reader to Chapter 7 of the book of Osher and Fedkiw [13] for a more complete history of
reinitialization algorithms.

All of the algorithms mentioned here are described in terms of the reinitialization problem,
but can be easily extended to more general eikonal equations (3) or even to a class of static
Hamilton–Jacobi equations — and, indeed, in many cases were initially proposed for this one of
these wider classes of problems. The drawback to such generality is that the critical property
of (5), namely, that all characteristics are rays, goes unused in all of these algorithms. In the
second class of algorithms, the UPDATE at x is always determined by the current values of d(y)
for y near x.

In contrast, the directional optimization algorithm proposed here will search on the interface
for the closest point x0 ∈ Γ to x to compute d(x) = sgn(φ(x))|x0 − x|. The near-interface
search property gives two major advantages to this method over the fast marching methods:
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First, the directional optimization method described here gives one additional order of accuracy
over the standard fast marching method with the same computational stencil. In addition, in
the standard fast marching method, the local update causes errors in computed values of d(x) to
accumulate and affect grid cells whose update is computed from these incorrectly set values. The
directional optimization algorithm instead always looks back to the grid cells about the interface
Γ to calculate the updated approximation of signed distance, preventing such accumulation of
error.

3 Algorithm

For simplicity, we describe our algorithm on an n×n computational grid discretizing the domain
[0, 1)2, with periodic boundary conditions. We choose ∆x = ∆y = 1/n, and choose xj = j∆x,
yi = i∆y, with i, j = 0, 1, . . . , n−1 and denote the discretized approximation to d(xj , yi) by dij .
Index arithmetic is performed modn, so that (n − 1) + 1 = 0 and 0 − 1 = n − 1, as is standard
with periodic boundary conditions. The description here can easily be extended to non-square
domains with ∆x 6= ∆y. Later we will also discuss an extension of this algorithm into three
spatial dimensions.

For the UPDATE of the directional optimization algorithm, we will also maintain an auxiliary
function which will be updated to the closest point function. The closest point function C(x) =
x0 returns the closest point x0 ∈ Γ on the interface Γ to x. C(x) captures the magnitude but
not the sign of d(x), as d(x) = sgn(φ(x))|x−C(x)|. This function is of use in some applications.
For example, Ruuth and Merriman [16] utilize it as part of a novel technique for evolving PDEs
on surfaces.

As discussed in Section 2, the redistancing algorithm can be divided into three steps: First,
fix dij and Cij within a single grid cell of the interface via some interpolation scheme, and add
these grid cells to F . Then, update tentative values of d and C for all first neighbors of all
xij ∈ F and set the values of all remaining cells to d(x) = sgn(φ(x)) · ∞ and C(x) = ∞. Add
all these grid cells to T . Finally, while T is non-empty, choose the element y ∈ T for which
|d(y)| is minimal, move it to F , and update the tentative values of all first neighbors to y.

All that remains is to describe how the grid cells adjacent to the interface are detected and
how their values are set, and how to update the value d(x) for grid location x adjacent to some
newly-fixed grid location y. These will be carefully described next.

3.1 Updating d(x)

Here we describe how to update the signed distance function d(x) and closest point function
C(x) which tracks the closest known point on the interface to a given point x given an initial
search location x0. In the context of the previous discussion, x is a first neighbor of the element
y whose value has just been fixed. The initial search location x0 is chosen to be C(y), the
closest point to x0 on the interface to y. We call our update “directional optimization,” as it
locates the the closest point to x on the interface near x0 by optimizing the distance to the
interface as a function of the angle θ formed by the vector x0−x with the positive x-axis. Along
each direction θ searched, the algorithm performs a line search to locate the intersection of the
interface with the half-line x + rθ for r > 0, where θ = (cos θ, sin θ). Details of each of the
necessary routines (directional search, line search, and interpolation) are provided subsequently.

3.1.1 Directional Search

The directional search algorithm takes as input the point x for which the distance to the interface
is to be computed and a point x0 which is expected to lie near the interface. Its objective is
to search over directions within an angle δ of the vector (x0 − x) emanating from x for the
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(a) (b)

Figure 1: (a) The outer directional optimization step performs a directional search near (x0 − x)
for the closest point y ∈ Γ to x. (b) The line search sub-algorithm locates two points near the
interface then performs a linear interpolation between them to location the intersection of Γ with
the search line. In the case that |x − x0| ≤

5

4
∆x, we use x and x0 for the linear interpolation.

closest point on the interface to x nearby x0. See Figure 1(a). This computed signed distance
is compared to the current estimate for d(x) and is accepted if smaller in magnitude than
the current estimate. The directional search is first described in two dimensions. Later, the
extension into three spatial dimensions will be described.

