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Abstract

Distance function-based diffusion generated motion, a highly efficient numerical algorithm, is used to

simulate a classical model of recrystallization in unprecedented detail and in physically relevant parameter

regimes not attainable with many previous techniques. The algorithm represents interfaces implicitly and

is closely related to the level set method. In particular, it allows for automatic topological changes and

arbitrarily large time steps. Large scale simulations of recrystallization for physically relevant parameter

values are presented in detail. In addition, new analytical estimates for the distribution of surviving

nuclei are obtained and compared with the numerical results.
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1 Introduction

Recrystallization is an important process for microstructural development in polycrystals, occurring when
cold-worked metals are annealed. This process has been studied for over seventy years. Burke and Turnbull [6]
gave a classic review of recrystallization in 1952. For a more recent review, see, e.g., Doherty et al. [9]. The
cold work stores energy in the form of dislocations which are then eliminated by the growth of undeformed
recrystallized grains. Recrystallization occurs in the processing of metals, both as a deliberate attempt to
improve macroscale properties (such as ductility) and as an byproduct of other processing steps. As such, it
is important to develop numerical techniques to simulate this phenomenon well.

In this paper, our focus is on careful numerics for a simple model of recrystallization, so that inherent,
genuine features of the model can be understood in isolation from potential numerical artifacts that plague
certain popular algorithms. We consider the simple, but influential, model of Srolovitz et al. [33, 34]. We
present an analysis of the role of parameters in this model, and carry out detailed, large-scale, fully re-
solved simulations using a new, implicit (level sets–like) numerical method (fully described in [10]), distance
function-based diffusion generated motion. We accomplish the following:

1. Determine the dependence of growth behavior of nuclei on distribution of nucleus sizes and nucleation
rate for the model of Srolovitz et al.

2. Compare and contrast with Monte Carlo simulation results of [33, 34].

3. Simulate physical parameter regimes for this model unachievable with previous numerical methods in
both two and three dimensions.

4. Show the formation of a very fine structure of elongated grains at the completion of recrystallization,
unlike any other results from simulations of the model of Srolovitz et al.
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5. Demonstrate agreement of our simulations with the growth behavior analysis we perform in Section
3.3, which describes the role played by the parameters of the nucleation and recrystallization models
we employ in determining the resulting microstructure.

6. Show good agreement with some pre-existing theoretical predictions.

2 Recrystallization and Nucleation Models

The recrystallization and nucleation models studied in this work are identical to the models used in the
landmark papers [33, 34] by Srolovitz et al. Recrystallized grains are differentiated from unrecrystallized
grains by a lower bulk energy. In three dimensions, the total energy of the system is given by:

E = γ
∑

k<`

(area of Γk`) + ρ
∑

k

ek(volume of Ξk), (1)

where Ξk denotes a grain indexed by k, Γk` denotes the interface between grains Ξk and Ξ`, γ denotes the
grain boundary energy per unit area, ρ denotes the stored energy per unit volume, and ek is a dimensionless
parameter measuring the density of dislocations within the grain Ξk. For simplicity, we set ek = 1 for
unrecrystallized grains and ek = 0 for recrystallized grains, though both the model and our implementation
allow for varying dislocation densities. Normal grain growth occurs in the case that ek is equal for all grains.

For the energy given by Equation (1), the normal velocity (outward from collection k) of the interface
Γk` can then be written as

vn(Γk`) = µ (γκk` + ρ(e` − ek)) . (2)

Here, µ denotes the grain boundary mobility. κk` denotes the curvature of the interface Γk`, with the
convention that if Σk were a single spherical grain of radius r surrounded by a grain Σ`, then κk` = −2/r.
The natural, energy-minimizing boundary condition is the Herring angle condition [16]. For constant γ, the
Herring condition states that triples of grains (along triple lines in three dimensions and at triple junctions
in two dimensions) meet with symmetric 120◦ opening angles. Commonly accepted values for the stored
energy and the grain boundary energy densities are ρ = 10MPa and γ = 0.5 J/m2 (see, for example, the
texts of Gottstein and Shvindlerman [15], page 130, and Humphreys and Hatherly [18], page 8). When
recrystallization nuclei are on the length scale of 0.05µm (so that κ ≈ 2× 107m−1), these two contributions
to the normal velocity are on the same scale. However, at all length scales, the curvature term always has a
definite, O(1) effect on the evolution of the system. This effect is described further in Section 3.1.

We nondimensionalize the normal velocity using the mean initial grain radius 〈r0〉, derived from the

mean initial grain volume 〈V0〉 by 〈r0〉 = (3〈V0〉/(4π))
1/3

. We define the nondimensionalized curvature as
κ?

k` = 〈r0〉κk`. Then

vn(Γk`) =
µγ

〈r0〉
(κ?

k` + λ(e` − ek)) , (3)

with
λ = 〈r0〉ρ/γ. (4)

λ is a dimensionless parameter which weights the relative contribution of the curvature and bulk energy
terms. λ then may be interpreted as choosing the physical size of the unrecrystallized grains by 〈ro〉 =
λ · 0.05µm, for the physical values of ρ and γ discussed previously. We further nondimensionalize the
velocity as vn(Γk`) = V · v?

n(Γk`), with velocity V = 〈r0〉/T , and time T = 〈r0〉2/(µγ), so that

v?
n(Γk`) = κ?

k` + λ(e` − ek). (5)

The normal velocity given by Equation (5) arises as gradient descent for the energy

E? =
∑

k<`

(area of Γk`) + λ
∑

k

ek(volume of grain k). (6)

We note that the time scale T is chosen so that t? = 1/4 is the time required for an isolated spherical
grain of radius 〈r0〉 to disappear under pure curvature motion. Hereafter, we drop the ? notation and refer
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solely to the nondimensionalized quantities, e.g. the energy E? will be referred to as E. The majority of
the simulations presented in this work are in two dimensions. In this case, the energy of Equation (6) still
applies, with “area” replaced by “length” and “volume” by “area.”

An important feature of all recrystallization models is nucleation. In this respect, too, we shall follow the
models proposed in [33] in which each spatial location is equally likely to be chosen as a nucleation site for
a circular (spherical, in three dimensions) grain with a size probabilistically determined (but chosen to be
small relative to the mean grain size). We observe that heterogeneities in the recrystallization pattern can
arise as a consequence of the dynamics in certain length scales (in agreement with [34]). Further we shall
consider two possible models for the nucleation, namely site-saturated and continuous. For site-saturated
recrystallization a fixed number of grains are nucleated at the initial time and at random locations, while for
continuous recrystallization grains are nucleated at a constant temporal rate at randomly chosen locations.

We apply the multiphase version of distance function-based diffusion generated motion fully described
in [10] to simulate the evolution of the recrystallizing system under the normal velocity given by Equation
(5). The basic algorithm for simulating the motion of multiple junctions by alternately constructing distance
functions and applying convolutions was first proposed by Esedoglu, Ruuth, and Tsai in [12] as a variant
of the threshold dynamics scheme of Merriman, Bence, and Osher [24]. Major advantages of the distance
function-based algorithm include the unconditional stability, sub-grid accuracy, and computational efficiency
of the method. In [11], an enhanced version of the algorithm is applied to a very large scale simulation of
three-dimensional grain growth initially containing over 130,000 well-resolved grains.

Since the work of Srolovitz et al. in [33, 34], more elaborate models for recrystallization have been
proposed and implemented (for example, [19, 23, 27, 28]).These models include features such as modeling of
the nucleation process in greater detail, inclusion of texture-dependent grain boundary mobility and energies,
and spatially dependent stored energies. Extending our numerical algorithms to such models is a direction
for future work. However, our improved capacity to faithfully simulate partial differential equation (PDE)
models of the form of Equation (5) already sheds new light on simulations of recrystallization. The properties
of our algorithm allow for large-scale simulations far beyond those already performed, in physical parameter
regimes that other models cannot attain.

3 Importance of Surface Tension to the Model

In this section, we explain how the surface tension term in Equation (5) always makes a significant contri-
bution to the evolution of the system, even when the bulk energy term would seem to dominate (i.e. as
λ→ ∞). We discuss three major consequences:

1. In the absence of surface tension, it has been demonstrated by Reitich and Soner [30] that the evolution
is not uniquely defined. In Section 3.1, we discuss two possible solutions for a given initial condition
under pure bulk energy motion. Reitich and Soner note that one of these solutions naturally arises
from Equation (5) as λ→ ∞ (with time appropriately rescaled).

