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Abstract

An efficient algorithm for accurately simulating curvature flow for large networks of curves in two
dimensions and surfaces in three dimensions on uniform grids is proposed. This motion arises in the
technologically important problem of simulating grain boundary motion in polycrystalline materials. In
this formulation grains are zero level sets of signed distance functions. Curvature motion is achieved by
first diffusing the signed distance functions followed by a reinitialization step. A technique is devised to
allow a single signed distance function to represent many grains allowing the simulation of a very large
number (hundreds of thousands) of grains using modest computational hardware.

Keywords: diffusion–generated motion; mean curvature flow; grain growth.

1 Introduction

A polycrystalline material contains many crystallites (often called grains), differentiated by varying
orientation. These materials are very commonplace, including most metals and ceramics. The properties
of the microscale polycrystalline structure affect macroscale properties of these materials, such as fracture
strength and conductivity. As such, understanding the statistics of the microscale structure is of great
interest to materials scientists. One important model consists of grains moving with a normal velocity
equal to curvature with grain boundaries meeting at 120◦ at triple points (for example, see Mullins [16]
or Hillert [8]). Much work has focused on obtaining various statistics of grains evolving in this manner
since such quantities may hold the key to important macroscopic properties. In order to obtain robust
results, large scale simulations with hundreds of thousands to millions of grains would be ideal. This is a
challenging computational problem, especially in three dimensions. We propose and demonstrate a new
algorithm for large–scale simulations of this evolution, expanding on the work in [3].

According to the well–known model of Mullins [16], grain boundaries evolve with normal velocity
given by

vn = µγκ,

where µ denotes the boundary mobility, γ the surface tension, and κ the mean curvature of the interface
between grains. In many cases (e.g. the isothermal annealing of pure metals), the mobility and surface
tension may be taken to be constant, so that the normal velocity of the interface (a curve in two dimensions
and a surface in three dimensions) is proportional to mean curvature. We consider the simplest, yet still
important, case: that of equal surface tensions for each grain. We set µγ = 1 for convenience. As shown
in [17] and [28], this normal speed arises as gradient descent for the energy

E =
X

k<ℓ

(length of Γkℓ),

where Γkℓ is the boundary between grain k and grain ℓ (and length is replaced by area in three dimen-
sions). The standard boundary condition for this problem is the Herring angle condition, which for equal
surface tensions states that triple junctions must meet at angles of 120◦. This angle condition arises
naturally from the algorithms used in this paper, as shown in [3].
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The algorithm we use in this paper is based on distance function based diffusion generated motion

developed by Esedoḡlu, Ruuth, and Tsai [3] in which signed distance functions to interfaces are convolved
with Gaussian kernels to generate a variety of geometric motions, including multi-phase motion by mean
curvature, in an unconditionally stable manner. These algorithms are variants of the original threshold

dynamics scheme of Merriman, Bence, and Osher [15] in which characteristic functions are diffused
to generate mean curvature motion. Replacing characteristic functions in [15] with signed distance
functions allows algorithms in [3] to attain good accuracy on modest sized uniform grids with no need for
adaptive refinement. In [15] the authors also consider multi-phase mean curvature motion and propose
an algorithm based on representing each phase by a level set function and evolving them via the standard
level set PDE for mean curvature motion; see also [26]. A detailed discussion of the differences between
the algorithm in [3] (an extended version of which will be developed and used here) and those in [15] can
be found in [3].

The problem of simulating networks of grains moving by curvature flow has attracted much attention
over the decades and many different computational approaches have been proposed. We feel that the
algorithm presented here has advantages over previous formulations. Indeed, we are able to perform
well–resolved simulations of grain networks in both two and three dimensions on a scale significantly
larger than previously reported in the literature. We can easily simulate more than 250 000 grains in
two dimensions, and 100 000 grains in three dimensions.

In previous work, grain boundary networks moving by curvature flow have been simulated by front
tracking techniques in both two (e.g. [10]) and three dimensions (e.g. [25]). Computational efficiency
is the big advantage of this approach since all the computational resources are concentrated on the
interface. A fundamental difficulty of this approach is managing the plethora of topological changes
that can occur as grains disappear. These methods must explicitly detect and handle each topological
change by some selection of rules and require that the triple point condition be maintained separately.
Furthermore, it is difficult to check if edges (in two dimensions) or surfaces (in three dimensions) cross
using explicit methods. In three dimensions, it is a particularly difficult task to enumerate the ways in
which two explicitly represented surfaces might meet. Even more difficult, if not practically impossible,
would be checking to see if any such collisions occur. Using such representations in practice requires
making assumptions about the types of topological changes that can typically occur. These assumptions
may leave out important transitions or allow for nonphysical artifacts such as the interpenetrating of
phase boundaries. In two dimensions, it is expected (though not proven) that boundary networks under
pure curvature motion change topology only through junction collisions, greatly simplifying the class of
interactions possible. However, no such expectation is held in three dimensions. Even in the two–phase
case, one phase can pinch off and split into two pieces. In two dimensions, the addition of bulk energy
terms to the energy will also generally result in more complicated topological changes.

