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Abstract

Diffusion generated motion is used to perform a very large scale simulation of normal grain growth in

three dimensions with high accuracy. The method is based on the diffusion of signed distance functions

and shares similarities with level set methods. The Herring angle condition at junctions and topological

transitions are naturally captured with this formulation. This approach offers significant advantages over

existing numerical methods and allows for accurate computations on scales not previously possible. A

fully-resolved simulation of normal grain growth initially containing over 130,000 grains in three dimen-

sions is presented and analyzed. It is shown that the average grain radius grows as the square root of

time and the grain size distribution is self-similar. Good agreement with other theoretical predictions,

experimental results, and simulation results via other techniques is also demonstrated.
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1 Introduction

Grain growth is an important process by which the microstructure of a polycrystalline material (including
most metals and ceramics) evolves during manufacturing processes. Statistical measures of the resultant mi-
crostructure affect important macroscale properties of the material, such as its conductivity and brittleness.
Manufacturing processes must typically be tuned to provide for an optimal blend of desired material proper-
ties; however, performing such tuning experimentally is costly and time consuming. As a result, simulations
of grain growth have been attempted using a variety of numerical techniques. Several common techniques
are described in Section 3.

Grain growth occurs when polycrystalline materials are annealed. The well-known model for grain growth
[3, 15, 31] gives the normal velocity (outward from phase Σk) of the interface Γk` by

vn(Γk`) = µγk`κk`, (1)

Here, µ denotes the boundary mobility, γk` the grain boundary energy per unit area for the interface Γk`,
and κk` the mean curvature of the boundary separating two grains. We use the convention that if phase Σk

is a spherical grain of radius r surrounded by phase Σ`, κk` = −2/r.
We specialize to the case where all surface tensions are constant and equal: γ = γk`, often called “isotropic

grain growth.” We aim to extend to the more general case given by Equation 1 in future work. The theory
for this extension is complete in two dimensions in the absence of topological events. Additional study
of topological events such as the division of four junctions following grain disappearence is still required.
Here, we nondimensionalize the normal velocity using the mean initial grain radius 〈r0〉, derived from the
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mean initial grain volume 〈V0〉 by 〈r0〉 = (3〈V0〉/(4π))1/3. We define the nondimensionalized curvature as
κ?

k` = 〈r0〉κk`. We further nondimensionalize the velocity as vn(Γk`) = V ·v?
n(Γk`), with velocity V = 〈r0〉/T

and time T = 〈r0〉2/(µγ), so that
v?

n(Γk`) = κ?
k`. (2)

As shown in [33] and [52], this nondimsionalized normal speed arises as gradient descent for the nondi-
mensional energy

E? =
∑

k<`

(area of Γk`). (3)

We note that the time scale T is chosen so that t? = 1/4 is the time required for an isolated grain of
radius 〈r0〉 to disappear under pure curvature motion in the nondimensional system. Herafter, we drop the
? notation and refer solely to the nondimensionalized quantities, e.g. the nondimensionalized energy E? will
be referred to as E.

The algorithm used in this work is fully described in [7]. For the convenience of the reader, we briefly
discuss it in Section 2. In this work, we present a large-scale three-dimensional simulation of grain growth, far
beyond the scale of simulations presented previously. This simulation is performed on a parallelized version
of the code executing on a large cluster. The results are analyzed in great detail and compared to numerous
theoretical predictions, results from experiments and smaller simulations performed with various numerical
methods. The initial condition contains over 130, 000 fully resolved grains and the evolution is simulated until
only about 14, 000 remain. We present various statistics collected throughout this simulation. In particular,
we demonstrate the anticipated self-similar character of the grain size distribution as it evolves in time.
Furthermore, our results show good agreement with other three-dimensional predictions for grain growth,
such as power law growth of the mean grain volume, and three-dimensional version of the Aboav–Weaire
law [1, 45] and the Mullins extension of the two-dimensional von Neumann–Mullins relationship [32].

2 Algorithm

Our algorithm is an extension of distance function-based diffusion generated motion [8], which is in turn
a variant of the threshold dynamics scheme proposed by Merriman, Bence, and Osher [30]. The threshold
dynamics scheme reduces the computation of various geometric motions of an interface to the alternation of
two highly efficient operations: convolution of a characteristic function representing the interior of the inter-
face with a circularly symmetric kernel, and thresholding the convolution output to return to a characteristic
function. On a uniform grid with n grid points, the complexity of these operations is just O(n log n) per time
step. The method is also unconditionally stable, so that the only restrictions on the size of the time step are
due to accuracy considerations. A major drawback of the threshold dynamics algorithm is that it is very
inaccurate on uniform grids, because the interface must be represented as the boundary of a characteristic
function, disallowing any possibility of sub-grid accuracy in the absence of adaptive grid refinement (as is
explored in [38]).

A signed distance function-based algorithm for diffusion generated geometric motions of the same types
attainable by threshold dynamics is proposed in [8]. This algorithm is a modification of the threshold
dynamics algorithm, replacing the characteristic function of the set used in threshold dynamics with a signed
distance function to the boundary of the set, and the thresholding operation by a redistancing operation.
The redistancing operation reconstructs the signed distance function to the boundary of the set from the
convolution output, much as the thresholding operation reconstructs the characteristic function of the set
from convolution output in threshold dynamics.

