
Diffusion Generated Motion for Recrystallization and Grain Growth

Matt Elsey, Selim Esedoḡlu, and Peter Smereka
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Abstract

A new numerical approach for the efficient computation of grain boundary motion is used to simulate

normal grain growth and recrystallization in three dimensions with high accuracy. The method is based

on the diffusion of signed distance functions and shares similarities with level set methods. The Herring

angle condition at junctions and topological transitions are naturally captured with this formulation.

In addition, this approach offers significant advantages over existing numerical methods and accurate

computational results are presented on scales not previously possible. For example, a fully-resolved

simulation of normal grain growth initially containing over 100,000 grains in three dimensions is presented.

It is shown that the average grain radius grows as the square root of time and the grain size distribution

is self-similar. This numerical approach is easily extended to include recrystallization. Simulations of

recrystallization for physically relevant parameter values are displayed. These are quite difficult to obtain

via kinetic Monte Carlo approaches, commonly used for this problem.

1 Introduction

Grain growth and primary recrystallization are two important ways in which the microstructure of polycrys-
talline materials (including most metals and ceramics) evolve during manufacturing processes. Statistical
measures of the resultant microstructure affect important macroscale properties of the material, such as its
conductivity and brittleness. Manufacturing processes must typically be tuned to provide for an optimal
blend of desired material properties; however, performing such tuning experimentally is costly and time
consuming. Therefore, simulations of these grain evolution phenomena have been attempted using a variety
of numerical techniques.

Grain growth occurs when polycrystalline materials are annealed. The well-known model for grain
growth [6, 20, 37] gives the grain boundary normal velocity as vn = µγκ, where µ denotes the boundary
mobility, γ the surface tension, and κ the mean curvature of the boundary separating two grains. In some
important cases (including the isothermal annealing of pure metals), it is a good approximation to take the
mobility and surface tension to be constant. In this paper, we will restrict ourselves to the constant mobility
and surface tension case, and set µγ = 1 for convenience. As shown in [40] and [63], this normal speed arises
as gradient descent for the energy

E =
∑

k<ℓ

(area of Γkℓ), (1)

where Γkℓ is the interface between grains k and ℓ. The standard boundary condition for grain growth is
the Herring angle condition [21], which for equal surface tensions states that triple junctions must meet at
angles of 120◦. This angle condition arises naturally from the algorithms used in the present paper, as shown
in [14].

The phenomenon of recrystallization occurs when a polycrystalline material is simultaneously stressed
and annealed. Grains with certain orientations are energetically favored by the stress, and grow at the
expense of grains with other orientations. This process is modeled by the addition of a constant term to
the normal velocity of grain boundaries separating the favored recrystallizing grains from unrecrystallizing
grains. In the isotropic case, the normal velocity (outward from phase k) of interface Γkℓ can then be written
as

vn(Γkℓ) = κkℓ + λ(eℓ − ek). (2)
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The parameter λ weighs the relative importance of the curvature motion and the constant normal speed
at interfaces separating recrystallized (ek = 0) and unrecrystallized (ek = 1) grains. If phases k and ℓ are
both recrystallized (or both unrecrystallized), ek = eℓ and only curvature motion occurs along the interface
Γkℓ. The additional constant term in the normal velocity is represented as a bulk energy term in the energy
previously described by (1):

E =
∑

k<ℓ

(area of Γkℓ) + λ
∑

k

ek(volume of phase k). (3)

In this work, we present a large-scale simulation of three-dimensional grain growth and a number of
simulations of primary recrystallization in both two and three dimensions. The normal grain growth simu-
lation in three dimensions starts from an initial condition containing over 130, 000 grains and simulates the
evolution until only about 14, 000 remain. We present various statistics collected throughout this simula-
tion. In particular, we demonstrate the anticipated self-similar character of the grain size distribution as
it evolves in time. Furthermore, our results show good agreement with other three-dimensional predictions
for grain growth, such as power law growth of the mean grain volume, and three-dimensional version of the
Aboav–Weaire law and the Mullins extension of the two-dimensional von Neumann–Mullins relationship.
These results compare well also with experimental and other simulation results where available.

The simulations of two-dimensional recrystallization allow for easy visualization of the effects of varying
the value of the parameter λ in (3), which determines the relative importance of the curvature motion
and the constant normal velocity motion. The theory of Johnson and Mehl, Avrami, and Kolmogorov
(JMAK) [3–5, 25, 29] predicts sigmoidal growth of the recrystallized area fraction, and agrees well with our
simulation results for large λ. For small λ, this theory is no longer applicable. We demonstrate the ability
to simulate full recrystallization for values of λ comparable to those experimentally seen in real metals, a
regime unattainable by Monte Carlo techniques [51], as further discussed in Section 4.6. We also present
simulations with site-saturated and continuous nucleation in three dimensions, with good agreement with
JMAK predictions given the choice of λ.

2 Algorithm and Previous Work

Our algorithm is an extension of distance function-based diffusion generated motion [14], which is in turn
a variant of the threshold dynamics scheme proposed by Merriman, Bence, and Osher [36]. The threshold
dynamics scheme reduces the computation of various geometric motions of an interface to the alternation of
two highly efficient operations: convolution of a characteristic function representing the interior of the inter-
face with a circularly symmetric kernel, and thresholding the convolution output to return to a characteristic
function. On a uniform grid with N grid points, the complexity of these operations is just O(N log N) per
time step. The method is also unconditionally stable, so that the only restrictions on the size of the time step
are due to accuracy considerations. A major drawback of the threshold dynamics algorithm is that it is very
inaccurate on uniform grids, because the interface must be represented as the boundary of a characteristic
function, disallowing any possibility of sub-grid accuracy in the absence of adaptive grid refinement (as is
explored in [46]).

A signed distance function-based algorithm for diffusion generated geometric motions of the same types
attainable by threshold dynamics is proposed in [14]. This algorithm is a modification of the threshold
dynamics algorithm, replacing the characteristic function of the set used in threshold dynamics with a signed
distance function to the boundary of the set, and the thresholding operation by a redistancing operation.
The redistancing operation reconstructs the signed distance function to the boundary of the set from the
convolution output, much as the thresholding operation reconstructs the characteristic function of the set
from convolution output in threshold dynamics.

Unlike the characteristic function of a set, the signed distance function is a Lipschitz continuous function.
This allows for sub-grid accuracy in locating the interface on a uniform grid. Furthermore, fast algorithms
are known for constructing signed distance functions (e.g. [44,62]), so that the computational complexity of
the signed-distance function based algorithm is still O(N log N) per time step. A more detailed discussion
of the differences between [36] and [14] can be found in [14].

The threshold dynamics scheme was extended by Ruuth [45] to multiphase motion by mean curvature, the
case occurring in grain growth, but the same accuracy limitations faced by the original threshold dynamics
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scheme still apply. Standard level set techniques have also been applied to the grain growth problem in [15,63].
The level set method is a sharp interface method, similar to the signed distance function technique we use
here (which may itself be considered a special type of level set method). Standard level set methods place
only very loose restrictions on the details of the level sets used to implicitly represent the interface. For
example, the size of the gradient |∇φ| of the level set function φ is generally restricted from becoming too
large or too small. This restriction is insufficient for multiphase motion, as first noted and fully explained
in [14]. In general, an O(1) error is introduced in the motion of triple junctions due to differences in the
profiles of the level sets representing the three phases. This error also prevents the correct angle conditions
from being obtained.

In contrast, [14] provides analytical justification and extensive numerical convergence studies showing that
the correct behavior is obtained at junctions under the multiphase version of the signed distance function-
based algorithm for motion by mean curvature introduced there. The algorithm for multiphase motion
is given in [14], with an enhancement allowing for the simulation of N grains using only M ≪ N signed
distance functions described fully in [13]. This is achieved by representing large collections of individual, well-
separated grains with a single signed distance function. Easily implemented precautions are taken to prevent
non-physical interactions from occurring between grains contained in a single signed distance function.

The signed distance function-based algorithm for multiphase motion by mean curvature described there
and applied in this work can be thought of as a particular type of level set method. In order to obtain the
correct behavior at triple junctions, there is a stronger restriction on the level sets than ordinarily enforced;
however, other hallmarks of the level set method are retained: the interfaces are implicitly represented (the
algorithm operates only on the values of the signed distance function at grid points), the Lipschitz continuity
of the level sets allows for sub-grid accuracy, and the interface is sharp (unlike phase field methods, in which
the interface is represented by a diffuse transition layer). On the other hand, standard level set methods
for evolution by mean curvature require the solution of a degenerate, highly nonlinear partial differential
equation. In contrast, the present algorithm is unconditionally stable (allowing much larger time steps to be
taken), a feature inherited from its close connection to the diffusion generated motion of threshold dynamics.