The phase–field formulation (e.g. [5, 7, 9, 12, 23]) will ameliorate these difficulties, but introduce a
problem of its own. In this approach, a phase function is evolved for each grain and the grain boundary
is a level set of the phase function. These methods naturally handle the aforementioned difficulties
associated with topological changes but require the phase function to have a sharp transition layer at the
grain boundary. It is crucial that this layer be fully resolved in order to accurately approximate curvature
flow. For example, Kim et al. [9] report that they need at least 6 grid points in the transition layer to
achieve acceptable accuracy. This indicates that a typical grain size must have something like 25 grid
points per dimension to be even marginally resolved — a serious limitation to the accurate simulation
of a large number of grains. We show that, using the approach described in this paper, our grains
are well–resolved with 10 grid points per dimension, and we can follow them as they shrink down to
about 4 or 5 grid points per dimension with a few percent relative error. Similar difficulties are present
using threshold dynamics [14, 15, 19, 21]. Threshold dynamics methods can become “stuck” on uniform
grids in regions where the interface moves slowly (although this situation can be remedied via adaptive
refinement; see e.g. [19,20]).

Another approach is to use a Potts model via kinetic Monte Carlo techniques (e.g. [1]). This is
essentially a different model and its connection with curvature flow is a difficult question. Finally we
mention that there are level set techniques, different than those present here, that could also be employed
to tackle this problem (e.g. [4,28]).

The algorithm used in this paper is able to capture many of the advantages of the above methods
with few of the disadvantages. Our method represents the grain boundaries implicitly using a signed
distance function thereby achieving subgrid accuracy on a uniform mesh. Our method naturally handles
topological changes and naturally imposes the Herring angle conditions (i.e. 120◦) at junctions. There-
fore, we capture the advantages of the phase field method without the disadvantage of needing to resolve
a transition layer. In addition, the algorithms proposed in this paper are unconditionally stable. We
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have developed a technique in which sufficiently separated grains are represented by the same distance
function (something similar was done for a phase field method in [12]). In addition, some of the compu-
tational work can be confined to narrow band near the grain boundaries. In this way we keep some of
the advantage of the front-tracking formulations.

In this work, we implement the algorithm introduced in [3] (more fully described in Section 2). We
then present results from a large two–dimensional simulation (initially containing over 150 000 grains),
and preliminary results from a three–dimensional simulation (beginning with over 15 000 grains) in
Section 3 (detailed three-dimensional results with over 100 000 grains will be published separately). We
conclude by presenting an extension to the algorithm in Section 4 which allows for the inclusion of bulk
energy terms into the energy functional for which our evolution constitutes gradient descent dynamics.

2 Algorithm

The signed distance function–based diffusion generated algorithm for motion by mean curvature of mul-
tiple phases as proposed in [3] is reproduced below. The evolution generated by this algorithm is proven
to generate motion by mean curvature and to satisfy the symmetric Herring angle condition at triple
junctions [3] in 2D (and hence also along triple lines in 3D).

We shall first describe the the algorithm present in [3] using the following notation: The kth grain at
time t = n∆t will be denoted as Σn

k where ∆t is the time step. The signed distance function from the
boundary of Σk

n is denoted as dk
n. Our sign convention is such that dk

n > 0 for points in Σk
n. Further we

suppose that there are N grains. The algorithm devised in [3] is then given by:

1. Given the initial sets Σ0
1, . . . , Σ

0
N ⊂ R

m construct the corresponding signed distance
functions d0

k (i.e. Σ0
k = {x : d0

k(x) > 0}).
For n = 0, . . . , nmax, perform steps 2–4.

2. Form the convolutions: Ak(x) := K∆t ∗ dn
k for k = 1, . . . , N , where K∆t is

K∆t = G∆t or K∆t =
1

4

“
4G 3

2
∆t −G3∆t

”
,

and G∆t is the fundamental solution of the heat equation:

G∆t(x) =
1

(4π∆t)
m

2

e−
|x|2

4∆t .

3. Construct Bk(x) for k = 1, . . . , N to remove overlaps and vacuums from the convo-
lution step:

Bk(x) =
1

2

“
Ak(x)−max

ℓ
{Aℓ(x) : ℓ 6= k}

”

4. Construct the updated signed distance function dn+1

k (x) for k = 1, . . . , N according
to

dn+1

k (x) = Redist (Bk(x)) .

Remarks. The operation Redist (B(x)) means construct a signed distance function from the zero level

set of B(x). Formally G∆t and K∆t = 1

4

“
4G 3

2
∆t −G3∆t

”
have the same order of accuracy but the

spatial truncation error of the second one is devoid of terms involving derivatives of curvature; see [3]
for details. The redistribution or projection step 3 of the algorithm above is the same as in the threshold
dynamics case [15] and is motivated by the well-known phase-field formulation (e.g. [2,7]) of the problem.

As stated the algorithm uses one distance function per grain. Clearly if the grains are not immediate
neighbors, then a single distance function can serve to represent many grains. Further, if we demand only
that grains which are sufficiently far apart share the same distance function, then potential interactions
that could occur during the convolution step will be negligible.