Unlike the characteristic function of a set, the signed distance function is a Lipschitz continuous function.
This allows for sub-grid accuracy in locating the interface on a uniform grid. Furthermore, fast algorithms
are known for constructing signed distance functions (e.g. [36, 51]), so that the computational complexity
of the signed-distance function based algorithm is still O(n log n) per time step. A more detailed discussion
of the differences between [30] and [8] can be found in [8].
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The threshold dynamics scheme was extended by Ruuth [37] to multiphase motion by mean curvature, the
case occurring in grain growth, but the same accuracy limitations faced by the original threshold dynamics
scheme still apply. Standard level set techniques have also been applied to the grain growth problem in
[52, 9]. The level set method is a sharp interface method, similar to the signed distance function technique
we use here (which may itself be considered a special type of level set method). Standard level set methods
place only very loose restrictions on the details of the level sets used to implicitly represent the interface. For
example, the size of the gradient |∇φ| of the level set function φ is generally restricted from becoming too
large or too small. This restriction is insufficient for multiphase motion, as first noted and fully explained
in [8]. The standard boundary condition for grain growth is the Herring angle condition, described in [16].
For equal surface tensions, the condition states that triple junctions must meet at angles of 120◦. In level
set methods, an O(1) error is in general introduced in the motion of triple junctions due to differences in the
profiles of the level sets representing the three phases. This error also prevents the correct angle conditions
from being obtained.

In contrast, [8] provides analytical justification and extensive numerical convergence studies showing that
the correct behavior is obtained at junctions under the multiphase version of the signed distance function-
based algorithm for motion by mean curvature introduced there. The algorithm for multiphase motion
is given in [8], with an enhancement allowing for the simulation of N grains using only M � N signed
distance functions described fully in [7]. This is achieved by representing large collections of individual, well-
separated grains with a single signed distance function. Easily implemented precautions are taken to prevent
non-physical interactions from occurring between grains contained in a single signed distance function.

The signed distance function-based algorithm for multiphase motion by mean curvature described in [7]
and applied in this work can be thought of as a particular type of level set method. In order to obtain the
correct behavior at triple junctions, there is a stronger restriction on the level sets than ordinarily enforced;
however, other hallmarks of the level set method are retained: the interfaces are implicitly represented (the
algorithm operates only on the values of the signed distance function at grid points), sub-grid accuracy
is obtained due to the Lipschitz continuity of the level sets, and the interface is sharp (unlike phase field
methods, in which the interface is represented by a diffuse transition layer). On the other hand, standard
level set methods for evolution by mean curvature require the solution of a degenerate, highly nonlinear
partial differential equation. In contrast, the present algorithm is unconditionally stable (allowing much
larger time steps to be taken), a feature inherited from its close connection to the diffusion generated motion
of threshold dynamics.

The initial condition is taken to be the Voronoi diagram for N0 seeds placed uniformly at random in the
computational domain D. The N0 initial grains are contained in sets Σi, i = 1, . . . , N0, with ∪iΣi = D and
∩iΣi = ∅. We partition the sets Σi into M � N0 disjoint sets Ξk, such that ∪N0

i=1Σi = ∪M
k=1Ξk. We maintain

M signed distance functions dk(x), giving the signed distance to the set Ξk, with dk(x) > 0 for x ∈ Ξk. For
example, in the grain growth simulation described in Section 4 we have N0 = 133, 110 and M = 64. The
signed distance functions are updated using the following algorithm:
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For j = 0, . . . , jmax, perform steps 1–4.

1. Compute Ak(x) := K∆t ∗ dj
k for k = 1, . . . , M , where

K∆t = G∆t or K∆t =
1

4

(

4G 3

2
∆t − G3∆t

)

with G∆t =
1

4π∆t
e−

|x|2

4∆t .

2. Construct Bk(x) for k = 1, . . . , M to remove overlaps and vacuums from the
previous step:

Bk(x) =
1

2

(

Ak(x) − max
`

{A`(x) : ` 6= k}
)

3. Construct the signed distance function d
j+ 1

2

k (x) for k = 1, . . . , M according to

d
j+ 1

2

k = Redist (Bk(x)) .

4. If necessary, swap appropriate grains between signed distance functions to
ensure that all the grains associated to given signed distance function remain
well separated. Denote the resulting signed distance functions as dj+1

k .

For a full description of the algorithm, the reader is referred to [7]. We use a simple cubic lattice with
periodic boundary conditions to avoid introducing boundary effects into the evolution except in the case
that a single grain grows so large as to be adjacent to itself across a periodic boundary. Such a case cannot
arise in normal grain growth until only very few grains remain (e.g. N(t) � 1, 000), which does not occur
in the results reported here.

The computational complexity of our algorithm is formally O(nM log n), where M is the number of level
set functions used, and n is the total number of grid points in each set. For a single signed distance function,
both the convolution step and the redistancing operation are O(n log n). The algorithm is second-order
accurate in space and first-order accurate in time away from triple points. At triple points, analysis and
experiment in [8] suggest that the error is O(

√
∆t).