1. Choose δ to be a nonincreasing function of |x0 − x|. We make the choice

δ =

{

asin
(

∆x
|x−x0|

)

, if |x − x0| > ∆x

π
2 otherwise.

2. For M iterations, do the following:

(a) Define Rδ to be the 2 × 2 matrix which rotates input vectors by δ radians counter-
clockwise, and define x±δ = x + Rδ (x0 − x).

(b) Apply the line search algorithm to obtain y0, and y± from x0 and x±δ, respectively.

(c) While min(|y+δ − x|, |y−δ − x|) < |y0 − x|, redefine y0 to be the closer of y+δ or
y−δ to x, and return to step (2a).

(d) Perform a Newton step to obtain a new search direction:

• Define d(·) = |y(·) − x| for (·) ∈ {±δ, 0}, and compute

δ̂ =
−δ

2

d+ − d−
d+ − 2d0 + d−

(6)

• Let x∗ = x + R
δ̂
(x0 − x) and apply line search to obtain y∗.

• If |y∗−y0| < .01∆xp, where p is the order of accuracy of the interpolation routine
(e.g. p = 3 for bi- or tricubic interpolation), continue to 3.
Else, if |y∗ − x| < |d0|, set x0 = y∗.
Otherwise, set x0 = y0.

(e) Reduce δ → δ/2.
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3. Return x0 as the candidate closest point to x.

If |x0 − x| < |C(x) − x|, set C(x) = x0 and d(x) = sgn(φ(x))|x0 − x|. We observe that
choosing M = 5 is sufficient for all of our numerical tests to obtain the expected accuracy.

In three dimensions, the directional optimization step of the algorithm becomes slightly
more complicated. However, the computational complexity of the algorithm as a whole remains
O(N log N). We propose to use a five-point search stencil to replace the three-point stencil
used in two dimensions. In step (1) of the directional search algorithm described above, we now
arbitrarily choose two vectors, ξ and ζ, mutually orthogonal to each other and to x0 − x, and
define x±δ,0 and x0,±δ to be the vectors rotated ±δ from x0 −x towards ξ and ζ, respectively.
We neglect the cross derivatives in the three-dimensional version of (6) to limit the number of

line searches needed, and obtain new angles δ̂ξ and δ̂ζ independently. The update is chosen

as x∗ = x + 1
2

(

R
δ̂ξ

+ R
δ̂ζ

)

(x0 − x) to preserve the desired property that x∗ = x0 if δ̂ξ =

δ̂ζ = 0. Numerical tests indicate that this extension to three dimensions maintains the expected
performance of the algorithm.

3.1.2 Line Search

The line search step takes as input the point x for which distance to the interface is to be
computed and a point x0 which is expected to lie near the interface. This sub-algorithm
searches for the point y near x0 which lies on the interface along the line defined by x and
x0. We consider three cases:

1. If |d(x0)| > 2∆x, then the input x0 is not near the interface, and y = ∞ is returned.

2. If |x − x0| < 5
4∆x, set y = x − d(x)(x0 − x)/(d(x0) − d(x)), so that the point (y, 0) lies

on the linear interpolation of d along the line defined by x and x0.

3. Otherwise, x is far from the interface, so we locate a point x1 on the opposite side of the
interface from x0 (simply by stepping along this line in the appropriate direction), and
use the linear interpolation of d obtained from x0 and x1 to obtain y = d(x1)/(d(x1) −
d(x0))x0 − d(x0)/(d(x1) − d(x0))x1.

The interpolation scheme described subsequently is used to evaluate d at the desired locations.

3.1.3 Interpolation

To estimate d(x) away from grid points, we must perform some type of interpolation over the
values of dij at nearby grid points. We have implemented biquadratic and bicubic interpolation,
obtaining O(∆x3) and O(∆x4) accuracy, respectively, for the computation of the signed distance
function to a smooth interface. These numerical results suggest that the interpolation routine
sets the order of accuracy for the algorithm as a whole.

3.2 Setting Boundary Values

To initialize the code, we first set d(x) = φ(x). Given the choice of an O(∆xp) interpolation
algorithm, let I = {xij : xij is within p − 1 grid cells of Γ}. The grid cells xij ∈ I satisfy the
property,

sgn(d(xij)) 6= sgn(d(xi+r,j+q), (7)

for some |r|, |q| ≤ p − 1. Perform the following three steps:

1. Estimate the closest point to x by

C(x) = x −∇d(x)
d(x))

|∇d(x)|
, (8)
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for each x ∈ I.