2.1 Extension

Here we present an extension of the algorithm from the previous section that allows one to use the same
distance function for multiple grains. The setting for this algorithm is slightly different than the previous

3



one. We begin as before, namely with N grains Σ0
k with k = 1, . . . , N , but initialize only M signed

distance functions, d0
ℓ with ℓ = 1, . . . , M , where M < N . These d0

ℓ have the property that they are the
signed distance function for a collection of disjoint grains, and the union of these collections consists of
all the grains. As the algorithm proceeds, it must check to be sure that this disjointness property is
maintained. If it appears that it is about to fail (i.e. two distinct grains in one of the collections become
too close), various grains will need to be reassigned to different distance functions and if need be a new
distance function will be introduced. We call this operation swapping. A crucial point is that M ≪ N
unless one considers some pathological initial conditions. Even then, since the evolutions considered
here are regularizing with a preference towards grains with small isoperimetric ratios, M is expected and
observed to be fairly small at subsequent times during the evolution.

1. Given the initial sets Σ0
1, . . . , Σ

0
N construct M functions, d0

k so that each is the signed
distance function for a collection Ξk of disjoint grains so that ∪M

k=1Ξk = ∪N
k=1Σk.

For n = 0, . . . , nmax, perform steps 2–5.

2. Form the convolutions: Ak(x) := K∆t ∗ dn
k for k = 1, . . . , M

3. Construct Bk(x) for k = 1, . . . , M to remove overlaps and vacuums from the convo-
lution:

Bk(x) =
1

2

“
Ak(x)−max

ℓ
{Aℓ(x) : ℓ 6= k}

”

4. Construct the signed distance function d
n+ 1

2

k (x) for k = 1, . . . , M according to

d
n+ 1

2

k = Redist (Bk(x)) .

5. If necessary swap appropriate grains between signed distance functions to ensure
that all the grains associated to given signed distance function remain well separated.
Denote the resulting signed distance functions as dn+1

k .

2.1.1 Details

We now describe the steps of the above algorithm in more detail in the fully discrete setting. For
convenience, the formulas are written down in the 2D setting, but extend trivially to all dimensions.
Convolution. We define the convolution kernels G∆t and K∆t in terms of the space–discretized solution
to the heat equation ut = uxx + uyy. Suppose the grid discretizes [0, 1]2, with equal grid spacing
(∆x = ∆y). Let ui,j(t) be the space–discretized approximation to u(x, y, t) at (i∆x, j∆y, t). Using
centered differencing in space, we obtain:

d

dt
ui,j(t) =

1

∆x2
((ui+1,j − 2ui,j + ui−1,j) + (ui,j+1 − 2ui,j + ui,j−1)) . (1)

Apply the discrete Fourier transform in space to obtain,

d

dt
bur,s =

2

∆x2
(cos(2πs∆x) + cos(2πr∆x)− 2) bur,s.

Given initial data bur,s(t), this ODE has solution bur,s(t + ∆t)

bur,s(t + ∆t) = bus,r(t) exp

„
−2∆t

∆x2
(2− cos(2πr∆x)− cos(2πs∆x))

«
.

Therefore the discrete heat equation (1) has solution ui,j(t + ∆t) = ui,j ∗ (G∆t)i,j where ∗ denotes the
discrete convolution and (G∆t)i,j is defined via its discrete Fourier transform:

( bG∆t)r,s = exp

„
−2∆t

∆x2
(2− cos(2πr∆x)− cos(2πs∆x))

«
.

Finally, we implement a Richardson extrapolation–like procedure to improve the accuracy of the kernel,
(as described in [3]), and define:

K∆t =
1

3

“
4G 3

2
∆t −G3∆t

”
.
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Comparison. The convolution step gives diffusion generated motion along simple interfaces, but may
create overlaps or vacuums at junctions where multiple interfaces meet. To enforce the desired no overlap
/ no vacuum condition, we apply a comparison step to obtain the updated level set functions

Bk(x) =
1

2
(Ak(x)−max{Aℓ : ℓ 6= k}) ,

satisfying the condition
mX

k=1

H(Bk(x)) = 1,

for all x, where H denotes the Heaviside function. This procedure ensures that the symmetric Herring
angle condition is maintained at all triple points [3].

Redistancing. At each time step, we need to compute the signed distance function dk to a union Ξk of
disjoint grains; we need the distance function only in a tubular neighborhood of the boundary ∂Ξk of Ξk.
The width of the tubular neighborhood is dependent on the time step ∆t. We make use of a two–phase
redistancing algorithm that depends only on the input values Bk(x) = 1

2
(Ak(x) −max{Aℓ : ℓ 6= k}) at

grid points within two grid points of the interface. For the remainder of the discussion of redistancing,
we drop the subscript k for convenience, as each set is updated independently of the others.

Define the set of boundary points β to be

β = {(i, j) : (|sgn(Bi+1,j)− sgn(Bi−1,j)|+ |sgn(Bi,j+1)− sgn(Bi,j−1))| > 0} ,

where Bi,j = B(i∆x, j∆y) and

sgn(x) =

8
><
>:

1 if x > 0,

0 if x = 0,

−1 if x < 0.