3 Previous Work

A number of other numerical methods have been used to simulate grain growth in previous work. One of
the best-known techniques is the Monte Carlo Potts model, implemented in [2]. This model approximates
curvature motion by a stochastic series of near-interface cell flipping steps. While the basic Monte Carlo
method is quite easy to implement, it is extremely slow and lacks sub-grid accuracy. Furthermore, the
stochastic nature of the Monte Carlo evolution ensures that some type of averaging is needed to approximate
the true continuum motion. For example, the evolution of a simple circle by mean curvature is very difficult
to capture accurately using Monte Carlo methods even on a well-resolved grid. Beyond these significant
accuracy concerns, it is also difficult to connect the Monte Carlo method with some notion of “real” time
beyond reorientation attempts.

Front-tracking techniques have also been used to simulate mean curvature motion in both two [20,
23] and three [43, 23] dimensions. A major advantage of these techniques is computational efficiency, as
computational resources are all devoted to the interface region. The fundamental difficultly inherent to this
approach is managing the topological changes that abound in grain growth. With explicit representations of
the interface, it is difficult to check if curves (in two dimensions) or surfaces (in three dimensions) intersect.
In the case of two-dimensional mean curvature multiphase motion, it is expected (though not fully proven,
see [28]) that interfaces interact only through junction–junction collisions. If this conjecture is true, explicitly
checking for and handling topological changes may be manageable in this case. However, no such condition
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is expected to hold in three dimensions . Pinch-off can occur with only two phases in three-dimensional mean
curvature motion, as in the standard “dumbbell” example. Topological changes of this type are difficult to
detect and manage using front tracking techniques, especially in three dimensions. In contrast, our algorithm
handles topological changes naturally, without any additional computation.

The phase field technique has also been used extensively in simulations of grain growth [10, 13, 24, 22, 42]
and is much more similar to our algorithm than Monte Carlo or front-tracking techniques. In the phase field
method, interfaces are implicitly represented. However, there must be a wide transition region representing
the interface between grains. For example, Kim, et al. [22] report that at least six grid points are needed in
the transition layer to achieve acceptable accuracy. Therefore, a grain needs to be on the order of at least
25 grid points across to be moderately resolved. In contrast, we demonstrate in [7] that we can simulate
evolutions quite accurately with grains approximately ten grid points in each direction, and that we can
track them down to half that length with only a few percent relative error. Though there is no rigorous
notion of generalized solutions with uniqueness through topological changes, we also perform a convergence
study in [7] showing that our simulations track grains through topological changes quite consistently as well.
The large grain size requirement imposed by the phase field model is a serious impediment to performing
very large-scale simulations.

Our algorithm has all the major advantages of these various computational approaches. It is closely
related to both threshold dynamics and level set methods. From threshold dynamics, we inherit unconditional
stability, allowing the choice of time step to be restricted only by accuracy considerations. From level set
methods, we inherit sub-grid accuracy and graceful handling of topological changes, free from user input.
As with front tracking models, we concentrate most of our computational resources at the interface, as the
signed distance function computation (the most computationally intensive part of the algorithm) must be
performed accurately only in a tubular neighborhood of the interface (with width proportional to

√
∆t). As

a discretization of Mullins’ PDE-based continuum description of grain boundary motion, our algorithm does
not suffer from the difficulty of identifying physical time that plagues Monte Carlo-type models.

4 Normal Grain Growth

In this section, a large-scale simulation normal grain growth is described and a wide variety of statistical
measures on the resulting microstructure are reported. The simulation begins with 133,110 grains in the
domain D = [0, 82.306]3 with periodic boundary conditions. The evolution runs for time t = 6.2021, allowing
for over 90% of the initial grains to disappear. D is discretized as a regular cubic lattice of size 512×512×512,
and three hundred time steps are taken, ensuring adequate spatial and temporal resolution. The coarsening
rate is shown to agree well with theoretical predictions. The grain size distribution is calculated, and exhibits
self-similarity. This distribution is compared with a number of different predictions from the literature.
In addition, average numbers of grain edges, faces, and corners are computed and compared with other
computational approaches and experimental data.

4.1 Qualitative microstructure

We present a three-dimensional simulation with an initial condition containing 133,110 grains. The initial
condition was generated as described in Section 2. Figure 1(a) shows a single grain of average size taken
from the simulation at t = 6.2021. At this time, 〈r〉 = 2.11 and 〈V 〉 = 39.40, indicating that mean grain
radius has more than doubled the initial value and the mean grain volume is over 9 times the initial mean
grain volume. The grain appears to be very well resolved. Its faces, edges, and corners are easy to see. The
faces are smooth, and most appear to be concave. Thus this particular grain, which is of average size at this
stage in the evolution, must be growing due to the curvature of its interfaces. Overall, the grain resembles
what is observed in real materials, such as the beta brass grain shown in Figure 1(b).