A number of other numerical methods have been used to simulate grain growth and primary recrystal-
lization in previous work. One of the best-known techniques is the Monte Carlo Potts model [2, 50–52].
This model approximates curvature motion by a stochastic series of near-interface cell flipping steps. While
the basic Monte Carlo method is quite easy to implement, it is extremely slow and lacks sub-grid accuracy.
Furthermore, the stochastic nature of the Monte Carlo evolution ensures that some type of averaging is
needed to approximate the true continuum motion. For example, the evolution of a simple circle by mean
curvature is very difficult to capture accurately using Monte Carlo methods even on a well-resolved grid.
Beyond these significant accuracy concerns, it is also difficult to connect the Monte Carlo method with some
notion of “real” time beyond reorientation attempts. Also, as discussed in Section 4, attempts to simulate
recrystallization for physically relevant values of the weighting parameter λ using Monte Carlo models were
unsuccessful.

Front-tracking techniques have also been used to simulate mean curvature motion in both two [26,28] and
three [28,54] dimensions. A major advantage of these techniques is computational efficiency, as computational
resources are all devoted to the interface region. The fundamental difficultly inherent to this approach is
managing the topological changes that abound in both grain growth and primary recrystallization. With
explicit representations of the interface, it is difficult to check if curves (in two dimensions) or surfaces (in
three dimensions) intersect. In the case of two-dimensional mean curvature multiphase motion, it is expected
(though not fully proven, see [34]) that interfaces interact only through junction–junction collisions. If this
conjecture is true, explicitly checking for and handling topological changes may be manageable in this case.
However, no such condition is expected to hold in three dimensions, or in the presence of bulk energy terms

such as those appearing in the energy for recrystallization (see equation (3)). Pinch-off can occur with only
two phases in three-dimensional mean curvature motion (as in the standard “dumbbell” example), and is
shown in this work also to occur in a two-dimensional recrystallization simulation in Section 4.5. Topological
changes of this type are very difficult to detect, much less manage, using front tracking techniques, especially
in three dimensions. In contrast, our algorithm handles topological changes naturally, without any user
input or parameter choices.

The phase field technique has also been used extensively in simulations of grain growth [16,19,27,30,53]
and is much more similar to our algorithm than Monte Carlo or front-tracking techniques. In the phase field
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method, interfaces are implicitly represented. However, there must be a wide transition region representing
the interface between grains. For example, Kim, et al. [27] report that at least six grid points are needed in
the transition layer to achieve acceptable accuracy. Therefore, a grain needs to be on the order of at least
25 grid points across to be moderately resolved. In contrast, we demonstrate in [13] that we can simulate
evolutions quite accurately with grains approximately ten grid points in each direction, and that we can track
them down to half that length with only a few percent relative error. Though there is no rigorous notion
of generalized solutions with uniqueness through topological changes, we also perform a convergence study
in [13] showing that our simulations track grains through topological changes quite consistently as well. The
large grain size requirement imposed by the phase field model is a serious impediment to performing very
large-scale simulations.

Our algorithm has all the major advantages of these various computational approaches. It is closely
related to both threshold dynamics and level set methods. From threshold dynamics, we inherit unconditional
stability, allowing the choice of time step to be restricted only by accuracy considerations. From level set
methods, we inherit sub-grid accuracy and graceful handling of topological changes, free from user input.
As with front tracking models, we concentrate most of our computational resources at the interface, as the
signed distance function computation (the most computationally intensive part of the algorithm) must be
performed accurately only in a tubular neighborhood of the interface (with width proportional to

√
∆t). As

a discretization of Mullins’ PDE-based continuum description of grain boundary motion, our algorithm does
not suffer from the difficulty of identifying physical time that plagues Monte Carlo-type models. However,
the flexibility of the Monte Carlo method, which allows for the addition of a bulk energy term, application
of various nucleation techniques, and relative weightings of surface tension-driven and bulk energy-driven
motion in primary recrystallization, is also included in our algorithm. Indeed, the simple nucleation model
we implement as part of our recrystallization simulations in Section 4 is taken directly from the Monte Carlo
simulations of recrystallization performed by Srolovitz, et al., [50–52].

3 Normal Grain Growth

In this section, our algorithm for simulating normal grain growth will be described and a wide variety of
statistical measures on the resulting grains will be presented.

3.1 Procedure

Our diffusion-based algorithm for multiphase motion by mean curvature is fully described in [13], but for
the convenience of the reader we present a brief description. The initial condition was created by randomly
placing N(0) seeds in the computational domain and growing each simultaneously with constant normal
velocity until another seed is encountered. Seed growth is stopped locally when seeds meet and globally
when the domain is filled, resulting in a Voronoi-type initial condition. Given these N(0) initial grains Σ0

j ,

we partition them into M ≪ N(0) disjoint sets Ξk, such that ∪N
j=1Σ

0
j = ∪M

k=1Ξk. We maintain M signed
distance functions dk(x), giving the signed distance to the set Ξk, with dk(x) > 0 for x ∈ Ξk. For example,
in the first simulation described below we have N(0) = 133, 110 and M = 64. The signed distance functions
are updated using the following algorithm:
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1. For n = 0, . . . , nmax, perform steps 2–5.

2. Form the convolutions Ak(x) := K∆t ∗ dn
k for k = 1, . . . , M where

K∆t = G∆t or K∆t =
1

4

(

4G 3

2
∆t − G3∆t

)

with G∆t =
1

4π∆t
e−

|x|2

4∆t .

3. Construct Bk(x) for k = 1, . . . , M to remove overlaps and vacuums from the
convolution:

Bk(x) =
1

2

(

Ak(x) − max
ℓ

{Aℓ(x) : ℓ 6= k}
)

4. Construct the signed distance function d
n+ 1

2

k (x) for k = 1, . . . , M according
to

d
n+ 1

2

k = Redist (Bk(x)) .

5. If necessary, swap appropriate grains between signed distance functions to
ensure that all the grains associated to given signed distance function remain
well separated. Denote the resulting signed distance functions as dn+1

k .

For a full description of the algorithm, the reader is referred to [13]. We use a simple cubic lattice with
periodic boundary conditions to avoid introducing boundary effects into the evolution except in the case
that a single grain grows so large as to be adjacent to itself across a periodic boundary. Such a case cannot
arise in normal grain growth until only very few grains remain (e.g. N(t) ≪ 1, 000), which does not occur
in the results reported here.

The computational complexity of our algorithm is formally O(nk log n), where k is the number of level
set functions used, and n is the total number of grid points in each set. For a single signed distance function,
both the convolution step and the redistancing operation are O(n log n). The algorithm is second-order
accurate in space and first-order accurate in time away from triple points. At triple points, analysis and
experiment in [14] suggest that the error is O(

√
∆t).

3.2 Normal Grain Growth Results

In this section, we present results of numerical simulation of normal grain growth in the unit cube with
periodic boundary conditions. The cube has been discretized as a regular cubic lattice of size 512×512×512.
The coarsening rate is shown to agree well with theoretical predictions. The grain size distribution is
calculated, and exhibits self-similarity. This distribution is compared with a number of different predictions
from the literature. In addition, average numbers of grain edges, faces, and corners are computed and
compared with other computational approaches and experimental data.

3.2.1 Qualitative microstructure

We present a three dimensional simulation with an initial condition containing 133,110 grains. The initial
condition was generated as described in Section 3.1. Figure 1 shows a single grain taken from the simulation
at 300 iterations; it appears to be very well resolved. Its faces, edges, and corners are easy to see. The faces
are smooth, and most appear to be concave. Thus this particular grain, which is of average size at this stage
in the evolution, must be growing due to the curvature of its interfaces. Overall, the grain resembles what
is observed in real materials, such as the beta brass grain shown in Figure 2.

The coarsening of the grain pattern is demonstrated by Figure 3. Here we display the grains intersecting
the x = 0, y = 0 and z = 1 surfaces in the initial condition (a) and after 300 iterations (b). Different colors
correspond to different grains. By volume, the average grain at the end of the simulation is nearly ten times
as large as the average grain at initial condition.