2. For any choice of λ, the surface tension and bulk energy contributions of Equation (5) are equal at
some length scale, possibly at the length scale on which nucleation occurs in primary recrystallization.
We discuss the relationship between λ and critical sizes for nuclei survival in Section 3.2.

3. The terms “homogeneous” and “heterogeneous nucleation” are used in [33, 34] to describe the spatial
arrangement of surviving nuclei in simulations of primary recrystallization. In Section 3.3, we present
analytical predictions for the location of successful nuclei as a function of λ (which scales the surface
tension and bulk energy terms of Equation (5)) and distribution of nuclei sizes.

3.1 Importance of Curvature for Large λ

In the absence of the surface tension term in Equation (5), there is no need for the evolution to respect the
Herring angle condition. However, Reitich and Soner [30] demonstrate that the evolution is not uniquely
defined in this case. For example, consider Figure 1 in the case of pure bulk energy motion. Let e1 = 0 and
e2 = e3 = 1, so that set Σ1 (as labeled in Figure 1(a)) grows symmetrically into sets Σ2 and Σ3. Figure 1(b)
shows two potential solutions. The original interfaces Γ12 and Γ13 move outwards in their respective normal
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Figure 1: The initial condition in (a) evolves by pure bulk energy motion. Two possible solutions to the
non–unique motion are shown in (b), one in red, the other in blue. The red curve, consisting of a circular
arc connecting two straight line segments, depicts the arrival time dynamics solution. The blue curve,
which maintains the original angle condition at the triple junction throughout the evolution, represents the
vanishing surface tension solution of Reitich and Soner [30]. Thus, even in the limit λ → ∞, the mere
presence of curvature effects (which always dominate in a small enough neighborhood of the triple junction)
has O(1) effect on the dynamics regardless of how large λ is in Equation (5), thereby selecting a specific pure
bulk energy motion solution from a multitude of possibilities in the limit λ→ ∞.

directions with constant velocity λ. Between the dotted lines, the classical solution does not exist. There is
more than one reasonable way to propagate the solution in this region. The red path connects the unique
regions by a circular arc. We call this the arrival time dynamics solution, and was proposed and investigated
by Taylor in [35]. On the other hand, the blue path indicates another possible solution to gradient flow under
pure bulk energy. Unlike in arrival time dynamics, this one maintains the initial angle at the triple junction
throughout the evolution. In [30], Reitich and Soner show that this second solution arises as the limit of
unique (well-defined) flows under the interfacial velocity of Equation (5) in the limit that λ→ ∞ (and with
time appropriately rescaled). In other words, this second solution, called the vanishing surface tension limit,
is the one selected from among multiple possible solutions. We maintain that the vanishing surface tension
limit solution is the appropriate physical solution for grain boundary motion, as some surface tension must
always be present, though it may be dominated by other effects. Given the O(1) difference between these
two candidate solutions, it is worth repeating that the surface tension plays a defining role on the dynamics
even in the limit that bulk energy effects would seem to dominate, as observed in, e.g., the late stages of
recrystallization.

In the recent paper [5], the authors claim to simulate pure bulk energy motion using a finite elements
implementation of the level set method. Their method seems to capture the arrival time dynamics solution
(the red arc in Figure 1(b)) described above; see, e.g., Figure 7 in [5]. In this section, we demonstrate that
with our algorithm — diffusion generated motion — we capture the vanishing surface tension limit by taking
large values of λ in Equation (5). Figure 2 shows the convergence of our algorithm as ∆x, ∆t→ 0 as λ = 8,
16, and 32. Table 1 contains the convergence test data. The predictions for the final locations of the interface
were calculated by finding the intersection of the two lines determined by advancing the interfaces Γ12 and
Γ13 with velocity λ for the simulation time 5/1024. These values were calculated to be 0.5451, 0.5902 and
0.6804, for λ = 8, λ = 16, and λ = 32, respectively. These simulations are quite accurate, with relative errors
under 5% for n = 64 grid points and under 2% for n = 256 grid points. The grid discretizes [0, 1]2. We note
that λ acts as a stiffness parameter: increasing λ requires increased computational effort for fixed accuracy.
Even in the extreme case, λ = 32, the triple junction moves only between 0.5 and 0.75 on the vertical axis,
suggesting that good accuracy is achieved for motions using only about one–fourth the available grid points
in each direction. The convergence rate is sublinear but agrees well with convergence rates seen at triple
junctions for pure curvature motion via the same algorithm in [12].

Furthermore, the surface tension plays a decisive role even in the limit that it vanishes in determining the
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Figure 2: Comparisons with the vanishing surface tension limit (a translation of the black initial curve) as
∆x and ∆t are refined in our algorithm for motion by Equation (5) with (a) λ = 8, (b) λ = 16, and (c)
λ = 32. The computed solution at successively higher resolutions are shown in blue, cyan, green, magenta,
and red, respectively.

λ = 8 λ = 16 λ = 32
∆x nt Yf % Err. C.R. Yf % Err. C.R. Yf % Err. C.R.

1/32 50 0.5630 3.28% — 0.6259 6.04% — 0.7323 7.62% —
1/64 100 0.5599 2.72% 0.27 0.6094 3.25% 0.90 0.7090 4.21% 0.86
1/128 200 0.5539 1.60% 0.76 0.6016 1.92% 0.76 0.6989 2.72% 0.63
1/256 400 0.5504 0.97% 0.72 0.5973 1.20% 0.68 0.6922 1.73% 0.65
1/512 800 0.5485 0.61% 0.67 0.5947 0.76% 0.67 0.6881 1.13% 0.62

Table 1: Errors in approximating the vanishing surface tension limit using diffusion generated motion.
The grid discretizes [0, 1]2 with steps of ∆x, and nt denotes the number of time steps used to simu-
late the total time 5/1024. Yf denotes the final vertical position of the interface. % Err. denotes
the percentage error from the predicted location. C.R. denotes the convergence rate, computed as
log2(Error using n/2 grid points/Error using n grid points).
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(a) (b)

Figure 3: Any initial shape which is sufficiently large for the choice of λ will grow; and as the ratio λ/κ →
∞ will approach the characteristic shape described by Equation (7). In contrast, arrival time dynamics
predict the asymptotic shape to be a disk, demonstrating again the O(1) difference between the two possible
definitions of a solution. The initial condition is zoomed in on in (a). Later times in the evolution are shown
in (b), with the characteristic shape of circular arcs connected by line segments seen clearly.

characteristic shape of recrystallized nuclei growing along pre-existing grain boundaries. Rather than the
nucleus appearing as a growing circle overlapping the pre-existing boundary (as in solutions computed in [5],
the nucleus takes on an elongated shape along the boundary, as in Figure 3. This shape can be derived as a
self-similar solution for pure bulk energy motion respecting the Herring angle condition at triple junctions.
It is described as a function of the circular sector radius r by:

y(x; r) =

{

±
√
r2 − x2, |x| ≤

√
3r
2

±
√

3
(

x±
√

3r
2

)

± r
2 ,

√
3r
2 ≤ |x| ≤ 2r√

3

(7)

This shape is independent of the choice of λ: as long as a nucleus along a pre-existing boundary survives
and grows, it will penetrate the existing unrecrystallized grains. The aspect ratio of the shape is 2 :

√
3.

In contrast, the arrival time dynamics solution has the disk as its characteristic shape, regardless of the
pre-existing structure beneath the nucleus. We demonstrate that our algorithm evolves towards the self-
similar solution even from a highly complex initial condition that does not respect the boundary conditions,
as shown in Figure 3.