The coarsening of the grain pattern is demonstrated by Figure 2. Here we display the grains intersecting
the x = 0, y = 0 and z = 82.306 surfaces in the initial condition (a) and after 300 iterations (b). Different
colours correspond to different grains. By volume, the average grain at the end of the simulation is nearly

5



(a) (b)

Figure 1: (a) Two views of a single grain (corresponding to a 180◦ rotation in the xy-plane) chosen from
the evolution after 300 iterations. This grain has nondimensional size 〈r〉 = 2.11, equal to the average grain
size at this point in the evolution. The grain is very well resolved, with faces, edges, and corners all easily
distinguished. (b) A single grain of beta brass, approximately 2 cm in diameter, from the collection of
W.W. Mullins. The photograph is due to K. Barmak and D. Kinderlehrer. The grain compares well to the
simulated grain shown in (a).

ten times as large as the average grain at initial condition. In Figure 3 we show all the grains from five of
the sixty-four total set functions Ξ at t = 2.0674 and t = 6.2021. There is a great variability in the size of
grains seen in this figure, from grains contained within a single grid cell (equivalent radius r ≈ 0.08) which
are about to disappear, to grains with radius r ≈ 4.

Cross-sections of successive slices at t = 6.2021 are shown in Figure 4(a). Compare to Figure 4(b),
showing results from a fully two-dimensional simulation, in which all three junctions must have 120◦ angles.
The cross-sectional views also feature more grains that are long in one dimension and short in the other as
compared to the two-dimensional simulation results, where grains tend to be more regularly shaped.

4.2 Energetics

It is shown in [23] that, at least in the absence of topological changes, the surface energy E given by (3)
decreases in time under mean curvature motion subject to the Herring angle condition at junctions. It is
natural to expect that E would continue to decrease even through topological changes (critical events). We
verified that our numerical scheme respects this fundamental behavior by evaluating the energy at every
time step. We note that the energy E can be written in terms of the signed distance functions dk(x) and
the Dirac delta function, δ(x), as the following sum of integrals over the computational domain D:

E =
1

2

M
∑

k=1

∫

D

δ(dk(x))dx. (4)

The factor of 1

2
arises as this formula counts each interface twice. We discretize E as

E =
∆x2

2

∑

k

∑

i,j,`

δ̃(dk(xi, yj , z`)). (5)

We utilize a first-order discretization of the delta function, δ̃, following [39]. The energy E is measured at each
time step and is found to decrease monotonically at every time step (see Figure 5(a)) even as the evolution
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(a) (b)

Figure 2: Visualization of the grain pattern (a) at initial condition and (b) after 300 iterations. The initial
condition contains 133,110 grains. At t = 6.2021, 14,150 grains remain.
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(a) (b)

Figure 3: Grains from five of sixty-four level set functions in the simulation with initially 133, 110 grains,
after (a) t = 2.0674 and (b) t = 6.2021. There are 54,197 and 14,150 total grains (in all sixty-four sets),
respectively. Only a subset of grains is shown, as otherwise the entire volume would be filled.
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Figure 4: (a) A cross-sectional slice taken from simulation at t = 6.2021. The full slice is shown at left
and zoomed in on at right. The curved nature of the interfaces is easily seen. The angles observed at
triple junctions need not be 120◦ as the cross-section need not be oriented along the triple lines. (b) Two-
dimensional simulation results. Triple junctions all meet at 120◦ angles and grain are more equiaxed, in
contrast to the results seen in three-dimensional cross-section in (a).
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Figure 5: (a) The energy E =
∑

i<j(area of Γij) decreases monotonically at every iteration. (b) The number
of grains N undergoes a short transition phase of slow decrease then decreases steadily from an initial value
N(0) = 133, 110 to a final value of N(6.2021) = 14, 150.

naturally handles the topological changes involved in the disappearance of over 100,000 three-dimensional
grains through t = 6.2021. The evolution of the number of grains is shown in Figure 5(b). After a short
transition period (approximately t = 0.4), the number of grains in the system decreases steadily. Notice that
even during this transition period, the energy of the system is decreasing quickly. The explanation for this
transition period seen in the number of grains is that the initial condition is approximately Voronoi and so
there are very few small grains present initially, as demonstrated in the distribution shown in Figure 7(a).
The system must evolve significantly before many grains are small enough to disappear.

4.3 Grain growth rate and grain size distribution

The average grain size, 〈RV 〉, and the grain size distribution function, f(RV /〈RV 〉), are probably the most
important statistical quantities used to characterize an isotropic polycrystalline material. Texture distribu-
tions are also of primary importance for anisotropic polycrystalline materials, but texture is not considered
in this model. Here, RV = (3V/4π)1/3 where V is the volume of a grain. Analytical approaches [12, 18, 26],
experimental results (as reported in [2]), and simulation results, e.g. [2, 43], suggest that the average grain
radius 〈RV 〉 exhibits power law growth as a function of time: 〈RV 〉 ≈ Ctn, for t large. Analytically, the
prediction n = 1/2 has been made using a variety of considerations. The experimental results reported
in [2] find 1/4 ≤ n ≤ 1/2. In their own simulation, [2] report that n = 0.48 ± 0.04 for fits to long-time
data (obtained by discarding data from the initial transition phase of the simulation). In [43], the authors
show approximately linear long-time dependence of 〈RV 〉2 on t. This simulation contains just 1000 grains
initially, so the statistical precision of this measure is low. Furthermore, three-dimensional simulations via
front tracking require that explicit assumptions be made on the types of topological changes that can occur.