These boundary values are set initially to respect the condition that |∇d| ≡ |∇dk
j+ 1

2

| = 1, while moving

the interface as little as possible. Specifically, we set

dij =
Bij

|∇Bij |
, ∀(i, j) ∈ β.

Typically, the centered difference approximation is appropriate for |∇Bij |, but does not work well on
small grains. See Figure 1 for an illustration in one dimension. The solid line is the exact signed distance
function to the thick bar shown at the bottom of the plot. The dashed line shows the centered difference
approximation to the gradient of the signed distance function at the indicated point. Upwind differencing
is only first–order accurate in general, but gives a more accurate value for the gradient at this point. We
define

|∇Bij |1 =

s„
Bi+1,j −Bi−1,j

2∆x

«2

+

„
Bi,j+1 −Bi,j−1

2∆y

«2

,

|∇Bij |2 =

s„
max

„ |Bi+1,j −Bi,j |
∆x

,
|Bi,j −Bi−1,j |

∆x

««2

+

„
max

„ |Bi,j+1 −Bi,j |
∆y

,
|Bi,j −Bi,j−1|

∆y

««2

,

and define

|∇Bij | =
(
|∇Bij |1 if 1

2
|∇Bij |2 ≤ |∇Bij |1 ≤ 2|∇Bij |2,

|∇Bij |2 otherwise.

We fix the values dij for all (i, j) ∈ β, and first generate a first–order in space accurate approximation
of the signed distance function using fast sweeping as described in [24,27]. Then we perform an iterative
second–order accurate method (described in [18]) for a limited number of iterations on this output. The
input B(x) may be far from a distance function near junctions. Performing the fast sweeping initially
allows us to perform only a limited number of iterations with the second–order method, which is the
most time–intensive part of the algorithm.

Swapping. The swapping step allows each signed distance function to store many grains safely. Without
this step, it would be necessary to maintain each individual grain in a separate set to guarantee that
coalescence could not occur. For example, in a calculation performed on a 40962 grid, we begin with over
160000 grains and use only M = 32 sets to track them all. The algorithm introduces new signed distance
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Figure 1: Failure of centered differencing on small grains. The thick black line indicates the set Σ = {x : d(x) > 0}. The slope
of the dashed line indicates the centered difference approximation to |∇d|1 at the specified point. The upwind differencing finds
|∇d|2=1, the correct value for |∇d|.

(a) (b) (c)

Figure 2: (a) Part of a grain pattern. (b) Overlay of the boundary of dn+ 1

2 > 0 (solid line) and dn+ 1

2 > −τ (dotted line) on the

signed distance function dn+ 1

2 . (c) Same for dn+1 after a grain is removed and dn+1 is recalculated.

functions if needed to ensure that inter–grain spacing is maintained. In our experience, the algorithm
typically does not require more than M = 32 sets in two dimensions, and not more than M = 64 sets
in three dimensions. As the grain network evolves we find it will rarely, if ever, introduce new signed
distance functions. Without the savings of both memory and computational time permitted by this
additional step (allowing the number of sets, M , to satisfy M ≪ N , the total number of grains), such a
large scale computation would be impossible.

Our approach, described below, is similar to that of Krill and Chen [12]. They reassign grains to
prevent any particular grain from being maintained in the same set as any of it’s nearest or second–nearest
neighbors. We, instead, make sure that any two grains described by the same signed distance function
are not too close (we will be more precise shortly). This distinction is significant for our algorithm, as
spatial separation is key to prevent distinct grains, described by the same signed distance function, from
interacting during the convolution step (the width of the kernel is of course related to the time step size,
which can be large thanks to the unconditional stability of the proposed algorithms).

To describe this algorithm we must first outline some notation. First recall that the set Ξk = {x :
dk(x) > 0} corresponds to a collection of disjoint grains. These grains are the connected components of
Ξk. We say that two grains, say, Σa and Σb in Ξk are τ – close if their union is completely contained
in the same connected component of {x : dk(x) > −τ} (which is trivially checked by comparing the
(−τ )–super level set membership of any two grid points belonging to Σa and Σb). We choose τ > 0 to
be proportional to

√
∆t to prevent distinct grains in Ξk from interacting during the convolution step. In

the simulations presented in Section 3, we take τ ≈ 6
√

∆t. See Figure 2 for illustration of the selection
process.

Here we describe the new step in the algorithm in greater detail.

1. For k = 1, . . . , M , initialize dn+1

k = d
n+ 1

2

k .

2. For all signed distance functions make list of all pairs of grains that are τ – close.

For each pair of grains, perform steps 3–7.

3. Select the smaller grain from the pair and denote the signed distance function they are associated
with as k. Let dG(x) be the signed distance function to the boundary of the selected grain and
define the set X = {x : dG(x) > −τ}.

4. Find a set, Ξn+1

ℓ , such that ℓ 6= k and dn+1

ℓ (x) ≤ −τ ∀ x ∈ X. If such a set cannot be found,
increment M ←M + 1, initialize dn+1

M = −τ , and select ℓ = M .