3.2 Critical Nuclei

For the model considered in this work, the curvature term contributes at the same order as the bulk energy
term on the length scale 1/λ; this is just a simple fact of the scaling in Equation (5). One of the appealing
attributes of this model developed by Srolovitz et al. in [33, 34] is the potential for capturing various re-
crystallization phenomena, e.g. homogeneous or heterogeneous nucleation, through the effect surface tension
may play at the scale of the smallest recrystallized embryos. An exact, though unstable, stationary solution
is easily determined from Equation (5) for any λ. These critical nuclei are those with constant curvature
κ = −1/λ away from triple junctions, with 120◦ angles at all triple junctions. Thus the stationary boundary
must always be the union of circular arcs. As in the case of pure bulk growth, the stationary shapes have
aspect ratios independent of λ. We consider three cases: (1) a nucleus contained entirely within another
grain, (2) lying on a grain boundary, and (3) lying on a triple junction. We further assume that the nucleus
is small compared to the original grains and make the two following approximating assumptions: the pre-
existing grains have straight boundaries, and the nucleus lies with its center on the grain boundary or triple
junction, as appropriate.
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(a) (b) (c)

Figure 4: The critical shapes corresponding to cases 1 (grain interior), 2 (grain boundary) and 3 (triple
junction), respectively. The shapes are independent of λ, while their areas scale with λ−2.

Case (1) is trivial: The grain is a circle of radius r = 1/λ, with area A1(λ) = πλ−2. For case (2), assume
the grain boundary lies along the line y = 0. Then the shape is implicitly represented as

{

x2 +
(

y + 1
2λ

)2
= λ−2, y > 0,

x2 +
(

y − 1
2λ

)2
= λ−2, y < 0,

(8)

with area A2(λ) =
(

2π
3 −

√
3

2

)

λ−2. Finally, we may rotate the triple junction of case (3) so that the grain

boundaries emanate along the rays θ = π/2, 7π/6 and 11π/6. This shape is given by:























(

x+ 1
2λ

)2
+

(

y + 1
2
√

3λ

)2

= λ−2, θ ∈ (−π
6 ,

π
2 ),

(

x− 1
2λ

)2
+

(

y + 1
2
√

3λ

)2

= λ−2, θ ∈ (π
2 ,

7π
6 ),

x2 +
(

y − 1√
3λ

)2

= λ−2, θ ∈ (7π
6 ,

11π
6 ),

(9)

with area A3(λ) =
(

π−
√

3
2

)

λ−2. These shapes are shown in Figure 4. Note the constant curvature in smooth

regions and that the Herring condition is satisfied at triple junctions.
We define the critical grain radii to be the effective grain radius of the critical shape, Ri =

√

Ai(λ)/π,
and calculate these from to be:

Ri =















1
λ , i = 1,√

2/3−
√

3/(2π)

λ , i = 2,√
1/2−

√
3/(2π)

λ , i = 3.

(10)

Thus R2 ≈ .6253/λ and R3 ≈ .4736/λ, for any choice of λ.We conclude that for fixed λ, the critical grain size

necessary for nucleus survival is smallest at triple junctions, moderate at grain boundaries, and largest in

grain interiors. This observation has been verified experimentally and in simulations by numerous previous
authors.

3.3 Parameter Regimes

In this section, we give a complete classification of the role of parameters in the nucleation and recrystal-
lization model used here and in the work of Srolovitz et al. [33,34] with regard to their effect on the type of
recrystallization (homogeneous or heterogeneous) that results. The understanding developed here will guide
our numerical experiments with the model in subsequent sections.
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Let R be the (random) size of a circular nucleus, given by some distribution fR, and let Ti be the event
that a nucleus touches exactly i different grains (corresponding to the cases of Section 3.2). To approximate
the conditional probability P(Ti|R = r), we note the following facts:

• The total area of the nondimensionalized domain D is |D| = πN0, where N0 is the initial number of
unrecrystallized grains.

• Assuming grains are approximately circular, the total boundary length is πN0, as each individual grain
has boundary length 2π, and each segment of grain boundary is counted by two grains.

• One implication of the von Neumann area law [25] is that the mean number of triple junctions along
the boundary of one grain must be 6. Thus the number of triple junctions in the system must be 2N0,
as each triple junction is counted by three grains.

• A nucleus of radius r must have its center within r units of a grain boundary or a triple junction in
order to be touching 2 or 3 different grains, respectively.

We define Di ⊂ D, for i = 1, 2, 3, to be region where a nuclei of radius r touches exactly i pre-existing
grains. Thus D3, the region in which a grain of radius r must be centered to touch a triple junction, has
|D3| ≈ 2N0 · πr2. Similarly, we conclude from the total boundary length that |D2 ∪ D3| ≈ πN0 · 2r. Since
D2 ∩D3 = ∅, we conclude that

P(Ti|R = r) ≈











1 − 2r, i = 1,

2(r − r2), i = 2,

2r2, i = 3,

(11)

if nuclei are placed uniformly at random within D.
Further let G be the event that a given nucleated grain grows. Numerically, we find that the critical radii

for initially circular nuclei are very close to the values found analytically for the critical shapes described in
Section 3.2:

Ri ≈











1
λ , i = 1,
.642

λ , i = 2,
.484

λ , i = 3.

(12)

To further validate this numerical result, we consider nuclei which are initially circular. In this case, we can
give an upper bound on the critical radii as R2 ≤ 2/(3λ) and R3 ≤ 1/(2λ). This follows from the expression
for the rate of change of area of a recrystallizing grain Σ:

dA

dt
=
π

3
(Ne − 6) + λPer(Σ), (13)

where Ne is the number of edges (equivalently, the number of neighboring grains) of grain Σ. The isoperi-
metric inequality guarantees that if dA/dt ≥ 0 for some time interval [0, t?], then Per(Σ(t?)) ≥ Per(Σ(0)),
as the circular initial condition has minimal perimeter among all shapes with area ≥ A(0). Thus, choosing
the critical radii above guarantees that dA/dt ≥ 0 for all subsequent times. Equation (13) shows that the
critical nucleus size depends only on the perimeter of the nucleus and the number of grains neighboring
the nucleus; but is independent of where on the nucleus the triple junctions occur. We numerically verified
that the critical grain size is minimally affected by varying where the nucleus touches the grain boundary
or triple junction, finding a difference of approximately 0.2% in critical grain radii for circles nucleated with
their centers at the grain boundary (as in Figure 5(a)) as compared to circles nucleated so that the grain
boundary is near the edge of the nucleus (see Figure 5(b)).

Therefore we have

P(G ∩ Ti|R = r) =

{

P(Ti|R = r), r > Ri

0, r < Ri,
(14)

where Ri is given by Equation (12). Then we can compute

P(G ∩ Ti) =

∫ ∞

−∞

P(G ∩ Ti|R = r)fR(r)dr =

∫ ∞

Ri

P(Ti|R = r)fR(r)dr. (15)
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(a) (b)

Figure 5: The critical grain size for circular nuclei is found analytically and numerically to be independent
of where on the nucleus the grain boundary crosses, either (a) at nucleus center, or (b) near the edge of the
nucleus.

It is surely of interest to describe the locations of nuclei that will survive in this model. The conditional
probabilities describing the distribution of surviving nuclei locations is given by:

P(Ti|G) =
P(G ∩ Ti)

∑3
i=1 P(G ∩ Ti)

. (16)

An instructive first case is to suppose that the nucleation radius R is deterministic, i.e. fR(r) = δ(r − µ),
where δ denotes the Dirac delta. Then there are four cases:

1. µ > R1 > R2 > R3: Grain grow regardless of where they are placed, and

P(Ti|G) =











1 − µ, i = 1,

2(µ− µ2), i = 2,

2µ2, i = 3.

(17)

2. R1 > µ > R2 > R3: Grains only grow along grain boundary or at triple junctions, with

P(Ti|G) =











0, i = 1,

1 − µ, i = 2,

µ, i = 3.

(18)

3. R1 > R2 > µ > R3: Grains grow only at triple junctions. P(T3|G) = 1.

4. R1 > R2 > R3 > µ: Grains do not grow. Recrystallization cannot occur in the absence of of phenomena
beyond the scope of the approximations made here (for example, the presence of quadruple or higher-
order junctions, severely kinked grain boundaries, or interactions between nuclei).