As normal grain growth is characterized by the self-similarity of the distribution of RV /〈RV 〉, it follows
that 〈V 〉 ∝ t3n. In Table 1, we fit 〈V 〉 to the function atb + c, where c ≈ 〈V0〉 and mollifies the effect of
the initial grain size distribution on the fit. The fits are quite tight, with all reliability factors < 0.7%.
Equating b = 3n, we find that our simulation predicts 0.501 ≤ n ≤ 0.518 with 95% confidence. The fit of
2.260t1.515 + 3.496 to 〈V 〉 is plotted in Figure 6.

The grain size distribution function f(RV /〈RV 〉) is defined by

f(ξ)dξ = Proportion of grains with normalized radius RV /〈RV 〉 ∈ [ξ, ξ + dξ). (6)

In Figure 7, we show histograms for this distribution at a variety of stages in the simulation. The distribution
changes greatly throughout the evolution. The initial condition is approximately the Voronoi diagram for a
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Time Interval a b c χ1 χ2 χ3

0 < t ≤ 6.2021 2.105 1.550 ± .004 3.8617 3.79 × 10−3 2.98 × 10−3 2.29 × 10−3

1.0337 < t ≤ 6.2021 2.220 1.524 ± .003 3.608 4.38 × 10−3 2.28 × 10−3 2.18 × 10−3

2.0674 < t ≤ 6.2021 2.260 1.515 ± .005 3.496 4.86 × 10−3 1.88 × 10−3 1.57 × 10−3

3.1010 < t ≤ 6.2021 2.241 1.517 ± .013 3.5144 6.05 × 10−3 3.22 × 10−3 2.89 × 10−3

Table 1: Fit of the data 〈V (t)〉, taken from the specified time interval, to atb + c. b is given with 95%
confidence interval. The reliability factor χ ≡ ∑

i |xobs
i − xcalc

i |/ ∑

i |xobs
i |, where obs denotes the observed

value and calc denotes the calculated value from the fitted function. χ1 gives the reliability factor computed
over the interval 0 < t ≤ 6.2021, χ2 over the interval 1.0337 < t ≤ 6.2021, and χ3 over the interval
2.0674 < t ≤ 6.2021.
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Figure 6: The average grain volume 〈V 〉 compared to the best-fit power function atb + c fitted by non-linear
least squares to the data from 2.0674 < t ≤ 6.2021 (see Table 1). Aside from the brief transition period, the
fit is indistinguishable from the simulation results.
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Figure 7: The distribution of RV /〈RV 〉 is shown at various times. (a) The distribution at t = 0 (blue),
t = 1.0337 (green), and t = 2.0674 (red). The distribution is initially quite narrow but rapidly broadens.
(b) At t = 2.0674, 4.1347, 6.2021. The distributions at t = 4.1347 and 6.2021 are slightly wider than at
t = 2.0674 and exhibit self-similarity. (c) At t = 4.1347, 5.1684, and 6.2021, the grain size distributions
appear to be self-similar, as expected in the long-term, though the number of grains in the system decreases
from 24,395 to 14,150 in this timespan. Note that the scale in (a) differs from that in (b) and (c).

randomly distributed set of points. The initial distribution of grain sizes is very narrow and sharply peaked.
The distribution flattens out rapidly and appears to approach a self-similar state, characteristic of normal
grain growth. This self-similar distribution appears to be attained by approximately t = 4.1347 and is
maintained thereafter, through over 10,000 grain disappearance events to the end of the simulation.

Another way to assess the self-similarity of the distribution of the grain size distribution function across
iterations is to look at the evolution of the central moments of the various distributions obtained. For these
distributions, the first moment is by definition 1 and the first central moment is always 0. The variance
and skewness (E[(X − E[X ])j ], for X = RV /〈RV 〉 and j = 2 and 3, respectively) are plotted in Figure 8.
These measures appear to be approximately constant for t ≥ 4.1347, agreeing with the visual impression of
self-similarity obtained from Figure 7(c).

Many closed-form distributions have been suggested as appropriate fits for the distribution f(R/〈R〉),
including the Louat distribution [26], the Hillert distribution [18], the Rios distribution (a modification of
the Hillert distribution) [35], the Weibull distribution (for two-dimensional grain growth) [11], and the log–
normal distribution (for the distribution of grain radii in cross-sections of three-dimensional experiments) [12].
These distributions are compared to the distribution of RV /〈RV 〉 in Figure 9(a). The Rios distribution, with
ν = 3.34, appears to fit our simulation data the best. The log–normal and Louat distributions fit quite poorly,
showing the wrong behavior near RV /〈RV 〉 = 0, for large RV /〈RV 〉, and also peaking at RV /〈RV 〉 < 1, all
in disagreement with the simulation results. The Weibull and Hillert distributions show a better fit but can
be seen both visually and by reliability factor (Table 2) to be inferior to the fit of the Rios distribution.