6



Resolution Iterations r (t⋆) % Error Exact Redist Result % Error
8 × 8 7 0.143812 15.0493% 0.068539 45.1687%

16 × 16 15 0.124301 0.5595% 0.112370 10.1040%
32 × 32 30 0.123497 1.2022% 0.123544 1.1649%
64 × 64 60 0.123918 0.8653% 0.124435 0.4520%

128 × 128 120 0.124246 0.6110% 0.124562 0.3501%
256 × 256 240 0.124585 0.3323% 0.124751 0.1996%
512 × 512 480 0.124797 0.1627% 0.124870 0.1043%

1024 × 1024 960 0.124900 0.0800% 0.124934 0.0532%
2048 × 2048 1920 0.124952 0.0383% 0.124966 0.0268%

Table 1: Convergence Check: Motion by curvature of a circle.

5. Add the grain to Ξn+1

ℓ by setting dn+1

ℓ (x) = dG(x) ∀ x ∈ X.

6. Remove this same grain from Ξn+1

k by setting dn+1

k (x) = −τ ∀x ∈ X.

7. Redistance dn+1

k and dn+1

ℓ on the set X.

3 Numerical Results

In this section, two types of numerical results are presented. First, the convergence of our algorithm
to exact solutions in two– and three–phase cases is displayed. Next, we examine the convergence in
a multiphase case for which no exact solution is known. Finally, we demonstrate the quality of our
algorithm on large data sets simulating normal grain growth using statistical measures such as average
grain size and grain area distribution.

3.1 Convergence to Exact Solutions in Two Phase Motion

We begin by verifying that our algorithm accurately simulates two phase motion by mean curvature on
the simplest examples in two and three dimensions: the circle and the sphere. In each case, the motion
reduces to the simple ordinary differential equation,

ṙ(t) = κ =
−C

r
, (2)

where C = 1 for the circle and C = 2 for the sphere. Eq. (2) has the solution

r(t) =
p

r(0)2 − 2Ct.

In our tests, we chose r(0) = .25. For the circle, we took as our stopping time t⋆ = 3/128, and
for the sphere t⋆ = 3/256, so that the exact solution has r(t⋆) = .125. We iterate through time using
a simple forward Euler step, and therefore expect to see linear convergence, despite using redistancing
and convolution kernels that are second–order accurate in space. See Tables 1 and 2 for numerical
results. The results labeled “Exact Redist Result” were obtained by replacing the distance function at
the redistancing step by the exact distance function for a circle or sphere with the same 0—level set
at each step. We note that the linear convergence rate is strongly indicated by the exact redistancing
results for resolutions ≥ 256 × 256 for the circle and ≥ 64 × 64 × 64 for the sphere. Our redistancing
technique causes some cancellations of error at low resolutions, but follows the linear convergence trend
shown by the exact redistancing results well at higher resolutions.

3.2 Convergence to Known Profile in Three Phase Motion

In this test of three phase motion, we choose homogenous Neumann boundary conditions and consider a
T–junction initial condition as shown in Figure 3. It was shown in [7] that there is an exact solution for
this T junction geometry consisting of a steady profile moving at constant speed. The profile is given for
0 ≤ x ≤ 0.5 by:

y(x, t) =
3

π
log

“
cos

“πx

3

””
− vt,
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Resolution Iterations r (t⋆) % Error Exact Redist Result % Error
8 × 8 × 8 7 0.153862 23.0896% 0.113474 9.2212%

16 × 16 × 16 15 0.128935 3.1484% 0.120004 3.9964%
32 × 32 × 32 30 0.124040 0.7682% 0.123044 1.5648%
64 × 64 × 64 60 0.123881 0.8951% 0.124010 0.7923%

128 × 128 × 128 120 0.124289 0.5688% 0.124481 0.4150%
256 × 256 × 256 240 0.124627 0.2988% 0.124735 0.2121%

Table 2: Convergence Check: Motion by curvature of a sphere.

where v is the velocity of the profile. Figure 3 shows the close agreement between the predicted profile
where vt was chosen to match the computed profile at x = 0. These results were computed on a 128×128
grid. In (a), the predicted profile and computed profiles are indistinguishable. Parts (b), (c), and (d)
zoom in successively on the final computed profile and the associated prediction. We see that the results
differ by less than 10−3 for all x. The triangular “split” in the profile seen in the zoomed views is purely
a visualization artifact.

3.3 Spatial Convergence of Multiphase Motion

There are no explicit solutions available for the evolution of a general grain pattern. To test convergence,
we instead evolve the same initial condition for 100 iterations with fixed time step at various resolutions:
1024× 1024, 512× 512, 256× 256, and 128× 128.

We begin with the initial condition seen in Figure 4(a), which contains 154 grains. After 100 itera-
tions, only 82 (83, at 128 × 128 resolution) grains remain. See Figure 4(b). The 1024 × 1024 result is
indistinguishable from the 512 × 512 result to the eye. We note that the visible differences at various
resolutions are attributable to recent topological changes in the grain pattern. When the grain size is ap-
proximately equal to the grid size, we cannot hope to simulate the motion accurately. At the microscopic
level, grains on this size scale tend to persist somewhat longer than they should (Figure 4(c)), though
results agree very well in regions without recent topological changes (Figure 4(d)). The macroscopic
parameters of the evolution (e.g. number of grains, average grain size, etc.) are unaffected by small
discrepancies in the evolution at the scale of the grid size.