In Figure 4 we show all the grains from five of the sixty-four total set functions Ξ at 100 and 300 iterations.
There is a great variability in the size of grains seen in this figure, from grains of only a single grid cell across
which are about to disappear, to grains that are approximately fifty grid cells across in each direction.
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Figure 1: Two views of a single grain (corresponding to a 180◦ rotation in the xy-plane) chosen from the evolution after 300
iterations. This grain averages 21.2 pixels across in each dimension, equal to the average grain size at this point in the evolution.
The grain is very well resolved, with faces, edges, and corners all easily distinguished.

Figure 2: A single grain of beta brass, approximately 2 cm in diameter, from the collection of W.W. Mullins. The photograph
is due to K. Barmak and D. Kinderlehrer. The grain compares well to the simulated grain shown in Figure 1.

(a) (b)

Figure 3: Visualization of the grain pattern (a) at initial condition and (b) after 300 iterations. The initial condition contains
133,110 grains. After 300 iterations, 14,150 grains remain.
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(a)

(b)

Figure 4: Grains from five of sixty-four level set functions in the simulation with initially 133, 110 grains, after (a) 100 and (b)
300 iterations. At 100 iterations, there are 54,197 total grains. After 300 iterations, 14,150 grains remain. Only a subset of
grains is shown, as otherwise the entire volume would be filled.
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Figure 5: Three consecutive cross-sectional slices taken from simulation at 300 iterations. The full slice is shown in (a) and
zoomed in on in (b). The curved nature of the interfaces is easily seen. The angles observed at triple junctions need not be
120◦ as the cross-section need not be oriented along the triple lines. (c) Two-dimensional simulation results. Triple junctions
all meet at 120◦ angles and grain are more equiaxed, in contrast to the results seen in three-dimensional cross-section in (a)
and (b).

Cross-sections of successive slices at 300 iterations are shown in Figure 5(a) and (b). Compare to Figure
5(c), showing results from a fully two-dimensional simulation, in which all three junctions must have 120◦

angles. The cross-sectional views also feature more grains that are long in one dimension and short in the
other as compared to the two-dimensional simulation results, where grains tend to be more regularly shaped.

3.2.2 Energetics

It is known that, at least in the absence of topological changes, the surface energy E given by (1) decreases
in time under mean curvature motion subject to the Herring angle condition at junctions. It is natural to
expect that E would continue to decrease even through topological changes (critical events). We verified
that our numerical scheme respects this fundamental behavior by evaluating the energy at every time step.
We note that the energy E can be written in terms of the signed distance functions dk(x) and the Dirac
delta function, δ(x), as the following sum of integrals over the computational domain Ω:

E =
1

2

M
∑

k=1

∫

Ω

δ(dk(x))dx. (4)
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Figure 6: (a) The energy E =
P

i<j(area of Γij) decreases monotonically at every iteration. (b) The number of grains N

undergoes a short transition phase of slow decrease then decreases steadily from an initial value N(0) = 133, 110 to a final value
of N(300) = 14, 150.

The factor of 1
2 arises as this formula counts each interface twice. We discretize E as

E =
∆x2

2

∑

k

∑

i,j,ℓ

δ̃(dk(xi, yj , zℓ)). (5)

We utilize a first-order discretization of the delta function, δ̃, following [47]. The energy E is measured
at each time step and is found to decrease monotonically at every time step (see Figure 6(a)) even as the
evolution naturally handles the topological changes involved in the disappearance of over 100,000 three-
dimensional grains through 300 iterations. The evolution of the number of grains is shown in Figure 6(b).
After a short transition period (approximately 20 iterations), the number of grains in the system decreases
steadily. Notice that even during this transition period, the energy of the system is decreasing quickly. It
should be pointed out that when formulating front tracking methods, one must “by hand” make sure that
the energy decreases through topological changes whereas here it occurs naturally.

3.2.3 Grain growth rate and grain size distribution

The average grain size, 〈RV 〉, and the grain size distribution function, f(RV /〈RV 〉), are probably the most
important statistical quantities used to characterize a polycrystalline material. Here RV = (3V/4π)1/3 where
V is the volume of a grain. Analytical approaches [18, 23, 32], experimental results (as reported in [2]), and
simulation results, e.g. [2, 54], suggest that the average grain radius 〈RV 〉 exhibits power law growth as a
function of time: 〈RV 〉 ≈ Ctn, for t large. Analytically, the prediction n = 1/2 has been made using a variety
of considerations. The experimental results reported in [2] find 1/4 ≤ n ≤ 1/2. In their own simulation, [2]
report that n = 0.48± 0.04 for fits to long-time data (obtained by discarding data from the initial transition
phase of the simulation). In [54], the authors show approximately linear long-time dependence of 〈RV 〉2
on t. This simulation contains just 1000 grains initially, so the statistical precision of this measure is low.
Furthermore, three-dimensional simulations via front tracking require that explicit assumptions be made on
the types of topological changes that can occur.

As normal grain growth is characterized by the self-similarity of the distribution of RV /〈RV 〉, it follows
that 〈V 〉 ∝ t3n. In Table 1, we fit 〈V 〉 = 1

N(t) to the function atb +c, where c ≈ 〈V (0)〉 and mollifies the effect

of the initial grain size distribution on the fit. The fits are quite tight, with all reliability factors < 0.7%.
Equating b = 3n, we find that our simulation predicts 0.501 ≤ n ≤ 0.518 with 95% confidence. The fit of
2.58t1.515 + 5.27 × 10−6 to 〈V 〉 is plotted in Figure 7.

The grain size distribution function f(RV /〈RV 〉) is defined by

f(ξ)dξ = Proportion of grains with normalized radius RV /〈RV 〉 ∈ [ξ, ξ + dξ). (6)

In Figure 8, we show histograms for this distribution at a variety of stages in the simulation. The distribution
changes greatly throughout the evolution. The initial condition is approximately the Voronoi condition for a
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Time Interval a b c χ1 χ2 χ3

0 < t ≤ 300∆t 3.272 1.550 ± .004 6.926× 10−6 3.79 × 10−3 2.98 × 10−3 2.29 × 10−3

50∆t < t ≤ 300∆t 2.743 1.524 ± .003 6.471× 10−6 4.38 × 10−3 2.28 × 10−3 2.18 × 10−3

100∆t < t ≤ 300∆t 2.580 1.515 ± .005 6.270× 10−6 4.86 × 10−3 1.88 × 10−3 1.57 × 10−3

150∆t < t ≤ 300∆t 2.603 1.517 ± .013 6.303× 10−6 6.05 × 10−3 3.22 × 10−3 2.89 × 10−3

Table 1: Fit of the data 〈V (t)〉, taken from the specified time interval, to atb + c. b is given with 95% confidence interval.
The reliability factor χ ≡

P

i |x
obs
i − xcalc

i |/
P

i |x
obs
i |, where obs denotes the observed value and calc denotes the calculated

value from the fitted function. χ1 gives the reliability factor computed over the interval 0 < t ≤ 300∆t, χ2 over the interval
50∆t < t ≤ 300∆t, and χ3 over the interval 100∆t < t ≤ 300∆t.
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Figure 7: The average grain volume 〈V 〉 compared to the best-fit power function atb + c fitted by non-linear least squares to
the data from 100∆t < t ≤ 300∆t (see Table 1). Aside from the brief transition period, the fit is indistinguishable from the
simulation results.

randomly distributed set of points. The initial distribution of grain sizes is very narrow and sharply peaked.
The distribution flattens out rapidly and appears to approach a self-similar state, characteristic of normal
grain growth. This self-similar distribution appears to be attained by approximately 200 iterations and is
maintained thereafter.

Another way to assess the self-similarity of the distribution of the grain size distribution function across
iterations is to look at the evolution of the central moments of the various distributions obtained. For these
distributions, the first moment is by definition 1 and the first central moment is always 0. The variance
and skewness (E[(X − E[X ])j ], for X = RV /〈RV 〉 and j = 2 and 3, respectively) are plotted in Figure 9.
These measures appear to be approximately constant for t ≥ 200∆t, agreeing with the visual impression of
self-similarity obtained from Figure 8(c).

Many closed-form distributions have been suggested as appropriate fits for the distribution f(R/〈R〉),
including:

• The Louat distribution [32],
fL(ξ) = 2αξ exp(−αξ2), (7)

where α is a fitting parameter.