2. Perform UPDATE for each x ∈ I to refine the initial guesses for d(x) and C(x). Store the

updated values as d̂(x) and Ĉ(x) (so that these updated values do not enter the calculation
of UPDATE for any other x ∈ I.

3. Batch update all these values at once: Set C(x) = Ĉ(x) and d(x) = d̂(x) for all x ∈ I.

3.3 Extension to Eikonal Equations

In this work, we restrict our attention to the signed distance function. It may be possible to
extend the algorithm proposed here to the more general eikonal equation (3). The proposed
algorithm locates the closest point C(x) by optimizing over directions and performing line
searches along rays to locate the interface in a given direction. One could in principle use a
shooting method-type approach by retaining the optimization over directions and solving initial
value problems to locate the interface given x and the initial direction to “shoot in” from x.
The ordered update scheme would propagate the initial search direction, in analogy to the
propagation of closest point information in the current algorithm. Such an extension would be
more complicated than the present algorithm, as the line search step would be replaced by the
solution of an initial value problem. If f(x) is sufficiently smooth, this problem may be solveable
quickly; and the algorithm as a whole may be efficient enough to be of use. This possibility will
be the subject of further exploration.

4 Results

We first make a few simple observations about factors which determine the order of accuracy of
the proposed algorithm. Limiting factors include the smoothness of the interface Γ, the order of
the interpolation routine used, and the profile of the input φ nearby and normal to the interface.
Then we proceed to show numerical results that support these observations, and demonstrate
the accuracy and efficiency of the proposed algorithm. Third-order accuracy is observed for
biquadratic or triquadratic interpolation, and fourth-order accuracy for bicubic interpolation
in regions for which the closest point on the interface is in a sufficiently smooth region of the
interface.

The algorithm is observed to run with O(N log N) complexity, where N is the total num-
ber of grid points for which the redistancing is performed. The constant associated with the
computational complexity is about twenty-five times that of the standard, first-order accurate
fast marching method in our 2D implementation (one hundred times in 3D); however, in many
applications this may be a reasonable price to pay in order to gain higher-order accuracy.

4.1 Order of Accuracy

Three important factors enter into the observed numerical order of accuracy of this algorithm.

• The interface Γ itself must possess sufficient smoothness. If Γ is Ck in a neighborhood of
a point y ∈ Γ, then the algorithm will have at best order k +1 accuracy at any point x for
which C(x) ≈ y. In particular, any interface which contains a sharp corner will limit the
method to first-order accuracy in the fan-shaped region for which the corner point is the
closest point on the interface. This is because the location of such a corner can be located
with at best first-order accuracy by any smooth interpolation method.

• The order of accuracy of the interpolation routine used also gives an upper bound on the
accuracy of the algorithm as a whole. Numerical tests suggest that this upper bound is
obtained for sufficiently smooth interfaces. The drawback of using high-order interpola-
tion routines is that a wider stencil must be used to perform the interpolation. This in
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n Circle 1 Circle 2 Circle 3 Ellipse Heptagon Polar

32 2.69 × 10−5 3.24 × 10−6 6.72 × 10−5 3.20 × 10−6 1.94 × 10−3 5.98 × 10−3

64 2.92 × 10−6 2.07 × 10−7 1.87 × 10−5 2.12 × 10−7 9.20 × 10−4 4.03 × 10−4

128 3.89 × 10−7 1.29 × 10−8 4.84 × 10−6 1.36 × 10−8 4.22 × 10−4 6.93 × 10−5

256 4.63 × 10−8 8.14 × 10−10 1.18 × 10−6 8.58 × 10−10 2.19 × 10−4 7.26 × 10−6

512 6.01 × 10−9 5.06 × 10−11 3.09 × 10−7 5.40 × 10−11 9.53 × 10−5 7.72 × 10−7

1024 7.60 × 10−10 3.15 × 10−12 7.76 × 10−8 3.38 × 10−12 5.42 × 10−5 5.72 × 10−8

2048 9.33 × 10−11 1.98 × 10−13 1.95 × 10−8 2.12 × 10−13 2.13 × 10−5 3.87 × 10−9

4096 1.15 × 10−11 1.24 × 10−14 4.87 × 10−9 1.35 × 10−14 1.28 × 10−5 2.47 × 10−10

Table 1: L2 error in reinitialized signed distance function for various numerical tests. n is the num-

ber of grid points in each spatial dimension. L2 error is calculated as
√

∑

i,j (dij − D (xj, yi)))
2/n.

turn means that the region around the interface whose signed distance and closest point
functions are set in the first step of the algorithm must be widened appropriately.