3.4 Large–Scale Simulation of Normal Grain Growth in Two Dimen-

sions

We concern ourselves with the standard case, in which all interfaces move with normal velocity equal
to the curvature of the interface. In future work we will investigate varying surface tensions and bulk
energies. As previously shown in [3], this algorithm naturally imposes the symmetric angle condition (all
triple junctions meet at 120◦ angles).

We discretize the [0, 1]×[0, 1] domain with ∆x = ∆y = 1/4096. We use periodic boundary conditions,
natural as the interactions between grains are short–ranged. Our initial condition contains 166 927 grains,
and was obtained by constructing the Voronoi diagram for random points with a uniform distribution in
the computational domain. We take 1 500 time steps, at the end of which 11 217 grains remain and the
evolution of the system has slowed considerably. (An adaptive time stepping strategy would therefore
be prudent, and is entirely feasible given the unconditional stability of our algorithms, but this was not
carried out: All experiments in this paper were generated using uniform time steps). For the entire
evolution, we maintain just 32 sets to track all the grains. For snapshots of the evolution, see Figure 5.
These all show 1/64 of the full grain pattern. Figure 6 shows the final full grain pattern. Earlier time
steps contain too many grains for the full pattern to be viewable on a single page.

Recall that the energy of the system is given by

E =
X

k<ℓ

(length of Γkℓ)

in two spatial dimensions (and by summing the interfacial area in three dimensions). In terms of the
signed distance functions dk(x), this energy can be written in terms of the Dirac delta function, δ, as

E =
1

2

MX

k=1

Z

Ω

δ(dk(x))dx.
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Figure 3: (a) Interface shown at various times in evolution (solid). The exact profile is overlaid (dotted) once a constant profile is
attained. (b), (c), (d) Successive zoom in to the computed profile (solid) and exact profile (dotted).
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Figure 4: (a) Initial condition. (b) Overlay of 512 × 512 result (solid), 256 × 256 result (dashed), and 128 × 128 result (dotted).
The results at 1024 × 1024 and 512 × 512 resolution are indistinguishable. Only at 128 × 128 are significant differences visible on
parts of the grid, near recent topological changes. (c) and (d) zoom in on two parts of (b).
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Figure 5: One section of the full 4096×4096 grid. (a) Initial condition, N(0) = 166 927, (b) after 100 iterations, N(100) = 97 000,
(c) after 500 iterations, N(500) = 30 842, (d) after 1500 iterations, N(1500) = 11 217.
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Figure 6: The full grain pattern after 1500 iterations for the simulation with N(0) = 166 927 grains initially. At the time shown,
N(1500) = 11 217 grains remain.
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Figure 7: The energy E decreases at every time step.

The factor 1/2 arises since this formula counts interfaces two times. We can discretize E, in two space
dimensions, as

E =
∆x2

2

X

k

X

i,j

δ̃(dk(xi, yj)). (3)

We use a first–order discretization of the delta function, δ̃, as proposed in [22]. The discrete version of
Eq. (3) in three dimensions is similar. The energy, E, is evaluated at each iteration and found to be
strictly decreasing at every time step. See Figure 7. Note that our method handles topological changes
naturally, and that the energy of the system decreases even as over 150 000 grains disappear throughout
1 500 iterations.

Several analytical approaches predict the mean grain radius 〈r〉 to grow as 〈r〉 ≈ Ct1/2 (for example,
see [6, 8, 13]). In normal grain growth, characterized by self–similarity of the distribution of r/〈r〉, it
immediately follows that the average grain area 〈a〉 is predicted to grow linearly as a function of time.
We compute the average grain area as

〈a〉 = 1

N(t)
,

where N(t) is the number of grains surviving at time t, and see linear growth following a short relaxation
time due to initial conditions. See Figure 8.

Two other measures of interest are the relative grain area distribution and the number of edges
distribution, as defined in [11]. Let G(n, t) be the proportion of grains with n grain boundaries at time t,
and F (ξ, t)dξ be the number of grains with relative area in [ξ, ξ + dξ] at time t, with ξ = a/〈a〉. Normal
grain growth is characterized by the self–similarity of F as t varies. See Figure 9, which suggests that
F is approximately self–similar for t ≥ 300∆t. Figure 10 shows the evolution of the number of edges
distribution.

3.5 Three Dimensional Multiphase Motion by Curvature

Our algorithm and its implementation extends with only minor modifications to three dimensions very
naturally. We again consider the case in which all interfaces (surfaces) move with normal velocity equal
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Figure 8: (a) The number of grains N(t) decreases such that (b) average grain area 〈a〉 grows linearly.
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Figure 9: Relative area probability densities at 100, 200, . . . , 1500 iterations. G(n, 100∆t) is dotted, G(n, 200∆t) is dashed, and
the rest are plotted as solid lines.

to the mean curvature of the surface. We discretize our computational domain the unit cube with
∆x = ∆y = ∆z = 1

256
, and again apply periodic boundary conditions. We maintain 64 sets of disjoint

grains to track the grains through iterations. In 3D, each grain can have many more neighbors than
in 2D; thus, in general a larger number of sets Ξk are necessary to keep grains within the same set
well–separated.