These cases partition the µ—R1 parameter space into four regions, as shown in Figure 6.
More generally, one might suppose that the grain radii are approximately normally distributed with some

mean µ and variance σ2. Taking care to ensure that R > 0, we define the nonnegative normal distribution
N̄ by

fX(x) =

{

1
Φ(µ/σ)

(

1√
2πσ2

exp
(

−(x−µ)2

2σ2

))

, x ≥ 0,

0, x < 0,
(19)
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Figure 6: The µ—R1 parameter space for deterministic nucleation sizes divides into four regions describing
whether the recrystallization is homogeneous (equally likely to occur anywhere throughoutD), heterogeneous
(along grain boundaries), heterogeneous (only at triple junctions), or will not occur (as R1 increases for
constant µ, respectively). On (a) linear and (b) logarithmic axes.
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Figure 7: The µ—R1 parameter space for (a) σ = 10−8, (b) σ = 10−6 and (c) σ = 10−4. Increasing σ
increases the likelihood of large nucleations, allowing a greater part of the region to support homogeneous
nucleation. The contours bounding other regions move in a similar fashion.

if X ∼ N̄(µ, σ2), where Φ(x) is the cumulative distribution function for the standard normal distribution,
N(0, 1). Suppose R ∼ N̄(µ, σ2). Then we calculate that

P(G∩Ti) ≈























1
Φ(µ/σ)

{

(1 − 2µ)
[

1 − Φ
(

R1−µ
σ

)]

− σ
√

2
π exp

(

−(R1−µ)2

2σ2

)}

, i = 1,

1
Φ(µ/σ)

{

2(µ− µ2 − σ2)
[

1 − Φ
(

R2−µ
σ

)]

+ σ
√

2
π (1 −R2 − µ) exp

(

−(R2−µ)2

2σ2

) }

, i = 2,

1
Φ(µ/σ)

{

2(µ2 + σ2)
[

1 − Φ
(

R3−µ
σ

)]

+ σ
√

2
π (R3 + µ) exp

(

−(R3−µ)2

2σ2

)}

, i = 3.

(20)

We visualize the effects of parameter choice in the µ—R1 plane for various values of σ in Figure 7. Compare
to Figure 6(b). Increasing σ increases the probability of nucleations with R > µ, allowing homogeneous
nucleation to prevail even for µ < R1. In the regions of parameter space where µ and R1 are much larger
than σ, the behavior is as predicted in the deterministic case.

Figures 6 and 7 show that there are two very distinct parameter regimes: µ � σ, and µ � σ. In the
first, µ� σ, there is a wide range of values R1 for which heterogeneous nucleation (nuclei survival primarily
along grain boundaries) may occur. In contrast, when µ � σ, nuclei radii are essentially deterministic,
and the parameter regime in which heterogeneous nucleation may occur is much more narrow. In this case,
there must be a close relationship between R1 and µ in order for heterogeneous nucleation to occur. As
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heterogeneous nucleation is frequently observed in practice, it appears reasonable that either σ � µ or that
there is indeed a close physical relationship between µ and R1 = 1/λ.

4 Comparison to Previous Work

For the recrystallization model studied here, there are very few theoretical predictions available compared
with, e.g., models of normal grain growth. Primary among the known results is the theory of Johnson and
Mehl [21], Avrami [2–4], and Kolmogorov [22] (JMAK) for the kinetics of the recrystallized volume fraction
F . The JMAK theory is briefly discussed in Section 4.1. In contrast, there is an abundance of numerical
simulation studies of recrystallization in the literature. Many of the most recent numerical works focus on
incorporating additional features such as texture dependence and physically-based nucleation models. Our
focus is different: we stay with the simple model of Srolovitz et al., and explore instead the difference that
fully resolved numerics — as opposed to additional physics — makes. Once again, this is in the interest of
separating numerical issues (possibly artifacts) from modeling issues. As such, in Section 4.2 we compare
our numerical results with prior simulations of the Srolovitz model, in particular with the Monte Carlo
simulations contained in the original papers [33, 34].

4.1 JMAK Theory

A normal interface velocity of the form given by Equation (5), in the limit λ → ∞, is in keeping with
the JMAK theory. This theory is based on the assumption that each nucleated grain grows outward with
constant normal velocity, which occurs in our system by neglecting the curvature term, and is approximated
by choices of length scale with grains sufficiently large that the bulk energy term dominates the interfacial
energy term in Equation (5). The JMAK model has associated theoretical results in this limit, predicting
the recrystallized volume fraction F to be a sigmoidal function of time, t, in the form

F (t) = 1 − exp(−ktp), (21)

where k and p are constant. The parameter p can be predicted given the nucleation technique and the
dimensionality of the evolution ( [7], page 542).

4.2 Monte Carlo Simulations

A variety of numerical techniques have been employed previously in simulations of recrystallization. Chief
among them are the Monte Carlo Potts [33, 34] and cellular automata [17] techniques. Both have well-
known shortcomings (see, for example, [18], page 422, and [20], page 102). More recently, there are hybrid
methods that combine the two [31], as well as a level sets-based implementation [5] of pure bulk energy
(recrystallization) dynamics, disregarding angle conditions. The seminal works [33, 34] by Srolovitz et al.
both introduced the models we study in this work and carried out Monte Carlo simulations in two dimensions.
As an important first step in verifying our algorithms, we demonstrate in this section reasonable agreement
between our results and those of [33, 34] in certain parameter regimes. However, we have also observed
important differences; we believe these are due to the benefits of our improved numerics and constitute the
content of Section 5, where they are extensively reported and discussed.

In [33, 34], the authors introduce the parameters H and J , corresponding to scalings for stored (bulk)
energy and interfacial energy. They use the ratio H/J in place of our nondimensionalized parameter λ, with
the correspondence

λ =
H

J

√

〈g〉
π
, (22)

where 〈g〉 is the mean number of grid points per grain in the initial (unrecrystallized) microstructure. Every
simulation in [33] and [34] uses the same initial microstructure, with 〈g〉 ≈ 43 and approximately 930 initial
unrecrystallized grains, resulting in λ ≈ 3.7H/J . The nuclei were taken to be 1 site for H/J = 5 and 3, and
3 sites for H/J = 2, 1.5, 1 and 0.5 on a 200 × 200 triangular grid. These correspond to nondimensionalized
areas of 0.0730 and 0.2191, respectively, with equivalent radii of 0.1525 and 0.2641 (recall that the mean
equivalent radius of an unrecrystallized grain is 1). These parameter choices are plotted in Figure 8 on
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Figure 8: The deterministic µ—R1 parameter space with the simulations of [33, 34] marked. λ =
18.5, 11.1, 7.4, 5.55, 3.7 and 1.85 correspond to circle, square, triangle, star, diamond and x markers, re-
spectively. Note that the simulations with λ = 7.4 and 5.55 correspond to homogeneous nucleation for this
model, not heterogeneous nucleation as is found by the Monte Carlo simulations.

the µ—R1 parameter space as discussed in Section 3.3. Note that for λ = 7.4 and 5.55 (corresponding to
R1 = 0.1351 and R1 = 0.1802, respectively), the parameter choices fall in the homogeneous nucleation range
under our analysis. Srolovitz et al. characterize these parameter choices (for them, H/J = 2 and 1.5, with
3 site nuclei) as heterogeneous nucleation. The model of Section 3.3 suggests that the effects seen in [34]
for these parameter choices are an effect of the Monte Carlo simulation technique rather than an outcome
determined by the model of Equation (6).

We will now focus on the simulations of site-saturated nucleation performed in [33, 34]. Our simulations
were performed for 200, 100, 50, 20, 10 and 5 nuclei at λ = 18.5 and λ = 11.1, and for 2000, 1000, 500, and
200 nuclei at λ = 7.4, 5.55, 3.7, and 1.85, agreeing with the simulations of [33, 34]. Figure 9 examines the
microstructure for 200 nuclei, with radius µ = 0.2641. Figure 9(a) shows part of the microstructure at t = 0,
immediately after 200 nuclei are added to the domain. Figures 9(b) and (c) show the microstructure for
λ = 7.4 and λ = 5.55 at t = 0.557. In these simulations, it is clear that all nuclei are growing, agreeing with
the prediction of homogeneous growth shown in Figure 8. For λ = 3.7, the chosen nucleation size is very near
the border of homogeneous growth and grain boundary-dominated growth. It can be seen in Figure 9(d)
that for this parameter choice, grains nucleated in grain interiors remain approximately stationary, while
grains nucleated on grain boundaries and at triple junctions grow. Note that the theory of Section 3.3 does
not account for the rate at which grains grow or shrink, or impingement between nucleating grains. In these
simulations, impingement will occur before some of the nuclei in grain interiors disappear. In Figure 9(e),
grains which nucleate in grain interiors disappear quickly, with all completely gone by t = 0.1115. Grains
which nucleated along grain boundaries persist longer but again have all vanished by t = 0.2229. At this time
only recrystallizing grains which nucleated at triple junctions remain, agreeing with the prediction shown in
Figure 8 for λ = 1.85.