• The accuracy with which the signed distance and closest point functions can be set near
the interface is in turn limited by the accuracy of the input φ. Namely, if

φ(x = x0 + c∇φ|x0
) = K|x − x0| + O (|x − x0|

m) , (9)

that is, if the profile of φ normal to the interface is linear up to an order m correction for
any x0 ∈ Γ, then the algorithm can have as most mth order accuracy.

4.2 Numerical Results

We present numerical results for this algorithm in a variety of cases. We begin with examples for
which exact solutions are known: a circle, an ellipse, and a regular heptagon. These examples
allow us to demonstrate the convergence properties of the algorithm for various initial data and
interpolation routines. We describe some results on more complicated geometries. For all tests,
we discretize the unit square on many uniform grids, with n grid points in each direction, where
n ranges from 32 to 4096.

All numerical tests were performed on an Intel i3-2100 processor running at 3.10 GHz. The
code was implemented in serial C and compiled as a MEX function in MATLAB, using the gcc
complier, version 4.4.6.

4.2.1 Circle

We perform three tests of the reinitialization algorithm on a circle with radius 0.24 + εr, and
center (0.55 + εx, 0.50 + εy) and |ε·| < 0.01 to mitigate any potential grid effects. The exact
signed distance function is denoted as D(x). We initialize the first two tests with φ(x) = 2D(x),
verifying that the algorithm handles constant scaling properly. The first test is performed using
biquadratic interpolation, while the second uses bicubic interpolation. As expected, third-order
accuracy is observed in the first test, and fourth-order accuracy in the second test. See Table 1
for calculated errors and Table 2 for convergence rates.

Timing information is presented in Table 3. The runtime is observed to be proportional
to N log N , where N = n2 is the total number of grid points used. The cost of using bicubic
interpolation over biquadratic interpolation is negligible, as can be observed by comparing the
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n Circle 1 Circle 2 Circle 3 Ellipse Heptagon Polar

64 3.21 3.97 1.85 3.91 1.08 3.89
128 2.91 4.00 1.95 3.97 1.13 2.54
256 3.07 3.99 2.04 3.98 0.95 3.25
512 2.94 4.01 1.93 3.99 1.20 3.23
1024 2.98 4.00 1.99 4.00 0.81 3.75
2048 3.03 3.99 2.00 4.00 1.35 3.89
4096 3.02 4.00 2.00 3.97 0.74 3.97

Table 2: Convergence rates for the numerical tests are calculated as log2(E(n)/E(n/2)), where
E(n) is the L2 error reported in Table 1.

n Circle 1 Circle 2 Circle 3 Ellipse Heptagon Polar

32 0.0105 0.00907 0.0105 0.00729 0.0101 0.00987
64 0.0277 0.0287 0.0391 0.0324 0.0409 0.0403
128 0.102 0.120 0.165 0.137 0.136 0.175
256 0.390 0.465 0.688 0.571 0.571 0.736
512 1.54 1.82 2.88 2.32 2.19 3.07
1024 6.11 6.79 11.9 9.29 8.63 12.7
2048 24.3 26.3 48.4 37.3 33.7 52.8
4096 100 105 197 123 144 194

Table 3: Runtime for the two-dimensional numerical tests (in seconds).

runtimes for the Circle 1 and Circle 2 experiments. At n = 4096, applying the bicubic inter-
polation gives an additional cost of only 5% over the biquadratic interpolation but gives an
additional three digits of accuracy.

In the third test, we investigate the limit that initial data puts on the algorithm. We choose
φ(x) = 3

2D(x) + D(x)|D(x)|, so that O(∆x2) error is introduced in the initial data near the
interface. In this case, when the biquadratic interpolation version of the algorithm was applied,
only second-order accuracy was found due to the error in the initial data.

4.2.2 Ellipse

To demonstrate that the rapid convergence of the algorithm is not dependent on the extreme
symmetry of the circle, we test the algorithm on an ellipse. The ellipse is still smooth, but the
characteristics of the eikonal equation collide along a line segment along the major axis rather
than all meeting at a single point. For this test, we choose the lengths of the major and minor
axes to be 0.33 + εa and 0.25 + εb, respectively. We apply the bicubic interpolation and again
obtain fourth-order accuracy.