Here, our initial condition contains 16 767 total three–dimensional grains. See Figure 12 for a view
of grains contained in five of the 64 sets. We take 500 iterations, at which time 853 grains remain.
See Figure 11 for the evolution of the number of grains and average grain volume. We note that the
dependence of 〈v〉 on t is non–linear, as opposed to the relationship of 〈a〉 on t in two–dimensions. In [1],
the authors report that the growth kinetics exhibit power–law behavior following an initial transition
phase, specifically, they report

〈v〉 1

3n = ct + d,

where n is identified as the kinetic exponent for grain growth, i.e.

〈r〉 ≈ Ctn

gives the long term behavior of average grain size. The experimental results reported in [1] vary, reporting
1/4 ≤ n ≤ 1/2 where they find n = 0.48 ± 0.04 using Monte Carlo methods. Our simulation data is
presented in Table 3. Our results for 50 ≤ tmin ≤ 250 give 0.48 ≤ n ≤ 0.55 which is slightly larger than
what was found in [1].

Figures 12 and 13 show the same sets at later times in the evolution. Note that some grains may have
swapped in or out of these sets during the evolution and thus may not be included in the visualization
consistently, though large grains are swapped only rarely. Figure 14 shows a single grain from two view-
points after 500 iterations. At this time 853 grains remain in the simulation. This grain is approximately
forty grid points across in each dimension. The average effective grain radius as measured from grain
volume at this time is approximately seventeen grid cells. Thus the average grain is somewhat smaller
than the featured grain, but not by a significant amount. The grain appears to be very well resolved on
this grid. The individual facets are apparent and are separated by sharp edges.
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Figure 10: (a) Number of edges distribution at 100, 200, . . . , 1500 iterations. (b)–(d) Number of edges distribution at 100, 600,
and 1500 iterations. The proportion of grains with 6 edges falls off to a minimum at 600 iterations, then rises again through the end
of the simulation.

tmin c n

10 2.6 × 104
.593 ± .007

50 3.4 × 104
.548 ± .005

100 4.4 × 104
.512 ± .005

150 5.3 × 104
.487 ± .005

200 5.3 × 104
.486 ± .009

250 3.5 × 104
.544 ± .018

Table 3: Fit of data from iterations in range tmin ≤ t ≤ 500 to 〈v〉1/3n = ct + d, with 95% confidence.
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Figure 11: Three–dimensional simulation results: (a) N(t), the number of grains, and (b) 〈v〉, the average grain volume (solid)
plotted against 〈v〉1/3n = ct + d, with tmin = 150 (dashed).

Much of the statistical analysis remains to be done in three dimensions. Statistics on the fully three–
dimensional runs are of great interest in materials science as materials are inherently three–dimensional.
Furthermore, it is also important to reconcile results from two–dimensional simulations to results from
cross–sections of three–dimensional computations.

To this end, we immediately see that the character of cross–sections of three–dimensional computa-
tions is markedly different from that of the two–dimensional computations. Figure 15 shows one such
cross–section. Obviously the symmetric (120◦) angle condition is not expected to be preserved in cross–
sections, and does not appear to be in the figure. More tellingly, Figure 16 shows the relative area
distribution and number of edges distribution for an ensemble of these cross–sections (containing 66 437
two–dimensional grains). In agreement with data from other three dimensional simulations (e.g. [25], [1]),
small grains are present in cross–section in much higher frequencies than two–dimensional simulations
predict. As mentioned in [1], the greater frequency of small grains in cross–section can be partially
attributed to the fact that cross–sectional planes may cut across the ends of grains that are large in three
dimensions. Furthermore, the number of edges distribution (shown in Figure 16) is much flatter and
wider than predicted by two–dimensional simulations.

4 Simulations in the Presence of Bulk Energy Terms

A simple extension to the model considered in previous sections is the inclusion of bulk energy terms:

E =
X

k<ℓ

(length of Γkℓ) +
X

k

(area of phase k)ek.

where ek denotes the bulk energy density for phase k. This gives rise to the following normal velocity

vn(Γkℓ) = κkℓ + eℓ − ek, (4)

see, for example, [4, 17, 28]. Note that adjacent phases with equal bulk energy density terms will evolve
solely by curvature, as the bulk energy contributions from each phase will cancel.

In [3], the authors present a simple modification to the two–phase algorithm to generate motion with
normal speeds of the form

vn(γ) = κ + e.

In analogy, our multiphase algorithm changes in only one step. We add an additional term to the
convolution step:

Ak(x) := K∆t ∗ dk − 2(∆t)ek.