We also fit these distributions to data from cross-sections of the three-dimensional simulation. This is
of interest as experimentally it is difficult to slice materials thinly enough for the experiments to be two-
dimensional in nature, though carefully conducted thin film experiments are possible for polycrystalline grains
of sufficient size. Recent progress in x-ray and and focused ion beam techniques have made measurement
of grain volumes more feasible. However, it is still easiest to take cross-sections of three-dimensional grains
and measure areas and effective radii in cross-section. Defining RA =

√

A/π, where A is the area of a grain
in cross-section, we generate the distribution of RA/〈RA〉 from the simulation data at t = 6.2021. We take
512 cross-sections of constant z-value and aggregate the grain slice area data across all these cross-sections
to create the simulation distribution. These cross-sections contain a total of 368,138 two-dimensional grain
slices. In Figure 9(b), we fit this distribution to the closed-form distributions discussed previously. None of
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Figure 8: The variance (solid) and skewness (dashed) of the distribution of RV (t)/〈RV (t)〉 are compared
across iterations. While the variance of the distribution in particular changes rapidly early in the evolution,
the variance and the skewness of the distribution are approximately constant for t ≥ 4.1347, demonstrating
the self-similarity of the distribution.

Grain size log–normal generalized Louat Hillert Rios Weibull
measure µ σ χ α χ χ ν χ β χ

RA 0.074 0.574 0.335 0.685 0.152 0.389 2.14 0.221 2.07 0.171
RV 0.056 0.417 0.282 0.741 0.330 0.128 3.34 0.031 2.80 0.104

Table 2: Least squares best-fit parameters and reliability factor χ for simulation data at t = 6.2021 (with
14,150 grains) to various distributions. The Rios distribution, with ν = 3.34, fits the fully three-dimensional
data very well. The observations made from two-dimensional cross-sections do not fit any of the distributions
as well, but are best predicted by the generalized Louat distribution, with α = 0.685. Note that the Weibull
distribution does not fit the simulation distribution of RA/〈RA〉 well, as the grain size distributions for two-
dimensional growth and cross-sections of three-dimensional grain growth are known to disagree (for example,
in [7]).
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Figure 9: (a) Comparison of the distribution of RV /〈RV 〉 at t = 6.2021 (with 14,150 grains) to least squares
best-fit predictions to Louat, log–normal, Hillert, Rios and Weibull distributions. Note that the Louat, log–
normal and Weibull distributions predict the peak of the distribution to occur at RV /〈RV 〉 < 1, while the
simulation distribution peaks to the right of 1. The peak of Hillert’s distribution occurs at RV /〈RV 〉 = 9/8,
agreeing well with our simulation results. However, the Hillert’s distribution predicts a higher peak and
narrower distribution than we find in the normal grain growth phase. The Rios distribution is a modification
of the Hillert distribution and matches the simulation results well. (b) Comparison of the distribution of
RA/〈RA〉 at 300 iterations (with 368,138 grains taken from the 512 cross-sections of constant z-value) to least
squares best-fit predictions under the same distributions. In cross-section, the data best fits the generalized
Louat distribution, though the fit is not tight. The distribution is much flatter and wider for cross-sectional
data than for the full three-dimensional data.

these distributions fit the cross-sectional data as well as the Rios distribution fit the fully three-dimensional
data taken from grain volumes. The Louat distribution fits the data the best with α = 0.685 but with a
reliability factor of χ = 0.152. For comparison, the Rios distribution fits the three-dimensional data with
χ = 0.031. The distribution of RA/〈RA〉 is seen in Figure 9 to be much flatter and wider than the distribution
of RV /〈RV 〉, reemphasizing the importance of interpreting these distributions separately.

4.4 Topology

Interesting topological characteristics of the grain network include the number of faces, corners and edges
of individual grains in three dimensions, and the number of edges of grains viewed in cross-section. Such
characteristics have been the subject of numerous experimental studies (e.g. [5, 49, 34, 19, 50]). Here we
compare the topological measures extracted from our large 3D simulation to those obtained from experimental
data as well as to those from other simulations. In all the following results, we take data from t = 6.2021.
At this time, 14,150 grains remain. In the 512 cross-sections of constant z-value, there are a total of 368,138
grain slices.

Unlike front tracking methods, methods using implicit representation of surfaces do not explicitly track
topological features. The locations of these features are still well-defined: A location x is on a face, edge,
or corner if for every ε > 0, there exist m = 2, 3 or 4, respectively, distinct subsets c1, . . . , cm and locations
x1, . . . , xm satisfying |xi−x| < ε and dci

(xi) > 0. The numerical implementation which allows association of
topological descriptors to individual grains is described below. In order to count faces, corners and edges of

13



individual grains at any fixed time T in the evolution, each grid point in the discretization is assigned a value
from the set {1, . . . , N(T )} corresponding to the grain at that location. The number of faces of grain i is
then the number of unique identifiers different from i contained in a 1-neighborhood of the set of grid points
that have identifier i. Counting corners is more challenging. In three dimensions, corners are characterized
as being locations where four or more grains come together. We denote the set of all such locations as C.
Because adjacent grid locations may, as part of a highly resolved corner, be marked as each being such a
location, we take the number of connected components of C (as opposed to simply the number of points in
C) within a single grain to be the number of corners possessed by that grain. However, this procedure will
cause two corners connected by a short edge to be counted as one. To alleviate this problem, we subdivide
the grid twice before applying the above procedure (so that a grid of size n × n × n is subdivided to size
4n × 4n × 4n before counting vertices). Having thus counted the number f of faces and the number c of
corners as described above, we appeal to the well-known formula c− e + f = 2 of Euler to infer the number
e of edges of each grain. This formula holds for all polyhedra that are topologically equivalent to the sphere,
which appears by inspection to be true for all the grains in our simulations of grain growth.