Figure 10 demonstrates the time evolution of the recrystallized area fraction F for simulations of site-
saturated recrystallization with varying values of λ ∈ [1.85, 18.5] and varying numbers of recrystallization
nuclei (from 5 to 2000), corresponding precisely to the parameter choices of Figures 6 and 7 in [33] and those
of Figures 8 and 9 in [34]. The essential features of our plots match the corresponding ones in [33,34].Figure
10(b) visualizes the Avrami exponent p of Equation (21). The JMAK prediction can be rearranged as
log(− log(1−F )) = p log t+log k, suggesting that these plots should have slope p on logarithmic axes, where
p is predicted to be 2 for two-dimensional site-saturated nucleation ( [7], page 542). Triangles with slope 2
are inset on the Avrami plots and agree well with the trends of the plots at intermediate times. Note that
the JMAK prediction is approximate for this model, neglecting the influence of curvature, which is strongest
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Figure 9: Snapshots of microstructure for site-saturated nucleation, with 200 nuclei of radii 0.2641 and
varying λ. (a) Nuclei immediately after nucleation. (b) λ = 7.4 at t = 0.0557. (c) λ = 5.55 at t = 0.0557.
In both (b) and (c), all nuclei survive and grow: homogeneous nucleation. (d) λ = 3.7 at t = 0.0557, 0.1115,
and 0.2229, respectively. Nuclei crossing grain boundaries and triple junctions clearly grow, while nuclei in
grain interiors appear to remain approximately stationary. (e) λ = 1.85 at the same times as (d). Nuclei
away from triple junctions all disappear quickly.
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Figure 10: (a) The recrystallized area fraction F for λ = 18.5, 11.1, 7.4, 5.55, 3.7 and 1.85, respectively. The
curves correspond to 200, 100, 50, 20, 10, and 5 nuclei (from left to right) in the first two plots, and to 2000,
1000, 500, and 200 nuclei in the last three. Corresponds to Figure 6 of [33] and Figure 8 of [34]. (b) The
Avrami plots for the same experiments, corresponding to Figure 7 of [33] and Figure 9 of [34]. The slope of
two is predicted for two-dimensional site-saturated nucleation.

on small recrystallizing grains, present early in the evolution.
The evolution of the mean recrystallized grain area for simulations with λ = 18.5 and 11.1 is shown in

Figure 11(a). As expected (see, for example, [33]), 〈A〉 increases with t2 at intermediate times, when the
effect of curvature on recrystallized grain size is small but the recrystallized grains do not impinge on each
other frequently. At later times in the evolution, the mean growth rate of recrystallized grains slows due to
impingement. This plot agrees well with Figure 8 of [33] up to scaling factors in time and total area.

Figure 11(b) gives the grain size distribution function for recrystallized grains in the simulation with
λ = 3.7 and 2000 site-saturated nuclei at the time when an area fraction of F = 0.9 is reached, while Figure
11(c) gives the distribution of Ne sided recrystallizing grains, and Figure 11(d) gives the mean normalized
size of Ne sided grains for these same conditions. The plots should be compared to Figures 10, 11, and 12
of [34]: the parameters of our and their simulations matched exactly. Some differences are striking. For
example, we find the peak of the topological (number of edges) distribution to fall at Ne = 5 (Figure 11(c)),
while Figure 11 of [34] shows the peak of this distribution to fall at Ne = 4. Our results find a much
smaller proportion of four-sided grains than any of five-, six- or seven-sided grains. Figure 11(d) displays
an approximately linear relationship between the topological class (number of edges) of a grain and the
mean normalized grain radius for grains of that topological class, in disagreement with the simulation results
of [34], which show some nonlinearities for small and large Ne (see Figure 12 of [34]). Also, the peak of the
grain size distribution is to the right of 1 in the present simulations (Figure 11(b)), while it is to the left
of 1 in the Monte Carlo simulations. However, the sample size is small and the distributions are not well
resolved, so one must be cautious in making conclusions about the cause of these observations. The major
observation made in [34] about Figure 10 of that work holds in Figure 11(b): the maximum grain size is not
more than twice the mean among recrystallizing grains. In contrast, this ratio is seen in grain growth to be
between 2.5 and 3.

Following [33,34], we also perform simulations under continuous nucleation conditions. At each time step,
we nucleate grains at locations uniformly chosen in the microstructure, but remove nuclei placed at already-
recrystallized locations. Thus the effective nucleation rate declines as recrystallization proceeds due to the
decrease in area available for nucleation. It is difficult to relate our nondimensionalized time to the Monte
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Figure 11: (a) The evolution of the average recrystallized grain area 〈A〉 through time for λ = 18.5 and 11.1,
respectively. The slope of two is predicted by the growth rate of a circle under pure bulk energy motion.
Corresponds to Figure 8 of [33]. (b) The grain size distribution function for recrystallized grains for λ = 3.7
and 2000 site-saturated nuclei at F = 0.9. (c) The distribution of number of edges per grain for the same
conditions as (b). (d) The mean normalized size of Ne sided grains for the same conditions as (b). (b), (c)
and (d) correspond to Figures 10, 11, and 12 of [34], respectively.
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Figure 12: (a) The recrystallized area fraction F for λ = 18.5, 11.1, 7.4, 5.55, 3.7 and 1.85, respectively. The
curves correspond to 5607, 1121, 224, 112, 56, and 22 nucleations per unit time (from left to right) in the
first two plots, and to 3364, 1121, 336, 112, and 37 nucleations per unit time in the last three. Corresponds
to Figure 11 of [33] and Figure 18 of [34]. (b) The Avrami plots for the same experiments, corresponding
to Figure 12 of [33] and Figure 19 of [34]. The slope of three is predicted for two-dimensional continuous
nucleation.

Carlo steps of [33, 34], as it is well known that some type of calibration must be performed to link Monte
Carlo time to physical time (see, for instance, the discussion in [20], page 102). Based on the simulation
times reported in this work and in [33, 34] for site-saturated nucleation, we make the approximation that 1
nucleation per Monte Carlo step is roughly equivalent to 112.1 nucleations per unit time in our simulations.

Figure 12 displays the evolution of the recrystallized area fraction F in our simulations of continuous
nucleation for choices of the parameter λ and the nucleation rate dn/dt, that correspond to those of Figures
11 and 12 of [33] and Figures 18 and 19 of [34]. In each case, it appears that the predicted Avrami exponent
of 3 is approximately attained in the later stages of the simulation. Note that particularly for few nucleations
per unit time and small λ, the Avrami plots are quite jagged early in the evolution. This is an effect of
the small number of recrystallized nuclei present at this time in the simulation and the importance of the
curvature term in delaying or preventing the growth of some nuclei (particularly for λ = 3.7 or 1.85, which
correspond to the heterogeneous nucleation regime).

In [33, 34], the authors report that the recrystallized grain size for F = 0.95 varies with nucleation rate
approximately as (dn/dt)−2/3, in agreement with theoretical predictions of [14]. If we compare Figure 14
of [33] and Figure 15 of [34] to our Figure 13, then it is apparent that our simulations show good agreement
with this prediction. Note that the last two data points for λ = 18.5 and 11.1 have areas averaged for less
than 50 surviving recrystallized grains — such a small number of surviving grains is insufficient to expect
close fit to statistical predictions.

5 Benefits of Diffusion-Generated Motion

As already mentioned, the work of Srolovitz et al. in [33,34] and of Hesselbarth and Göbel in [17] represent
some of the major contributions to the field. There is a long list of more recent works that add further physical
details (such as texture) to the models and extend the simulations to three dimensions (for example, [13,29]),
but the basic Monte Carlo techniques remain largely the same. It is important to be aware of some basic
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Figure 13: Comparison of the mean recrystallized grain size 〈A〉 at F = 0.95 to the nucleation rate dn/dt.
λ = 18.5, 11.1, 7.4, 5.55, 3.7 and 1.85 correspond to circle, square, triangle, star, diamond and x markers,
respectively.

limitations of the Monte Carlo technique applied in [33, 34]:

• For small λ, [33, 34] cannot produce the appropriate stationary shapes seen in Figure 4, with aspect
ratio independent of λ.