This additional set of parameters allows for the simulation of a wider class of motions. For example,
an energy and normal speed of this form can be used to simulate the growth of grains on a background
medium, by giving the background medium a bulk energy greater than that of the grains. We present
two examples of this growth in two dimensions.
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(a) (b)

(c) (d)

Figure 12: Each subfigure shows the grains from five sets (of sixty–four total sets) at various times in the evolution. (a) The initial
condition contains 16 767 total grains. (b) After 100 iterations, there are 6 911 grains. (c) After 200 iterations, there are 3 101
grains. (d) After 400 iterations, there are 1 189 grains.
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Figure 13: Grains from five level sets after 500 iterations. 853 of the initial 16 767 grains remain.
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Figure 14: Two views of a single grain (corresponding to a 180◦ rotation in the xy–plane) chosen from the evolution after 500
iterations. This grain is approximately forty grid cells across in each direction, slightly larger than average. The grain is very well
resolved, with facets, edges, and corners all easily distinguished.

4.1 Example 1

We place many seeds, all with no bulk energy, near one boundary of the unit square and allow them to
grow into a background medium with positive bulk energy. A simulation of this growth in two dimensions
is shown in Figure 17. Where two phases meet, the interface moves solely by curvature. When a single
grain meets the background phase, the normal velocity also receives a contribution from the bulk energy
term. Note that in the presence of bulk energy terms, even for the 2D evolution, pinch-off of grains
becomes possible and in fact rather frequently observed – this is a type of topological transition typically
not considered (as it’s believed to be absent) in front-tracking based 2D grain boundary computations
in the absence of bulk energy terms.

4.2 Example 2

In the second example, we take the initial condition to be 100 circular grains surrounded by another
material (e.g. a liquid). We take the bulk energy of the grains to be 0 and the “liquid” to have bulk
energy 100/3. The coefficient of surface tension is taken to be unity (as with all of our simulations). If
one considers an isolated grain of radius r, then it follows from Eq. (4) that

ṙ =
−1

r
+

100

3
(5)

Therefore grains with an initial radius greater than rcrit = 0.03 will grow, and those with initial radius
less than rcrit will shrink. One could consider this to be a highly simplified of model of solidification.

We now consider the problem in which the initial condition consists of 100 circular grains whose radii
are chosen from a normal distribution with mean .03 and standard deviation .002. Our the domain is
[0, 1]2 domain and we take ∆x = ∆y = 1/500. Figure 18 shows the initial condition and the results
at varying stages through 2000 iterations. Note that many circles with small initial radii have entirely
disappeared. The accuracy of the numerical results for selected circles are summarized in Table 4. The
predictions are generated by numerically solving Eq. (5) up to time t = 500∆t. The first and last table
entries follow the largest and smallest circles in the computation, while the other entries select circles
with initial radii near rcrit. The simulation data shows that the experimental value of rcrit satisfies
0.3010 < rcrit < 0.3014.
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Figure 15: A cross–section of the three–dimensional evolution. In cross–section, the angles between grains do not need to be 120◦.
Many more small grains appear in cross–section than in the two–dimensional computation. Many of these small grains are small
cross–sections from extremities of large three–dimensional grains, as noted in [1].

Initial Final Predicted Relative
Radius Radius Radius Error
0.03331 0.04349 0.04379 0.68%
0.03026 0.03092 0.03145 1.68%
0.03014 0.03028 0.03080 1.68%
0.03010 0.02999 0.03059 1.95%
0.03004 0.02940 0.03024 2.89%
0.02992 0.02866 0.02952 2.90%
0.02475 0 0 —

Table 4: Circular grain growth with bulk energies: Simulation and prediction.
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Figure 16: (a) Relative area distribution and (b) number of edges distribution from two–dimensional cross–sections of three–
dimensional evolution. The distribution reflects the increased number of small grains in cross–section of three–dimensional simulations
as compared to two–dimensional simulations.
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Figure 17: Simulation of crystal growth using bulk energy term at (a) initial condition, (b) 10 iterations, (c) 50 iterations, (d) 100
iterations, (e) 200 iterations, (f) 300 iterations.
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Figure 18: Circular grain growth with bulk energies at (a) initial condition, (b) 200 iterations, (c) 500 iterations, (d) 1000 iterations,
(e) 1500 iterations, (f) 2000 iterations.

5 Conclusion

The algorithm proposed in [3] is extended here to the case of many (e.g. hundreds of thousands) phases,
with allowances for bulk energies, allowing for accurate two– and three–dimensional simulations of sys-
tems larger than those obtained using other algorithms. Such large scale simulations may allow for a
more complete statistical description of grain growth, particularly in three dimensions. The implicit
representation of interfaces (edges in two dimensions, surfaces in three dimensions) within this model
allows topological changes to occur naturally, without any explicit decision making about the nature of
the change in topology or any implicit restrictions on the type of topological changes that may arise.

The model has been shown to accurately simulate well–understood motions and to predict statistics
in two– and three–dimensional simulations of grain growth that are in keeping with both experiment and
other simulations.

In future work, we intend to extend the model to allow for varying surface tensions, so that the normal
velocity of an interface is given by

vn(Γij) = fijκij + ej − ei,

allowing for the simulation of a very general class of motions that are of interest in applications. Further
refinement of the numerical techniques used should allow for even larger simulations of three–dimensional
grain growth, a phenomenon which is not as well studied as the two–dimensional case. The statistics
arising in this case are of great interest. They should be carefully compared to statistics arising from
other simulation techniques and from available experimental results.
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