• The Hillert distribution [23],

fH(u) = (2e)β βu

(2 − u)2+β
exp

( −2β

2 − u

)

, (8)

where u = R/Rcr and β is the dimensionality of the problem. In three dimensions, Hillert calculates
Rcr = 9

8 〈R〉, so ξ ≡ R/〈R〉 = 9
8u, resulting in

fH(ξ) = (2e)3
64

27

ξ

(2 − 8
9ξ)5

exp

( −6

2 − 8
9ξ

)

. (9)
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Figure 8: The distribution of RV /〈RV 〉 is shown at various times. (a) The distribution of the initial condition and after 50
and 100 iterations. The distribution is initially quite narrow but rapidly broadens. (b) At 100, 200, and 300 iterations. The
distributions at 200 and 300 iterations are slightly wider than at 100 iterations and exhibit self-similarity. (c) At 200, 250, and
300 iterations, the grain size distributions appear to be self-similar.
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Figure 9: The variance and skewness of the distribution of RV (t)/〈RV (t)〉 are compared across iterations. While the variance
of the distribution in particular changes rapidly early in the evolution, the variance and the skewness of the distribution are
approximately constant from 200 iterations and onwards, demonstrating the self-similarity of the distribution.
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Grain size log–normal generalized Louat Hillert Rios Weibull
measure µ σ χ α χ χ ν χ β χ

RA 0.074 0.574 0.335 0.685 0.152 0.389 2.14 0.221 2.07 0.171
RV 0.056 0.417 0.282 0.741 0.330 0.128 3.34 0.031 2.80 0.104

Table 2: Least squares best-fit parameters and reliability factor χ for simulation data at 300 iterations (with 14,150 grains) to
various distributions. The Rios distribution, with ν = 3.34, fits the fully three-dimensional data very well. The observations
made from two-dimensional cross-sections do not fit any of the distributions as well, but are best predicted by the generalized
Louat distribution, with α = 0.685. Note that the Weibull distribution does not fit the simulation distribution of RA/〈RA〉
well, as the grain size distributions for two-dimensional growth and cross-sections of three-dimensional grain growth are known
to disagree (for example, in [13]).

• The Rios distribution [42], a modification of the Hillert distribution (Hillert arises in the limit ν → 4):

fR(ξ) =
ξε2H0ν

H0/2

(ε2ξ2 − νεξ + ν)1+H0/2

× exp

[

− H0ν√
4ν − ν2

(

tan−1

(

2εξ − ν√
4ν − ν2

)

+ tan−1

(

ν√
4ν − ν2

))]

, (10)

where ε and H0 are determined by the choice of the free parameter ν.

• The Weibull distribution, proposed by Fayad, Thompson and Frost [17] as a model for fully two-
dimensional grain growth, occurring, for example, in thin-film experiments:

fW (ξ) = β

(

Γ

(

1 +
1

β

))β

ξβ−1 exp

(

−
(

Γ

(

1 +
1

β

))β

ξβ

)

, (11)

where β is a fitting parameter.

• The log–normal distribution is proposed in [18] as the distribution of grain radii in cross-sections of
three-dimensional experiments.

fLN(ξ) =
1√

2πσ2ξ
exp

(−(log ξ − µ)2

2σ2

)

, (12)

where log ξ is normally distributed with mean µ and variance σ2.

These distributions are compared to the distribution of ξ = RV /〈RV 〉 in Figure 10(a). The Rios distri-
bution (10), with ν = 3.34, appears to fit our simulation data the best. The log–normal (12) and Louat
distributions (7) fit quite poorly, showing the wrong behavior near ξ = 0, for large ξ, and also peaking at
ξ < 1, all in disagreement with the simulation results. The Weibull (11) and Hillert distributions (9) show
a better fit but can be seen both visually and by reliability factor (Table 2) to be inferior to the fit of the
Rios distribution.

We also fit these distributions to data from cross-sections of the three-dimensional simulation. This is
of interest as experimentally it is difficult to slice materials thinly enough for the experiments to be two-
dimensional in nature; and it is also difficult to determine the volume of physical three-dimensional grains.
It is easiest to take cross-sections of three-dimensional grains and measure areas and effective radii in cross-
section. Defining RA =

√

A/π, where A is the area of a grain in cross-section, we generate the distribution of
ξ = RA/〈RA〉 from the simulation data at 300 iterations. We take 512 cross-sections of constant z-value and
aggregate the grain slice area data across all these cross-sections to create the simulation distribution. These
cross-sections contain a total of 368,138 two-dimensional grain slices. In Figure 10(b), we fit this distribution
to the closed-form distributions discussed previously. None of these distributions fit the cross-sectional data
as well as the Rios distribution fit the fully three-dimensional data taken from grain volumes. The Louat
distribution fits the data the best with α = 0.685 but with a reliability factor of χ = 0.152. For comparison,
the Rios distribution fits the three-dimensional data with χ = 0.031. Figure 10(c) compares the simulation
distributions of ξ = R/〈R〉 for R = RV and R = RA (from the three-dimensional data, and from cross-
sections of the three-dimensional simulation, respectively). The distribution of RA/〈RA〉 is much flatter and
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Figure 10: (a) Comparison of the distribution of ξ = RV /〈RV 〉 at 300 iterations (with 14,150 grains) to least squares best-
fit predictions to Louat, log–normal, Hillert, Rios and Weibull distributions. Note that the Louat, log–normal and Weibull
distributions predict the peak of the distribution to occur at RV /〈RV 〉 < 1, while the simulation distribution peaks to the
right of 1. The peak of Hillert’s distribution occurs at RV /〈RV 〉 = 9/8, agreeing well with our simulation results. However,
the Hillert’s distribution predicts a higher peak and narrower distribution than we find in the normal grain growth phase. The
Rios distribution is a modification of the Hillert distribution and matches the simulation results well. (b) Comparison of the
distribution of ξ = RA/〈RA〉 at 300 iterations (with 368,138 grains taken from the 512 cross-sections of constant z-value) to least
squares best-fit predictions under the same distributions. In cross-section, the data best fits the generalized Louat distribution,

though the fit is not tight. (c) Comparison of the distribution functions for radius computed from volume (RV = (3V/(4π))1/3)

from three-dimensional simulation data and for radius computed from area (RA =
p

A/π) from cross-sectional data taken from
three-dimensional simulation. The distribution is much flatter and wider for cross-sectional data.

wider than the distribution of RV /〈RV 〉, reemphasizing the importance of interpreting these distributions
separately.

3.2.4 Topology

Interesting topological characteristics of the grain network include the number of faces, corners and edges
of individual grains in three dimensions, and the number of edges of grains viewed in cross-section. Such
characteristics have been the subject of numerous experimental studies (e.g. [10, 24, 41, 60, 61]). Here we
compare the topological measures extracted from our large 3D simulation to those obtained from experimental
data as well as to those from other simulations. In all the following results, we take data from T = tfinal =
300∆t. At this time, 14,150 grains remain. In the 512 cross-sections of constant z-value, there are a total of
368,138 grain slices.

In order to count faces, corners and edges of individual grains at any fixed time T in the evolution, each
grid point in the discretization is assigned a value from the set {1, . . . , N(T )} corresponding to the grain
at that location. The number of faces of grain i is then the number of unique identifiers different from i
contained in a 1-neighborhood of the set of grid points that have identifier i. Counting corners is more
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2〈e〉/〈f〉 〈f〉 〈c〉 Reference
Simulation 5.12 13.79 23.52

Potts model Monte Carlo simulation 5.14 12.85 22.19 [2]
Potts model Monte Carlo simulation — 13.7 — [57]

Vertex dynamics 5.01 13.8 — [58]
Phase field simulation 5.07 13.7 23.1 [30]

Surface Evolver simulation 5.05 13.5 22.6 [55]
Pentagonal dodecahedron 5 12 20 [49]

Tetrakaidecahedron 5.143 14 24 [48, 59]
Voronoi model 5.27 15.54 27.07 [35]

Johnson–Mehl model 5.10 13.27 22.56 [35]
Austenite grains — 12.6–13.4 — [31]

1015 α–iron grains — 12.1 — [61]
30 β-brass grains 5.142 14.5 24.852 [10]
β-brass grains 4.92 11.16 — [24]

100 Al–Sn alloy grains 5.06 12.48 21.04 [60]

Table 3: Summary of topological data for simulations, regular polyhedra, and experiments. 2〈e〉/〈f〉 gives the mean number of
edges per face, while 〈f〉 and 〈c〉 give the mean number of faces and corners, respectively. In [31], the authors report that 〈f〉
increases as a function of annealing time, through 50 minutes.

challenging. In three dimensions, corners are characterized as being locations where four or more grains
come together. We denote the set of all such locations as C. Because adjacent grid locations may, as part
of a highly resolved corner, be marked as each being such a location, we take the number of connected
components of C (as opposed to simply the number of points in C) within a single grain to be the number
of corners possessed by that grain. However, this procedure will cause two corners connected by a short
edge to be counted as one. To alleviate this problem, we subdivide the grid twice before applying the above
procedure (so that a grid of size n × n × n is subdivided to size 4n × 4n × 4n before counting vertices).
Having thus counted the number f of faces and the number c of corners as described above, we appeal to
the well-known formula c − e + f = 2 of Euler to infer the number e of edges of each grain. This formula
holds for all polyhedra that are topologically equivalent to the sphere, which appears by inspection to be
true for all the grains in our simulations of grain growth.