• For large λ, grain boundaries become rough, though the PDE description of the model does not predict
this behavior.

• Monte Carlo techniques are most appropriate for simulating atomistic-scale interactions. Recrystalliza-
tion is often studied on the micrometer scale and so would require prohibitively expensive computation
for each grid point to resolve the atomistic scale.

• The lattice definition (e.g. square or triangular) and neighborhood definition affect the results of Monte
Carlo simulations, as noted in [1].

In Figures 1 and 2 of [34], the authors demonstrate that nuclei grow along grain boundaries but not out
into the bulk of unrecrystallized grains for small values of the parameter H/J in their Monte Carlo simula-
tions. However, we have shown in Section 3.2 that the critical grain shapes have aspect ratios independent of
λ for this model: the shapes described in [34] are artifacts of the algorithm, not the model. In particular, we
believe that they are a consequence of performing zero temperature simulations. For sufficiently small H/J
in Monte Carlo simulations, it is never energetically favorable to change a single site from unrecrystallized
to recrystallized if less than half the neighboring sites are already recrystallized. For certain parameter
choices, it will be energetically favorable for growth to occur only along the grain boundary but not out
into the unrecrystallized grain bulk. This observation is independent of the grid resolution and the overall
size of the recrystallized grain which is attempting to grow. In contrast, Figure 3 shows that, under the
diffusion-generated motion algorithm, any initial nucleus which is sufficiently large for the choice of λ will
grow and evolve towards the critical shape described by Equation (7).

In [33], the authors forthrightly admit that rough boundaries arise from the growth of a circular grain for
large H/J . Figure 3 demonstrates that no such difficulty arises for diffusion generated motion with precisely
corresponding parameter choices. Though the initial shape is very irregular, it quickly relaxes to a shape
with smooth boundary and maintains smooth boundaries away from triple junctions as λ/κ → ∞. These
observations suggest that the Monte Carlo model has limitations for both large and small values of H/J .
However, diffusion generated motion successfully obtains the correct behaviors in both situations.

The two-dimensional simulations of [33, 34] are performed on 200 × 200 grids. In three dimensions, [29]
work on a 30×30×30 grid, and [13] work on a grid of 100×100×100 with 822 initial grains. In Sections 5.1
and 5.2, we perform much larger simulations in both two and three dimensions while at the same time having
full benefit of subgrid resolution. These simulations take as initial condition a number of unrecrystallized
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grains generated by normal grain growth starting from Voronoi initial data. The parameters for our two-
dimensional simulations are chosen to agree with physically relevant length scales and surface tensions and
bulk energies. In three dimensions, computational constraints prevent us from obtaining the proper scaling
between unrecrystallized grains and recrystallizing nuclei (while having several unrecrystallized grains fit into
the computational domain). We nucleate grains with mean radius 〈rn〉 = 0.0378, so that nuclei are approx-
imately 5 × 10−5 the volume of unrecrystallized grains initially. The vast majority of the nuclei disappear
quickly. We are able to see the influence of the angle conditions and surface tension on the microstructure
(which always play a role at junctions and at small scales even when vanishingly small, as discussed in
previous sections), resulting in grains which are clearly faceted as seen in experiments. In contrast, other nu-
merical algorithms fail to show this clear faceting. The pure bulk energy phase field simulations of Bernacki
et al. fail to respect the angle conditions (for example, see Figure 8 of [5]) and recrystallizing grains tend
to be circular until collision with other recrystallizing grains. Monte Carlo simulations necessarily generate
grains with rough boundaries, as discussed in [33], which also produces less clearly faceted grains.

As the discretization of a continuum (PDE) model, we believe that diffusion generation motion is more
appropriate for simulating evolutions at the micrometer scale than the inherently atomistic Monte Carlo
method. As such, our simulations can more cleanly reproduce theoretical predictions of the PDE model (5)
used in this work. For example, the diffusion generated motion simulations correctly find the appropriate
nucleation regimes for parameters in µ—R1 space, while the Monte Carlo simulations fail to do so (see Figure
8). Furthermore, the diffusion generated motion algorithm performs correctly on a simple uniform grid and
requires no definition of the neighborhood surrounding a grid point.

5.1 Large Scale Two-Dimensional Simulations

We present three large-scale simulations of recrystallization in two dimensions. Each simulation is initialized
with sixteen unrecrystallized grains on a domain that corresponds toD = [0, 4

√
π]2 in our nondimensionalized

setting. In each simulation, tens of thousands to millions of recrystallized grains are nucleated, with initial
sizes thousands of times smaller than the existing grains. The first two simulations are performed under site-
saturated nucleation conditions, designed to demonstrate the ability of our algorithm to efficiently simulate
recrystallization with physically-relevant parameter choices and to allow for comparison to the analysis of
Section 3.3. The third simulation is performed under the conditions of continuous nucleation. Here, only 26
of over four million nuclei survive to the end of recrystallization, as the mean nucleus size is much smaller
than the critical nuclei sizes described by Equation (10). The variation seen in grain sizes at the completion
of recrystallization is primarily due to the differing nucleation times of the surviving grains. In contrast, the
variation in grain sizes seen in the simulation with site-saturated nucleation is due primarily to differences
in time of impingement along pre-existing grain boundaries.

5.1.1 Site-Saturated Nucleation I

In the first simulation we make physically reasonable choices for the sizes of recrystallizing nuclei and
unrecystallized grains. We choose λ = 577.73, and nucleate 42,095 grains. The radii of nuclei are normally
distributed with mean 〈rn〉 = 3.55×10−4 and standard deviation σn = 7.09×10−5. This choice of parameters
is well within the heterogeneous nucleation regime, as R1 = 1.73 × 10−3. Using the values γ = 0.5 J/m2

and ρ = 10MPa discussed in Section 1, 〈r0〉 = 28.9µm, and the mean recrystallizing nucleus size is
〈rn〉 = 0.01µm: recrystallizing nuclei are a factor of 104 smaller than unrecrystallized grains. This wide range
of length scales is necessary for curvature effects to be significant for recrystallizing nuclei while maintaining
physical sizes for unrecrystallized grains. With these parameter choices, by the time a recrystallized nucleus
reaches a size comparable to that of a pre-existing grain, the effect of surface tension will be negligible away
from junctions (where angle conditions will still be maintained): along facets, the bulk energy term will
dominate the dynamics.

We evolve until the nuclei completely cover D at t = 1.73 × 10−3. At that time, there are 245 surviving
recrystallized grains. The vast majority of nucleated grains disappear almost immediately in the evolution.
Figure 14 displays the agreement of this simulation with JMAK predictions. The recrystallized area fraction
F evolves sigmoidally in time and the Avrami plot of t against − log(1−F (t)) appears to be approximately
linear on logarithmic axes. The slope of the line in the Avrami plot is approximately 2, agreeing with
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Figure 14: Recrystallization kinetics for two dimensional site-saturated nucleation with physically relevant
parameters. (a) The fraction of recrystallized area F evolves sigmoidally in time, as expected. (b) The
Avrami plot is approximately linear throughout the bulk of the evolution and demonstrates the expected
slope of 2 for site-saturated homogeneous nucleation in two dimensions. The initial decrease in the Avrami
plot is due to the fast disappearance of many nucleated grains that do not survive.

the prediction in [7] (page 542) for site-saturated homogeneous nucleation. There is a visible decrease in
− log(1 − F ) at early times. This is due to the large number of nuclei that are nucleated but disappear
almost immediately.