Data for the mean number of edges per face, mean number of faces, and mean number of corners is pre-
sented in Table 3 and compared to other simulations, to data reported for some regular polyhedrally-based
grain models, and experimental results. The summary statistics vary some with the simulation technique.
Ours are well within the range of values found with other simulation techniques (though the other simu-
lations were smaller and must be less statistically valid whether due to a smaller number of grains or the
potential effects of ensemble averaging). Regular polyhedra such as the pentagonal dodecahedron and the
tetrakaidecahedron have been proposed as space-filling approximations for grain shapes [21, 40, 48, 29],
though experimentally it is well-known that grains come in a variety of shapes and sizes. The tetrakaidecah-
dron matches the mean values we found well, but cannot explain more complex features of grain growth, such
as the grain size distribution function (6). The Voronoi model is generated by distributing seeds uniformly at
random and growing crystals simultaneously and isotropically from these seeds. The Johnson–Mehl model
grows crystals isotropically but allows for varying nucleation times [29]. Both these models ignore grain
boundary motion due to interface curvature, holding grain boundaries stationary once crystals meet. These
are in fact models for primary recrystallization, a different annealing phenomenon occurring when cold-
worked metals are annealed. The experimental data contains a wide range of values, clearly demonstrating
the difficulty of computing these measures in three dimensions and also suggesting that other higher-order
effects (such as variable surface tension and mobility due to grain boundary misorientation and inclination)
play an important role in the evolution of polycrystalline grain systems. In future work, we will investigate
extending our algorithm so that such effects can be simulated.

In Figure 10, we plot the frequency with which grains with f faces occur. The distribution is skewed
towards grains with many faces. The peak occurs at f = 12 faces and the mean number of faces is 〈f〉 = 13.79.
It is natural to expect that larger grains will have more faces, on average. However, the exact nature of this
relationship is unknown. Figure 11 shows the relationship between the mean value of RV /〈RV 〉 for grains
with f faces and f , as determined from our simulation data. We also compare with measurements made by
Rhines and Patterson [34] on aluminum, by Zhang, et al. [50], on α-iron, and with simulation data generated
by Anderson, et al. [2], using a Potts model and kinetic Monte Carlo techniques. The fit, particularly to
the data for aluminum, is quite good and appears to describe the experimental data better than the linear
fit posited in [2]. The simulation results of Anderson, et al., do appear to fit the measurements of Zhang, et
al., well for small f , but poorly for large f .

Stable corners occur where three triple lines come together on the surface of a grain. Under the assumption
that every corner is stable, 3c = 2e. Together with Euler’s formula, we can then calculate the number of
corners and edges as a function of the number of faces f as c(f) = 2(f − 2) and e(f) = 3(f − 2). This
prediction of a linear relationship between c and f is plotted in Figure 12(a) against the values obtained
from our simulation data, suggesting acceptable accuracy in our algorithm for counting corners and that our
method does produce stable corners. Note that Figure 10 illustrates that very few grains have less than 4
or more than 30 faces, so small inaccuracies in the count or the presence of only a few unstable corners will
cause the small deviations from the prediction shown.
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2〈e〉/〈f〉 〈f〉 〈c〉 Reference
Simulation 5.12 13.79 23.52

Potts model Monte Carlo simulation 5.14 12.85 22.19 [2]
Potts model Monte Carlo simulation — 13.7 — [46]

Vertex dynamics 5.01 13.8 — [47]
Phase field simulation 5.07 13.7 23.1 [24]

Surface Evolver simulation 5.05 13.5 22.6 [44]
Pentagonal dodecahedron 5 12 20 [41]

Tetrakaidecahedron 5.143 14 24 [40, 48]
Voronoi model 5.27 15.54 27.07 [29]

Johnson–Mehl model 5.10 13.27 22.56 [29]
Austenite grains — 12.6–13.4 — [25]

1015 α–iron grains — 12.1 — [50]
30 β-brass grains 5.142 14.5 24.852 [5]
β-brass grains 4.92 11.16 — [19]

100 Al–Sn alloy grains 5.06 12.48 21.04 [49]

Table 3: Summary of topological data for simulations, regular polyhedra, and experiments. 2〈e〉/〈f〉 gives
the mean number of edges per face, while 〈f〉 and 〈c〉 give the mean number of faces and corners, respectively.
In [25], the authors report that 〈f〉 increases as a function of annealing time, through 50 minutes.
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Figure 10: The proportion of grains with a given number of faces is plotted (solid circles). The peak occurs
at f = 12 faces. Experimental data from [50] is also plotted (triangles). Note that this experimental data
predicts a smaller mean number of faces (12.1) than other experimental and simulation data. See Table 3.
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Figure 11: The relationship between the number of faces f and the mean value of RV /〈RV 〉 for grains with
f faces is plotted (solid circles) and compared to (a) measurements for Al [34], reproduced from [2], (b)
measurements reconstructed from serial sections of α-iron [50], (c) simulation data of Anderson, et al. [2].
In (d), all three are shown for comparison, with Al data marked by triangles, α-iron data by stars, and
Anderson, et al. simulation data by squares.
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The three-dimensional version of the Aboav–Weaire law [1, 45], proposed by Edwards and Pithia in [6]
provides a relationship between the number of faces f exhibited by a grain and the mean number of faces of
its neighboring grains, Mf :