Data for the mean number of edges per face, mean number of faces, and mean number of corners is pre-
sented in Table 3 and compared to other simulations, to data reported for some regular polyhedrally-based
grain models, and experimental results. The summary statistics vary some with the simulation technique.
Ours are well within the range of values found with other simulation techniques (though the other simu-
lations were smaller and must be less statistically valid whether due to a smaller number of grains or the
potential effects of ensemble averaging). Regular polyhedra such as the pentagonal dodecahedron and the
tetrakaidecahedron have been proposed as space-filling approximations for grain shapes [35, 48, 59], though
experimentally it is well-known that grains come in a variety of shapes and sizes. The tetrakaidecahdron
matches the mean values we found well, but cannot explain more complex features of grain growth, such as
the grain size distribution function (6). The Voronoi model is generated by distributing seeds uniformly at
random and growing crystals simultaneously and isotropically from these seeds. The Johnson–Mehl model
grows crystals isotropically but allows for varying nucleation times [35]. Both these models ignore grain
boundary motion due to interface curvature, holding grain boundaries stationary once crystals meet. These
are in fact models for recrystallization, which we discuss in Section 4, with an energy given by (3), in the
limit λ → ∞. The experimental data contains a wide range of values, clearly demonstrating the difficulty of
computing these measures in three dimensions and also suggesting that other higher-order effects (such as
variable surface tension and mobility due to grain boundary misorientation and inclination) play an impor-
tant role in the evolution of polycrystalline grain systems. In future work, we will investigate extending our
algorithm so that such effects can be simulated.

In Figure 11, we plot the frequency with which grains with f faces occur. The distribution is skewed
towards grains with many faces. The peak occurs at f = 12 faces and the mean number of faces is 〈f〉 = 13.79.
It is natural to expect that larger grains will have more faces, on average. However, the exact nature of this
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Figure 11: The proportion of grains with a given number of faces is plotted (solid circles). The peak occurs at f = 12 faces.
Experimental data from [61] is also plotted (triangles). Note that this experimental data predicts a smaller mean number of
faces (12.1) than other experimental and simulation data. See Table 3.

relationship is unknown. Figure 12 shows the relationship between the mean value of RV /〈RV 〉 for grains
with f faces and f , as determined from our simulation data. We also compare with measurements made by
Rhines and Patterson [41] on aluminum, by Zhang, et al. [61], on α-iron, and with simulation data generated
by Anderson, et al. [2], using a Potts model and kinetic Monte Carlo techniques. The fit, particularly to the
data for aluminum, is quite good and appears to describe the experimental data better than the linear fit
posited in [2]. The simulation results of Anderson, et al., do appear to fit the measurements of Zhang, et
al., well for small f , but poorly for large f .

In Figure 13(a), the mean number of corners for grains with f faces is plotted against f . Stable corners
occur where three triple lines come together. Under the assumption that every corner is stable, 3c = 2e.
Together with Euler’s formula, we can then calculate the number of corners and edges as a function of the
number of faces f as c(f) = 2(f − 2) and e(f) = 3(f − 2). This prediction of a linear relationship between
c and f is also plotted in Figure 13(a), and agrees very well with the values obtained by counting corners
using the method described above. Note that Figure 11 illustrates that very few grains have less than 4 or
more than 30 faces, so small inaccuracies in the count or the presence of only a few unstable corners will
cause the small deviations from the prediction shown. Figure 13(b) shows similar correspondence between
the simulation-determined values and the predicted values for the mean number of edges per face among
grains with f faces.

The three-dimensional version of the Aboav–Weaire law [1, 56], proposed by Edwards and Pithia in [12]
provides a relationship between the number of faces f exhibited by a grain and the mean number of faces of
its neighboring grains, Mf :

Mf = 〈f〉 − 1 +
〈f〉 + µf

f
, (13)

where µf is the variance of f . Following Wakai, et al., [54], we plot the mean value of 〈fMf 〉 against f and find
the linear relationship predicted by Edwards and Pithia, but find the best linear fit to be fMf = 13.6f+25.4.
This is in good agreement with the results of Wakai, et al., who found fMf = 13.3f + 23.4. Based on their
experimental data, Zhang, et al. [61] found fMf = 13.97f+12.61. Equation (13) predicts fMf = 12.8f+37.7,
using the values of 〈f〉 and µf determined by our simulation data. Thus simulation, experiment, and theory
for the three-dimensional Aboav–Weaire law agree well up to an additive constant. See Figure 14(a) for
simulation data and best fit line.

In two dimensions, the well-known von Neumann–Mullins relationship [37] states that grains with more
than six sides grow, and grains with fewer than six sides shrink:

dA

dt
=

π

3
(n − 6), (14)
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Figure 12: The relationship between the number of faces f and the mean value of RV /〈RV 〉 for grains with f faces is plotted
(solid circles) and compared to (a) measurements for Al [41], reproduced from [2], (b) measurements reconstructed from serial
sections of α-iron [61], (c) simulation data of Anderson, et al. [2]. In (d), all three are shown for comparison, with Al data
marked by triangles, α-iron data by stars, and Anderson, et al. simulation data by squares.

0 5 10 15 20 25 30 35 40
0

10

20

30

40

50

60

70

80

Number of faces

〈N
um

be
r 

of
 c

or
ne

rs
〉

(a)

0 5 10 15 20 25 30 35 40
0

1

2

3

4

5

6

7

8

Number of faces

〈E
dg

es
/F

ac
e〉

(b)

Figure 13: (a) There appears to be a linear relationship between the number of faces f and the mean number of corners among
grains with f faces. (b) The mean number of edges per face for grains with f faces is plotted against f . The solid line is the
mean number that would occur if each corner is the meeting of exactly three edges. The good correspondence between the
simulation results and this prediction indicates that the number of corners is being counted accurately.

16



0 5 10 15 20 25 30 35 40
0

100

200

300

400

500

600

Number of faces (f)

〈 f
M

f〉

(a)

0 5 10 15 20 25 30 35 40
−20

−15

−10

−5

0

5

10

15

20

Number of faces

〈(
dV

/d
t)

/R
V
〉

(b)

Figure 14: (a) 〈fMf 〉, the mean of the product of the number of faces of a grain and the mean number of faces of its neighbors
grows linearly as a function of f , matching well with the simulation results of Wakai, et al. [54]. (b) Comparison of the number
of faces, f , to the mean growth rate 〈(dV/dt)/RV 〉 for grains with f faces. Simulation data from 290∆t ≤ t ≤ 300∆t is plotted.
The three-dimensional von Neumann-Mullins prediction is plotted as a solid line for comparison.

where n is the number of sides of the grain. Mullins [38] proposed the following relationship for three
dimensions, relating the growth rate of a three-dimensional grains to the number f of its faces:

〈

1

RV

dV

dt

〉

= F (f)G(f), (15)

where

F (f) =
π

3
− 2 tan−1

(

1.86
√

f − 1

f − 2

)

(16)

and

G(f) = 5.35f2/3

(

f − 2

2
√

f − 1
− 3

8
F (f)

)

−1/3

. (17)

In Figure 14(b), we plot the simulation results for 〈(dV/dt)/RV 〉, taken from 290∆t ≤ t ≤ 300∆t. Due to
the large scale of our simulation, we were only able to store output data from every other iteration. For
grains persisting throughout the given time range, we used centered differencing in time to approximate
dV/dt = (V (t + 2∆t) − V (t − 2∆t))/(4∆t) for t = 292∆t, 294∆t, 296∆t, 298∆t. The simulation results
follow the same curve as the predictions but appear to differ by a constant additive value of approximately
2.2. Our simulation results agree well with those of Wakai, et al. [54] (using Surface Evolver, a front-
tracking software package), and Weygand and Bréchet [58] (via vertex dynamics). Recently, MacPherson
and Srolovitz [33] published a generalization of the von Neumann–Mullins relationship to three dimensions;
however the quantities involved in their formula are quite difficult to calculate numerically. We elect to
compare only to the Mullins generalization, which depends only on the number of faces f .