For λ = 577.73, a circular recrystallizing grain contained within a single pre-existing grain must have its
radius r be at least 0.05µm in order to remain stationary. Smaller grains that are not touching each other
or crossing grain boundaries will shrink and disappear. Recrystallizing nuclei crossing grain boundaries or
touching other recrystallizing nuclei benefit both from the additional energy removed from the system (due
to elimination of part of the original boundaries) and from the natural boundary conditions which take effect
immediately, quickly forming the characteristic shape described in Section 3.1. This preference is displayed
clearly in Figure 15(a), where at time t = 1.07× 10−4, the surviving nuclei are primarily located along grain
boundaries. Note that by this time the surviving recrystallized grains (which appear quite tiny) have already
grown considerably from their initial embryonic state – the embryos are too small to display on this Figure
15(a). At this time, we also observe that large numbers of recrystallized grains that survive along existing
grain boundaries contact their neighbors as they grow, and as a result of this crowding recrystallized grains
tend to form elongated shapes which eventually penetrate deep into the bulk of unrecrystallized grains (see
Figure 15(b), at time t = 4.90× 10−4). When the evolution is complete, at t = 1.73× 10−3, there are many
elongated grains because the majority of surviving recrystallized grains nucleated at grain boundaries, and
there are many more surviving recrystallized grains (245) than there were unrecrystallized grains originally
(16). The Herring angle condition is maintained for the recrystallized grain pattern. This is difficult to see
when the entire simulation domain D is viewed (Figure 15(c), top), as the surface tension term is negligible
in comparison to the bulk energy term at the O(1) scale with our choice of parameters. On smaller scales
(same figure, zoomed in at bottom), the mere presence of the tiny surface tension introduces curvature into
grain boundaries right near the junctions to maintain the Herring angle condition.

5.1.2 Site-Saturated Nucleation II

In this simulation, we choose parameters to predict even more severe heterogeneity than in the simulation of
Section 5.1.1. We set λ = 288.87, and nucleate 162,070 grains. The radii of nuclei are normally distributed
with mean 〈rn〉 = 2.13×10−3 and standard deviation σn = 2.13×10−4. Here, using the values γ = 0.5 J/m2

and ρ = 10MPa determines that 〈r0〉 = 14.4µm, and the mean recrystallizing nucleus size is 〈rn〉 = 0.03µm.
These parameters are chosen to support successful nucleation along grain boundaries and at triple junctions
while discouraging the survival of nuclei in pre-existing grain interiors. The number of grains expected to
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Figure 15: Microstructure of two-dimensional site-saturated nucleation simulation I, with physically relevant
parameters. (a) At time t = 1.07×10−4, with F = 0.05. Surviving nuclei are heavily concentrated along grain
boundaries. The originally-circular nuclei are clearly taking the characteristic shape described in Section 3.1.
(b) At time t = 4.90 × 10−4, with F = 0.56. The concentration of surviving nuclei along the original grain
boundaries leads to elongated recrystallizing grains as recrystallization continues. (c) Recrystallization is
complete at time t = 1.73 × 10−3. Many elongated recrystallized grains are present because most surviving
nuclei originated along grain boundaries. Close inspection reveals that recrystallized grain boundaries meet
at 120◦ angles though this cannot be easily seen when viewing the entire simulation domain. At this level,
the evolution is dominated by the bulk energy motion. Full simulation domain shown at top, with zoom-in
below.
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survive is higher than in the previous simulation. We evolve until the nuclei cover D at t = 5.12× 10−3. At
this time, there are 542 surviving recrystallized grains.

The simulation described in Section 5.1.1 approached the limit of the grid resolution. The mean nuclei
radius was just 1.23 grid cells. This simulation further refines the grid, takes larger recrystallizing nuclei to
improve resolution in the initial stages of the simulation, and decreases the value of λ. These changes allow
for comparison with the theoretical predictions of Section 3.3, which depend on accurate computations for
grains near the critical sizes. We discretize the initial condition on a 8192 × 8192 grid. After the surviving
recrystallized grains grow to sufficient size, we coarsen the grid to 4096 × 4096 and take larger time steps.
No impact on the kinetics of recrystallization were detected.

The analysis of Section 3.3 is rough, yet Equations (16) and (20) make excellent predictions for this
simulation. Indeed, these equations indicate that nuclei should only survive along grain boundaries or at
triple junctions, with 99.5% of surviving nuclei originally nucleating along grain boundaries and the remainder
at triple junctions. Visual inspection of Figure 16 indicates that a few nuclei survive in the grain interior,
but that the vast majority of survivors are indeed along grain boundaries and triple junctions. The analysis
predicts that 0.02% of the nuclei should survive, agreeing reasonably well with the simulated survival rate
of 0.033% at the end of recrystallization.

Figure 16 shows the microstructure of the evolution at various times throughout the simulation. As
noted, the majority of grains survive along grain boundaries and at triple junctions. In Figure 16(a), at
time t = 7.79 × 10−5, F = 9.9 × 10−3. The zoom-in indicates that the growing grains tend towards the
characteristic shape shown in Figure 3. Figures 16(b), (c) and (d) correspond to t = 2.40 × 10−4 and
F = 0.086, t = 5.51 × 10−4 and F = 0.26, and t = 5.13 × 10−3 and F = 1, respectively. As in the prior
simulation, it can be seen that the Herring angle condition is maintained, though these boundary conditions
are difficult to visualize on the scale of the full simulation (Figure 16(d)).

As recrystallization proceeds, grains begin to impinge upon each other along grain boundaries and grow
primarily normal to the boundaries between pre-existing grains. Thus the recrystallized grains tend to be
quite elongated. Figure 17(a) shows the distribution of a generalized measure of eccentricity computed among
grains surviving at the completion of recrystallization. The generalized eccentricity is computed as the ratio
of radius computed from perimeter, RP = (Perimeter)/2π, to radius computed from area, RA =

√

(Area)/π.
Many of the grains remaining at the end of recrystallization have high eccentricity, greater than that of a
rectangle with side length ratio of 10 : 1. The most eccentric grains had eccentricity comparable to a
rectangle with side length ratio of 20 : 1. The mean grain eccentricity is 1.58, with standard deviation 0.41.
In contrast, grain eccentricities were calculated for fifty smaller simulations of normal grain growth, each
starting with approximately 10, 000 grains initialized as Voronoi data and concluding with approximately
1, 000 grains. For these simulations of normal grain growth, the final mean grain eccentricity is 1.06, with
standard deviation 0.03.

Figure 17 compares the evolution of the recrystallized area fraction (F ) with JMAK predictions. The
recrystallized area fraction F is expected to be a sigmoidal function of time. In this simulation, the sigmoidal
tails are asymmetric (Figure 17(b)). This effect is due to the multiple growth regimes clearly seen in the
Avrami plot (Figure 17(c)). The prediction for site-saturated homogeneous nucleation is a slope of 2 [7]
(page 542). This slope is seen early in the evolution, before nucleated grains begin to impinge upon each
other in significant numbers. Later in the evolution, nucleated grains show significant impingement along the
pre-existing grain boundaries, but are still free to grow along the normal direction to the grain boundaries.
In Figure 17(c), the left triangle has a slope of 2, while the right triangle is fit locally to the data with a
slope of 1.355.

After recrystallization concludes, the simulation reduces to normal grain growth (since the bulk energy
terms in (5) vanish). Because surface tension is negligible away from triple junctions compared to the now
exhausted bulk energy driving forces once the grains reach this scale, the evolution of the system becomes
extremely slow and therefore the time step has to be increased in the simulation. We continue to coarsen
the grid as the grain growth proceeds, allowing for computational efficiency with larger time steps. In doing
so, we ensure that the mean grain width along the minor axis of the elongated grains remains well-resolved
throughout the coarsening process. The final grid size is 1024 × 1024. Recrystallization concludes at time
t = 5.13 × 10−3, with 542 surviving nuclei. Grain growth is performed until just 52 grains remain, at time
t = 3.50 × 10−1. A computation over such a long time period would be computationally infeasible without
the grid and time step coarsening made possible by the large size of the surviving grains in the system, as
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Figure 16: Microstructure of two-dimensional site-saturated nucleation simulation II, with higher surviving
grain density along pre-existing grain boundaries. (a) At time t = 7.79× 10−5, with F = 9.9× 10−3. (b) At
time t = 2.40 × 10−4, with F = 0.086. Nuclei are beginning to impinge along grain boundaries, while some
unimpinged grains can still grow in all directions. (c) At time t = 5.51 × 10−4, F = 0.26. All nuclei except
those in grain interiors have impinged along the pre-existing grain boundaries and can grow along only one
dimension. (d) Recrystallization is complete at t = 5.13 × 10−3. Many elongated recrystallized grains are
present because most surviving nuclei originated along grain boundaries. Full simulation domain shown at
top, with successive magnification below.