Mf = 〈f〉 − 1 +
〈f〉 + µf

f
, (7)

where µf is the variance of f . Following Wakai, et al., [43], we plot the mean value of 〈fMf〉 against f and find
the linear relationship predicted by Edwards and Pithia, but find the best linear fit to be fMf = 13.6f+25.4.
This is in good agreement with the results of Wakai, et al., who found fMf = 13.3f + 23.4. Based on their
experimental data, Zhang, et al. [50] found fMf = 13.97f+12.61. Equation (7) predicts fMf = 12.8f+37.7,
using the values of 〈f〉 and µf determined by our simulation data. Thus simulation, experiment, and theory
for the three-dimensional Aboav–Weaire law agree well up to an additive constant. See Figure 12(b) for
simulation data and best fit line.

In two dimensions, the well-known von Neumann–Mullins relationship [31] states that grains with more
than six sides grow, and grains with fewer than six sides shrink:

dA

dt
=

π

3
(n − 6), (8)

where n is the number of sides of the grain. Mullins [32] proposed the following relationship for three
dimensions, relating the mean growth rate of three-dimensional grains to their number of faces f :

〈

1

RV

dV

dt

〉

= F (f)G(f), (9)

where

F (f) =
π

3
− 2 tan−1

(

1.86
√

f − 1

f − 2

)

(10)

and

G(f) = 5.35f2/3

(

f − 2

2
√

f − 1
− 3

8
F (f)

)

−1/3

. (11)

In Figure 12(c), we plot the simulation results for 〈(dV/dt)/RV 〉, taken from 5.9953 ≤ t ≤ 6.2021. For
t = 6.0367, 6.0780, 6.1194 and 6.1607, and δt = 0.0413 we approximate dV/dt = (V (t+δt)−V (t−δt))/(2δt).
The simulation results follow the same curve as the predictions but appear to differ by a constant additive
value of approximately 2.2. Our simulation results agree well with those of Wakai, et al. [43] (using Surface
Evolver, a front-tracking software package), and Weygand and Bréchet [47] (via vertex dynamics). Other
generalizations have been proposed by [46] and [17]. The Weaire relationship gives a linear relationship
between f and 〈(dV/dt)/RV 〉 which does not appear to fit the data presented here or in other simulations
well. The Hilgenfeldt relationship agrees closely up to a scaling constant with the von Neumann–Mullins
extension for 10 and greater faces and is thus not shown.

Recently, MacPherson and Srolovitz [27] published a generalization of the von Neumann–Mullins rela-
tionship to three dimensions; however the quantities involved in their formula (mean width and total edge
length) are not topological in nature, unlike the two-dimensional von Neumann–Mullins relation. Further-
more, mean width is quite difficult to calculate for grains. Simplifications are known for convex polyhedra
([4]) and for regular polyhedra ([14]), but grains are irregular and may possess both convex and concave
faces. We elect to compare only to the Mullins generalization, which is a topological relationship depending
only on the number of faces f .

5 Summary and Conclusions

We apply the algorithm developed in [8, 7] based on diffusion generated motion of signed distance functions
to a three-dimensional simulation of grain growth. This approach naturally captures the Herring condition
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Figure 12: (a) There appears to be a linear relationship between the number of faces f and the mean number
of corners among grains with f faces, suggesting that simulation corners are the stable meeting points of
triple lines. (b) 〈fMf〉, the mean of the product of the number of faces of a grain and the mean number of
faces of its neighbors grows linearly as a function of f , matching well with the simulation results of Wakai,
et al. [43]. (c) Comparison of the number of faces, f , to the mean growth rate 〈(dV/dt)/RV 〉 for grains with
f faces. Simulation data from 5.9953 ≤ t ≤ 6.2021 is plotted. The three-dimensional von Neumann-Mullins
prediction is plotted as a solid line for comparison.

at triple junctions. In addition, numerical evidence unequivocally shows that the energy of the simulated
system decays, even through topological changes. The efficiency of this algorithm allows us to compute the
accurate evolution of over 130,000 grains until less than 15,000 grains remain. To the best of our knowledge,
this evolution contained at least twice as many grains as any other currently published to date. In the next
largest simulation, [42], the authors implement a phase field model initially containing 50,000 grains on a
512 × 512 × 512 grid. Grains have an average initial size of approximately 14 × 14 × 14 grid points, with a
diffuse interface width ε of 3 grid points. This suggests that the initial resolution of their system is quite low.
We are able to verify, with greater confidence, that the coarsening rate for normal grain growth is 〈r〉 ∼ t1/2

and that the grain size distribution function is self-similar. We are also able to provide accurate average
values of the number of edges, corners and faces of individual grains. We observe that in many cases these
are in agreement with experimental results. This provides further validation that approximately normal
grain growth is present in experimental settings.
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