4 Recrystallization

Recrystallization is an important process for microstructural development in polycrystals. In this process,
grains with lower bulk energy nucleate within existing grains having higher bulk energies. The nucleated
grains can then grow due to the difference in their bulk energies. This process has been studied for over
seventy years. Burke and Turnbull [8] gave a classic review of recrystallization in 1952. For a more recent
review, see Doherty, et al. [11].

4.1 Model

The model for recrystallization we shall use is the one used by Srolovitz, et al. in [50–52]. The growth of a
recrystallized grain is obtained by the addition of a constant term to the normal velocity of grain boundaries
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separating the favored recrystallizing grains from unrecrystallizing grains. In the isotropic case, the normal
velocity (outward from phase k) of interface Γkℓ can then be written as

vn(Γkℓ) = κkℓ + λ(eℓ − ek). (18)

The parameter λ weighs the relative importance of the curvature motion and the constant normal speed at
interfaces separating recrystallized (ek = 0) and unrecrystallized (ek = 1) grains. If phases k and ℓ are both
recrystallized (or both unrecrystallized), ek = eℓ and normal grain growth ensues. An important feature of
recrystallization is nucleation. We shall follow the models proposed in [51] in which each spatial location is
equally likely to be chosen as a nucleation site for a circular (spherical, in three dimensions) grain with a
size probabilistically determined (but chosen to be small relative to the mean grain size). Nevertheless, we
will see that heterogeneities in the recrystallization pattern can arise as a consequence of the dynamics in
certain regimes of the parameter λ (in agreement with [52]). Further we shall consider two possible models
for the nucleation, namely site-saturated and continuous. For site-saturated recrystallization a fixed number
of grains are nucleated at a particular time and random locations. For continuous recrystallization grains
are nucleated at a constant rate at randomly chosen locations.

4.2 JMAK Theory

A normal velocity of the form (18), in the limit λ → ∞, is in keeping with the well-known recrystallization
theory independently developed by Johnson and Mehl [25], Avrami [3–5], and Kolmogorov [29] (JMAK).
JMAK theory is based on the assumption that each nucleated grain grows outward with constant normal
velocity, which occurs in our system by neglecting the curvature term, and is approximated by choices of
λ sufficiently large that the bulk energy term dominates the interfacial energy term in (3). The JMAK
model has associated theoretical results in this limit, predicting the recrystallized volume fraction F to be a
sigmoidal function of time, t, in the form

F (t) = 1 − exp(−ktp), (19)

where k and p are constant. The parameter p can be predicted given the nucleation technique and the
dimensionality of the evolution [9].

4.3 Previous Work

Recrystallization has been simulated mainly with Monte-Carlo Potts models [50–52] and cellular automata
models [22]. As pointed out in [43], these techniques have drawbacks. In the Monte Carlo models already
mentioned, the ratio H/J of two of the parameters in the notation of [43] — where H is the weight of the
bulk energy term and J is that of the surface energy term up to a resolution dependent factor — plays the
role of λ in (3). One difficultly with Monte Carlo simulations is that the stochastic nature of the model
introduces roughness into the boundaries for large H/J , rather than providing the constant normal velocity
expected for recrystallization. Furthermore, the boundary migration rate does not depend in a linear way
on the ratio H/J along surfaces with zero curvature, while the migration rate for our model, given by (18),
clearly varies linearly with λ along such surfaces.

The cellular automata model does give the constant normal velocity expected to result from the bulk
energy term, but the technique does not incorporate the interfacial (surface) energy term into the model, and
simulation results are highly dependent on the details of the local interactions. A hybrid model combining
the Monte Carlo Potts model and cellular automata was investigated in [43]. One difficultly with this model
is in linking the Monte Carlo model to the cellular automata appropriately to capture the relative importance
of interfacial and bulk energies of the system.

The correspondence between the ratio of parameters H/J in the Monte Carlo model of Srolovitz et
al. [50–52], and our parameter λ is λ ≈ (n/2) × (H/J), where n is the number of grid points along one
dimension. In [51], the authors report that metallic systems undergoing recrystallization have H/J in the
range 0.01–0.1, corresponding to λ in the range n/200–n/20. The simulations in [51, 52] take H/J in the
range 0.5–2 resulting in heterogeneous nucleation and H/J in the range 3–5 yielding homogeneous nucleation.
Only in the case of very large recrystallized grains, more appropriate of abnormal grain growth (also known as
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secondary recrystallization) than primary recrystallization (see [50]), can the authors simulate the evolution
using H/J = 0.1. We perform simulations of primary recrystallization with n = 4096 and λ as small as
4096/40, corresponding to H/J = 0.05.

Recrystallization has also been modeled recently via a vertex model [39] and in a level set framework [7].
It is difficult to simulate nucleation (which necessarily produces new vertices that must be connected to
existing vertices) and to accurately calculate curvature using the vertex model. The level set method in [7]
does not include motion by mean curvature, but only motion due to the constant normal velocity arising
from bulk energy differences across interfaces. Multiphase, constant normal velocity motion suffers from
non-uniqueness in the absence of curvature effects, even when away from topological changes. Vanishing
curvature limit is one way to select a solution [40], but the motion computed in [7] is not this solution.
Moreover, in practice, curvature effects (grain growth) are not negligible during recrystallization.

4.4 Procedure

The extension of our algorithm from Section 3.1 to the context of recrystallization, i.e. to interfacial velocities
of the form (18), consists of replacing Step 2 of that algorithm by:

Ak(x) := K∆t ∗ dn
k − 2λ∆tek

We recall that we set ek = 1 for sets containing unrecrystallized grains, and ek = 0 for sets containing
recrystallized grains. We demonstrate this extension with simulations of primary recrystallization in both
two and three dimensions. Two dimensional simulations are useful for visualization of the microstructure.
In three dimensions it is difficult to visualize whole grains. However, most experimental systems of interest
are fully three-dimensional, so statistical measures are of much greater value when obtained from three-
dimensional simulations instead of two-dimensional simulations. In two dimensions we demonstrate the effect
of varying λ, the parameter weighting the relative contributions of the interfacial and bulk components of
the energy. In three dimensions we explore site-saturated and continuous nucleation, and the effect of these
different nucleation processes on the grain size distribution function.

4.5 Two-dimensional site-saturated recrystallization

We first simulate recrystallization in two dimensions, where microstructure is easier to visualize. This allows
for a qualitative understanding of the effect of the parameter λ in recrystallization simulations. We discretize
the unit square into a uniform 4096 × 4096 grid (∆x = 1/4096). Each simulation takes the same initial
condition, with 4,209 circular grains nucleated at sites chosen uniformly at random onto a grain pattern
initially containing 30,842 unrecrystallized grains. The radius of nucleated grains was normally distributed
with mean 4.9∆x and standard deviation 2∆x. The normal distribution was modified so that any grain
assigned a radius less than ∆x was reassigned radius ∆x, preventing the occurrence of extremely small
grains or complications from attempting to assign a negative radius to a nucleating grain.

From (18), it follows that a circular nucleated grain completely contained within an unrecrystallized grain
(i.e. not straddling any grain boundaries) should remain stationary if its radius is equal to 1/λ, as κ = −1/r
for a circular grain. In the first test, we choose λ = 4096, so that the critical grain radius is ∆x. All nucleated
grains are expected to grow (though some may be nearly stationary), and we expect that this simulation
is a good approximation of homogenous nucleation as described by the JMAK formalism. Indeed, after a
short transition period (approximately 10 iterations, through which 6.8% of the area is recrystallized), a
log-plot of time against − log(1−F ), where F is the recrystallized area fraction, appears to be nearly linear,
suggesting a relationship between time and F of the form of (19).