4.2.3 Heptagon

Globally, we cannot expect to obtain greater than first-order accuracy when applying this algo-
rithm to an initial curve which has sharp corners, because smooth methods cannot locate the
corner with better than linear accuracy. Here, we consider a regular heptagon (7-gon) such that
each corner is a distance 0.2 + εc from the center of the grid, with an arbitrary rotation applied
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Figure 2: The almost-exact signed distance function D(x) for the multiple interfaces is displayed,
with the interface contour overlaid.

so that corners do not lie on the grid. The biquadratic interpolation version of the algorithm is
applied as only first-order accuracy is expected, and found. Visualization of the error indicates
that the first-order errors are committed in the fan-shaped region emanating from each corner
for which that corner is the closest point, as expected. Along smooth parts of the interface,
higher-order accuracy is still observed.

4.2.4 Multiple disjoint polar curves

In order to test the reinitialization on multiple smooth, disjoint interfaces, we define the para-
metric family of polar curves

x(θ) = x0 + (α + β sin(γθ))θ, (10)

where θ = (cos θ, sin θ), and describe the interface Γi as a member of this family, for i = 1, 2. We
utilize Newton iterations on the parameter θ to compute nearly-exact signed distance functions
Di(x) to the interfaces, and obtain D(x) = max(D1(x), D2(x)). See Figure 2 for a visualization
of the interfaces and the nearly-exact signed distance function. Bicubic interpolation is applied,
and the expected fourth-order convergence is observed once the grid is fine enough to sufficiently
resolve the fine-scale details of the interfaces.

4.2.5 Three Dimensions

To demonstrate the efficacy of our algorithm in three dimensions, we reconstruct the signed
distance function to a prolate ellipsoid with minor axis length 0.2 and major axis length 0.3.
We use triquadratic interpolation and obtain the expected O(∆x3) convergence, see Table 4.
There we also present running times for the three-dimensional algorithm. These times clearly
reflect the O(N log N) complexity of the algorithm.

5 Conclusions

We present a novel “directional optimization” algorithm for the reinitialization of the signed
distance function from an input level set function φ. This algorithm is most similar to the
well-known Dijkstra’s algorithm [5], Tsitsiklis’s algorithm [24], and fast marching method [17],
however it differs significantly in the update step. The update step of those algorithms depends
only on reinitialized values of the signed distance function local to the grid point x being up-
dated, whereas our algorithm directly interrogates the interface to locate the closest point C(x).
Directional optimization allows for significantly greater accuracy with the same computational
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n E(n) C.R. Time Time / N log N

8 3.78 × 10−3 — 0.0282 8.81 × 10−6

16 4.27 × 10−4 3.14 0.170 4.98 × 10−6

32 5.07 × 10−5 3.08 1.52 4.47 × 10−6

64 6.23 × 10−6 3.02 13.2 4.02 × 10−6

128 7.72 × 10−7 3.01 113 3.69 × 10−6

Table 4: Numerical results for reinitialization of the ellipsoid. The L2 error E(n) is measured as
(

∑

i,j,k (d(xijk) − D(xj , yi, zk))
2

)1/2

/n3/2. Convergence rate is computed as log2(E(n)/E(n/2)).

The runtime is presented (in seconds), and shown to be proportional to N log N , where N = n3.

complexity as comparable algorithms. As a second advantage, the closest point function C(x)
is obtained “for free” by the proposed algorithm. The closest point function is the subject of
significant recent interest [10, 11, 12, 16, 21], and methods to quickly and accurately construct
the closest point function are timely.

Two natural directions of future work are suggested. As discussed more fully in Section 3.3,
it may be possible to extend the directional optimization algorithm to the more general eikonal
equation by propagating “interface direction” information rather than the closest point informa-
tion currently passed and integrating along search directions to find the cost along characteristic
curves. Anotheer natural extension is to modify this algorithm for the reinitialization of the
closest point function from some approximation to C(x). The closest point function can repre-
sent a wider class of surfaces than the level set function, which is (in its usual form) restricted
to closed surfaces of codimension one. The closest point function can represent both open and
closed surfaces of arbitrary codimension. In its current form, this reinitialization algorithm relies
on the notion of “inside” and “outside” to locate the interface in the line search subalgorithm.
Furthermore, it is unclear how the directional optimization substep should handle surfaces of
codimension greater than one. This extension to the reinitialization method proposed here is
the subject of ongoing work.
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