The second simulation takes λ = 4096/10, making the critical grain radius 10∆x, 2.5 standard deviations
larger than the mean nucleated grain radius. We expect that only a small subset of the nucleated grains will
survive and grow — those that are initially very large and those that are sufficiently large and in energetically
favorable positions. In particular, nucleated grains crossing grain boundaries and especially triple junctions
are more likely to survive than those contained entirely within an existing grain. Consequently, one is in a
regime in which heterogeneous nucleation results. This is similar to the simulation performed using Monte
Carlo techniques by Srolovitz, et al. [52].
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Figure 15: A 512 × 512 section of the two-dimensional recrystallizing grain pattern with λ = 4096 after (a) 1, (b) 2, (c) 5, (d)
10, (e) 25, and (f) 75 iterations. Recrystallized grains are shaded in gray. At these times, 0.8%, 1.2%, 2.6%, 6.8%, 30.5%, and
96.0% of the area is recrystallized, respectively. Nearly all nucleated grains grow, almost irrespective of their surroundings.

In contrast to the first simulation, with λ = 4096/10, recrystallization proceeds much more slowly (Figure
17(a) and (b)). Also, only 495 of the original 4,209 nucleated grains remain after recrystallization. In this
simulation, the recrystallized area fraction decreases initially, reaches a minimum near 25 iterations, and
then increases throughout the rest of the evolution. The JMAK formalism, predicting sigmoidal growth,
is insufficient to model the early stages of the evolution of the recrystallized area fraction in this situation
(see Figure 17(c)), as (19) is strictly increasing for t > 0. Later in the evolution, the JMAK prediction is
well-satisfied by this evolution, as demonstrated by the near-linearity of this plot at later times.

4.6 Two-dimensional continuous recrystallization

To show the potential for our algorithm to simulate recrystallization with bulk energy differences similar
to those seen in recrystallization of metals, we perform a simulation with λ = n/40, corresponding to
H/J ≈ 0.05. Here, the critical radius is 40∆x, far larger than any nucleated grain. Thus, for nucleated
grains to grow, they must be situated across grain boundaries or triple junctions, and may also need to
group together spatially with other recrystallized nuclei. In this regime, the majority of nucleated grains
will disappear quickly. To achieve recrystallization, we perform continuous nucleation, still with grain radii
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Figure 16: A 512 × 512 section of the two-dimensional recrystallizing grain pattern with λ = 4096/10 after (a) 1, (b) 75, (c)
275, (d) 610, (e) 905, and (f) 1760 iterations, corresponding to 0.8%, 0.7%, 4.9%, 25.1%, 50.1%, and 95.0% recrystallized area,
respectively. The time of evolution for (b) corresponds to the time of evolution for Figure 15(f), emphasizing the effect of
varying λ. Recrystallized grains are shaded in gray.
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Figure 17: Comparison of results for two-dimensional site-saturated nucleation recrystallization simulations with λ = 4096
(blue) and λ = 4096/10 (red) on the same microstructure of unrecrystallized grains. (a) and (b) The recrystallized area fraction
grows much more quickly for λ = 4096 than for λ = 4096/10. (c) The simulation with λ = 4096 satisfies the JMAK prediction
well after approximately τ = 25 iterations. The simulation with λ = 4096/10 takes far longer to move into the power-law regime
where the JMAK predictions are feasible, over τ = 100 iterations.
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Figure 18: Statistics for the two-dimensional continuous rate nucleation with λ = 4096/40. (a) The number of grain nucleations
is initially ≈ 4000 per time step, and decays as the recrystallized area fraction increases. A total of 1,246,777 grain nucleations
occur during the simulation, though at no time are there more than 13,000 recrystallized grains present in the system. (b) The
total energy (black) is the sum of bulk energy (blue) and interfacial energy (red). The interfacial energy increases initially and
increases due to grain nucleations (which tend to increase the total interface length) but also decreases at each time step due to
the curvature motion. Nucleations decrease the bulk energy. (c) The total number of grains is shown in black and the number
of recrystallized grains is shown in blue. (d) The recrystallized area fraction F as a function of the number of iterations is
presented. (e) A plot of log(1 − F (τ)) vs. (τ) is shown demonstrating that JMAK theory is not applicable in this example.

normally distributed with mean 4.9∆x and standard deviation 2.0∆x. Each grid point corresponding to an
unrecrystallized grain is selected to be the center of a nucleated grain with probability 2.5 × 10−4 at each
time step.

Initially, when the recrystallized area fraction is very small, approximately 4, 200 nucleations are expected
to occur in each time step. Figure 18(a) plots the number of nucleations in each time step. A total of
1, 246, 777 nucleations occur in the entire simulation. Never are more than 13, 000 recrystallized grains
present in the system at one time, and only 1, 841 recrystallized grains are present when the recrystallization
concludes (Figure 18(c)).

Figure 18(b) shows the energy of the system as the evolution takes place. Because nucleation locations
are chosen without regard to their effect on the system energy, the energy for this simulation increases in
the first three time steps. Thereafter, the energy decreases constantly, since in addition to the evolution
of unrecrystallized grains, many grain nuclei disappear in each iteration (helping to counterbalance the
addition of new grain nuclei). This is demonstrated by Figure 18(c), showing the large increase in total
number of grains initially, and the longer-lasting increase in number of recrystallized grains. Both these
measures decrease as the evolution continues. Figure 18(d) shows the recrystallized area fraction F as a
function of iterations performed (τ). Note that in these conditions, the function F (τ) does not appear to
be sigmoidal initially. The deviation from JMAK theory is verified in Figure 18(e), where the relationship
between iterations (τ) and log(1−F (τ)) is shown to be poorly described by a power-law relationship in the
early stages of the evolution.

The recrystallizing grain microstructure is shown in Figure 19. Unlike the site-saturated nucleation
examples, the size of recrystallized grains varies significantly. At intermediate times, this is partially due to
the presence of small, recently nucleated grains that will quickly disappear. Even at the final time, when
recrystallization is complete, there is significant variation in the size of recrystallized grains due to their
different lifespans, depending on when they nucleated.
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Figure 19: A 512 × 512 section of the two-dimensional recrystallizing grain pattern with λ = 4096/40 and continuous rate
nucleation after (a) 1, (b) 25, (c) 75, (d) 195, (e) 300, and (f) 555 iterations. These correspond to 0.01%, 5.0%, 8.8%, 25.1%,
49.7%, and 95.0% recrystallized area, respectively. Recrystallized grains are shaded in gray. There are many nucleated grains
completely contained within unrecrystallized grains at later times due to the continuous nucleation; however, these grains are
very unlikely to survive.
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Figure 20: Three-dimensional site-saturated homogenous nucleation: (a) Logarithmic plot of the total number of grains (top)
and number of recrystallized grains (bottom). Initially, recrystallized grains are on average much smaller that unrecrystallized
grains. Only a few (approximately 150) survive and grow but these quickly come to dominate the unrecrystallized grains. (b)
Evolution of the energy. Note that both the bulk energy (blue) and the interfacial energy red) decrease at each time step. The
black line is the total energy, the sum of the interfacial and bulk energy terms. (c) Comparison of the recrystallized volume
fraction computed from simulation (dotted) and fit to JMAK prediction F (τ) = 1−exp(−kτ3), k = 6.3×10−7 (solid). (d) JMAK
theory predicts a power-law relationship between log(1 − F (τ)) and iteration τ . For site-saturated homogeneous nucleation in
three dimensions, the Avrami exponent is predicted to be 3 (appearing as a line with slope 3 (red) in the logarithmic plot of
simulation data (dotted)).

4.7 Three-dimensional recrystallization

We perform two simulations of recrystallization in three dimensions on a 256 × 256 × 256 discretization
of [0, 1]3. The same initial condition of unrecrystallized grains was used for both simulations. This initial
condition contained 16,767 grains. As before, in both of our simulations all nucleation is equally likely to
occur anywhere in the computational domain, without regard to the pre-existing microstructure.

In the first simulation, we perform site-saturated nucleation (all nucleation occurs at the initial time)
in the heterogeneous nucleation regime of the parameter λ. We nucleate 960 spherical grains, with radii
uniformly distributed in the range [∆x, 6∆x] (where ∆x = 1/256), and choose λ = 256/10. From (18),
it is immediately clear that any spherical nucleated grain not intersecting a grain boundary (i.e., entirely
contained in the interior of a single unrecrystallized grain) with radius less than 20∆x should shrink and
disappear. Indeed, many of the nucleated grains disappear very quickly. Figure 20(a) shows the evolution of
the total number of grains and the number of recrystallized grains. Only 552 recrystallized grains survive the
first time step, as many of the small nucleated grains disappear immediately. See Figure 21 for snapshots of
a slice of the three-dimensional evolution. As no new grains are nucleated in the system after initialization,
the energy of the system decreases monotonically (Figure 20(b)).

For site-saturated nucleation in three dimensions, the value of p in (19) is predicted to be 3 [9]. In Figure
20(c), we plot the simulated recrystallized volume fraction against the fit F (τ) = 1 − exp(−6.3 × 10−7τ3),
where τ is the number of iterations (τ = t/∆t), a simple linear rescaling of time. Figure 20(d) demonstrates
the match of the simulation data to (19), with p = 3 (represented as a linear function with slope three on
logarithmic axes). The simulation data does not fit the prediction well during a transition period early in the
simulation (τ < 25) but matches very well thereafter. This behavior (an initial transition period followed
by good agreement with JMAK predictions) matches what is seen in two-dimensions for the equivalent
parameter choice of λ = n/10, on a uniform grid of n grid points in each dimension.

The second simulation models continuous nucleation: at each time step, each unrecrystallized grid site
has a fixed probability of nucleating a grain. We set the probability for a given unrecrystallized site to
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Figure 21: A slice of the three-dimensional recrystallizing grain pattern with site-saturated nucleation at (a) 1.1%, (b) 8.8%,
(c) 26.5%, (d) 52.2%, (e) 76.2% and (f) 94.5% recrystallization. Recrystallized grains are shaded in gray.
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nucleate a grain at each iteration to be 10−6. This choice of probability predicts that ≈ 15–20 nucleations
should occur in each time step when there are few recrystallized grain sites. Again we nucleate spherical
grains, with radii uniformly distribution in [∆x, 6∆x] and fix λ = 256/10, corresponding to H/J = 0.2,
which was observed in two dimensions to fall into the heterogeneous nucleation regime. The evolution in the
number of grains (both total and recrystallized) is shown in Figure 22(a). The number of recrystallized grains
increases fastest early in the simulation, when there are many sites available for nucleation. Later in the
simulation, the number of recrystallized grains decreases as there are few sites available for recrystallization
and the curvature motion between recrystallized grains in contact with each other is the main force driving
the evolution.

The energy of the system (subdivided into bulk energy and interfacial energy terms) is shown in Figure
22(b). In contrast to the energy for site-saturated nucleation (Figure 20(b)), this energy increases rapidly
initially. The nucleation of new recrystallized grains is a discontinuous process and is performed randomly
without regard to the change in energy of the system due to the nucleation. Small nucleated grains have a
large surface area to volume ratio, and so tend to increase the interfacial energy of the system more than they
decrease the bulk energy by replacing parts of unrecrystallized grains. This effect is especially noticeable in
the first few time steps and is later covered by the more rapid growth of the larger nucleated grains.

For continuous nucleation, the recrystallized volume fraction, F , is predicted to satisfy (19) with p = 4 [9].
We find that the data fits to F (τ) well, with k = 8.7 × 10−9. Figure 22(d) shows the fit to the predicted
Avrami exponent, comparing the simulation data and fitted functions via the transformation − log(1−F (τ)).
Recall that for the choice λ = 256/10, the evolution is in the regime of heterogeneous nucleation and so is
not expected to fit JMAK predictions tightly during the transition period at the start of the evolution.

Figure 23 shows the evolution of the recrystallization with continuous nucleation. The contrast between
site-saturated (Figure 21) and continuous recrystallization is particularly noticeable at τ = 50, 100, 150.
Under continuous recrystallization, the recrystallized grains show greater variation in size than under site-
saturated recrystallization. The difference is particularly well shown in the histograms of Figures 24 and 25.
The distribution of grain radii is quite bimodal under site-saturation after the nucleated grains begin to grow
large with respect to mean grain size, with clear separation between the distributions for unrecrystallized
and recrystallized grains. In contrast, the distribution of recrystallized grain sizes is much wider under
continuous nucleation. This is to be expected, as the recrystallized grains had different lifespans from which
to grow from the initial nucleation sizes.

The process of nucleation is complex and not completely understood (see, for instance, [11]). However,
the immediate disappearance of the majority of the nucleated grains mitigates the effect of the arbitrary
choice made for the distribution of nucleated grain radii; and it is seen in Figures 21 and 23 that the
recrystallized grains rapidly lose their initial spherical shape due to curvature-based interactions with the
grain boundaries of the surrounding unrecrystallized grains. In the presence of a large λ value (as in some of
our two-dimensional simulations), the bulk energy driving force would more heavily outweigh the curvature
term and in this regime the initial condition used for grain nucleation would have much more impact on the
final microstructure of recrystallized grains.

5 Summary and Conclusions

We apply the algorithm developed in [13,14] based on diffusion generated motion of signed distance functions
to a three-dimensional simulation of grain growth. This approach naturally captures the Herring condition
at triple junctions. In addition, numerical evidence unequivocally shows that the energy of the simulated
system decays, even through topological changes. The efficiency of this algorithm allows us to compute the
accurate evolution of over 130,000 grains until less than 15,000 grains remain. To the best of our knowledge,
this evolution contained at least twice as many grains as any other currently published to date. In the next
largest simulation, [53], the authors implement a phase field model initially containing 50,000 grains on a
512 × 512 × 512 grid. Grains have an average initial size of approximately 14 × 14 × 14 grid points, with a
diffuse interface width ǫ of 3 grid points. This suggests that the initial resolution of their system is quite low.
We are able to verify, with greater confidence, that the coarsening rate for normal grain growth is 〈r〉 ∼ t1/2

and that the grain size distribution function is self-similar. We are also able to provide accurate average
values of the number of edges, corners and faces of individual grains. We observe that in many cases these
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Figure 22: Three-dimensional continuous homogenous nucleation: (a) The total number of grains (top) and number of recrys-
tallized grains (bottom). The number of recrystallized grains increases initially then decreases as the curvature motion becomes
the dominant force in the evolution. (b) The total energy of the system (black), the bulk energy (blue), and the interfacial en-
ergy (red). The nucleation process is not part of the steepest descent evolution and does not guarantee a decrease in the system
energy. (c) Fit of the recrystallized volume fraction F (τ) to (1 − exp(−8.7 × 10−9τ4)) (red). (d) For continuous homogenous
nucleation, the Avrami exponent is predicted to be 4 (represented as a linear function with slope 4 (red) on logarithmic axes).

are in agreement with experimental results. This provides further validation that normal grain growth is
present in experimental settings.

We have extended the algorithm to include a model for recrystallization in both two and three dimensions.
In this model the recrystallized grains have a bulk energy λ less than the unrecrystallized material, meaning
that system’s energy will be lowered if recrystallized grains grow into the unrecrystallized material. Good
agreement with Johnson, Mehl, Avrami, and Kolmogorov (JMAK) theory is found here in the appropriate
large-λ limit. In addition, our algorithm works well for λ that are physically reasonable (moderate λ). This
is notable because Monte Carlo methods are reported not to work well in this regime. The evolution of the
grains at moderate λ values is quite different from large λ because the critical size for nucleated grains is
larger, and the pattern of nucleated grains becomes heterogeneous. Finally, we mention that although these
results are not presented here, we have numerically verified that as λ → ∞, the vanishing surface tension
limit of Reitich and Soner [40] is also obtained by the algorithms presented.
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Figure 23: A slice of the three-dimensional recrystallizing grain pattern with continuous nucleation at (a) 1.2%, (b) 9.8%, (c)
25.9%, (d) 50.9%, (e) 76.4%, and (f) 95.0% recrystallization. Recrystallized grains are shaded in gray.
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Figure 24: Histogram of relative grain sizes for three-dimensional site-saturated nucleation at (a) 1.1%, (b) 8.8%, (c) 26.5%, (d)
52.2%, (e) 76.2% and (f) 94.5% recrystallization. All grains are represented in blue bars. Each blue bar is subdivided into green
and red sub-bars, representing the number of unrecrystallized and recrystallized grains, respectively. Initially the recrystallized
grains are much smaller than the unrecrystallized grains, but that at later times, the recrystallized grains are much larger, on
average. Recall from Figure 20(a) that the total number of recrystallized grains changes very little after the first 25 iterations.
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Figure 25: Histogram of relative grain sizes for three-dimensional continuous nucleation at (a) 1.2%, (b) 9.8%, (c) 25.9%, (d)
50.9%, (e) 76.4%, and (f) 95.0% recrystallization. All grains are represented in blue bars. Each blue bar is subdivided into
green and red sub-bars, representing the number of unrecrystallized and recrystallized grains, respectively. Small recrystallized
grains are present in higher frequencies than under site-saturated nucleation (compare to Figure 24).
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