22



1 1.4 1.8 2.2 2.6
0

10

20

30

40

50

60

70

R
P
/R

A

N
um

be
r 

of
 G

ra
in

s

c 1

3

10

20

(a)

0 1.25 2.5 3.75 5
x 10

−3

0

0.2

0.4

0.6

0.8

1

Time

F

(b)

10
−6

10
−5

10
−4

10
−3

10
−210

−4

10
−3

10
−2

10
−1

10
0

10
1

Time

−
lo

g(
1−

F
)

(c)

Figure 17: (a) The ratio of RP = (Perimeter)/2π to RA =
√

(Area)/π reveals that many grains are very
elongated. For comparison, the value of RP /RA is shown for a circle and for rectangles with side length
ratios of 1, 3, 10, and 20. (b) Recrystallization kinetics for two dimensional site-saturated nucleation with
physically relevant parameters. The fraction of recrystallized area F evolves approximately sigmoidally in
time. Two growth regimes are seen in the Avrami plot (c). The expected slope of 2 predicted for site-
saturated homogeneous nucleation prevails initially. At later times, nuclei impinge along pre-existing grain
boundaries but are free to grow in the direction normal to these boundaries. The data in this region is
numerically fit to a slope of 1.355.

t # Grains R(t)max 〈R(t)〉 ψ(t) 〈RP /RA〉
5.13 × 10−3 542 9.89 × 10−2 2.10 × 10−2 4.70 1.582
8.76 × 10−2 161 1.40 × 10−1 3.78 × 10−2 3.72 1.196
1.76 × 10−1 92 1.62 × 10−1 4.97 × 10−2 3.25 1.148
2.62 × 10−1 66 1.75 × 10−1 5.95 × 10−2 2.93 1.138
3.50 × 10−1 52 1.87 × 10−1 6.68 × 10−2 2.80 1.132

Table 2: Data for maximum grain size, mean grain size, and their ratio, ψ(t) demonstrates that while R(t)max

increases, ψ(t) decreases. ψ̇(t) > 0 is a condition for abnormal grain growth as defined by Detert [8]. The
mean grain eccentricity 〈RP /RA〉 is also seen to decrease.

well as the unconditional numerical stability of our algorithms.
Figure 18 shows the evolution of the same microstructure from the simulation of Figure 16 beyond the

fully recrystallized configuration shown in part (d) of that figure. More precisely, Figure 19(a), (b), and
(c) show the solution, which evolves effectively via normal grain growth starting from Figure 16(d), at
approximately quarter, half, and final times of the full computation. During this time, the elongated grains
disappear or become more equiaxed. The few very large grains evident in the microstructure at the end of
primary recrystallization continue to grow. Detert [8] defines abnormal grain growth as being characterized
by an increase in maximum grain size that is much faster than the increase in mean grain size. Specifically,
the function

ψ(t) =
R(t)max

〈R(t)〉 (23)

must be increasing. In this evolution, R(t)max is increasing, but ψ(t) is decreasing. Values at various stages
in the evolution are shown in Table 2. This simulation result agrees with the conclusion of simulations
in [32], and analysis in [36], in which the authors suggest that abnormal grain growth cannot occur under
pure curvature motion, regardless of the initial grain size distribution. Instead, abnormal grain growth must
result from additional factors such as the presence of second-phase particles, texture, or other surface effects
( [18], page 316).
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Figure 18: The evolution of the microstructure during grain growth following primary recrystallization at
(a) t = 8.76 × 10−2, (b) t = 1.76 × 10−1, and (c) t = 3.50 × 10−1. Elongated grains tend to become more
equiaxed. The unusually large grains continue to grow, but the mean grain size grows faster. This evolution
does not correspond to abnormal grain growth.

Table 2 also displays the evolution of the mean grain eccentricity, 〈RP /RA〉. This value is also seen to
decrease as normal grain growth proceeds. At the conclusion of the grain growth simulation, there are too
few grains present to make statistically significant claims about the convergence of the grain size distribution
to the self-similar distribution expected for normal grain growth (and which has been numerically observed
by many authors, including the present ones, in dedicated simulations). However, the decay of both the
maximum relative grain size ψ(t) and the mean grain eccentricity towards values seen for normal grain
growth (calculated as 2.212 and 1.06, respectively, for 50 simulations of normal grain growth from Voronoi
initial data of approximately 10,000 grains until approximately 1,000 grains remain, via diffusion generated
motion) suggests that this evolution is not significantly different that what is observed in typical simulations
of normal grain growth, despite the highly unusual initial condition of extremely directionally-correlated and
elongated grains.

5.1.3 Continuous Nucleation

The parameters in our continuous nucleation simulation have been chosen so that the vast majority of nuclei
disappear quickly. Specifically, our parameters were: µ = 4.15× 10−3 and σ = 1.21 × 10−3, with λ = 72.22,
corresponding to R1 = 1.39 × 10−2, chosen so that R1 lies eight standard deviations above the mean, with
R2 four standard deviations above the mean, and R3 approximately two standard deviations above the
mean. The nucleation rate is set to 3.5 × 108 nucleations per unit time. Throughout the full simulation,
approximately 4.4 million grains are nucleated, but most do not survive.

The values γ = 0.5 J/m2 and ρ = 10MPa determine that the mean unrecrystallized grain size for
this simulation is 〈r0〉 = 3.61µm and the mean recrystallized nucleus size is 〈rn〉 = 0.015µm. Thus the
unrecrystallized grains are somewhat smaller than often seen in experiment, but within an order of magnitude
of the proper size. From Equations (16) and (20), we predict that no nuclei should survive away from
grain boundaries, and that 43.5% of surviving nuclei are predicted to fall along grain boundaries, with the
remaining 56.5% at triple junctions. This prediction is borne out well by Figure 19, though it is difficult to
tell whether some surviving nuclei were touching grain boundaries at the time of nucleation. Further, we
calculate P(G) ≈ 4.13 × 10−6. With 4.4 million total nucleations, the basic analysis of Section 3.3 predicts
that approximately 18 of the nuclei will survive. Although our analysis in Section 3.3 does not account
for continuous nucleation in any way — in particular, the changing proportion of grain boundaries in the
simulation domain D is unaccounted for — and yet agrees quite well with the simulation result, in which
there are 26 grains present when nucleation completes.

The final microstructure seen in Figure 19 is quite different than that seen in Figure 15, where the
simulations took place under site-saturated nucleation. There are far fewer survivors due to the differing

24



parameter choices. The surviving grains tend to be more equiaxed in this simulation because the density of
surviving nuclei along grain boundaries is much lower. Final recrystallized grain sizes vary greatly in both
simulations, but the mechanisms behind this variation differ. In the site-saturated case, the variation is
due to the variation in times when impingement occurs between recrystallizing grains along the pre-existing
grain boundary. In the continuous case, the variation is explained primarily by the different times at which
the surviving nuclei were nucleated.

Figure 20 demonstrates the evolution of the recrystallized area fraction F through time. The Avrami plot
in Figure 20(b) clearly shows a long transition period before the expected Avrami exponent, 3, emerges. In
this case, the initial increase in this plot is because nuclei are being added to the system (increasing F at a
constant rate) faster than the nuclei present disappear due to surface tension effects (decreasing F at a rate
approximately proportional to the number of nuclei present), until a sufficient number of nuclei are present
for these competing effects to find an equilibrium. F remains approximately constant from t = 5 × 10−5 to
t = 7.5 × 10−4. Only after a few nuclei successfully begin to grow does the Avrami exponent achieve the
predicted value.

5.2 Three-dimensional recrystallization

In three dimensions, our simulation begins with 216 unrecrystallized grains. The domain is D = [0, 9.67]3,
discretized on a 256×256×256 grid, λ = 12.407, and the final time for the simulation is t = 0.1713. Spherical
recrystallized grains are nucleated with normally distributed radii, with mean 〈rn〉 = 0.0378 and standard
deviation σn = 0.0094. 243,872 nuclei are placed in the simulation domain D. In this case, taking the
physically relevant parameter choices γ = 0.5 J/m2 and ρ = 10MPa, we find that the mean unrecrystallized
grain radius is 0.62µm and the mean recrystallized grain radius is 0.0234µm. The mean unrecrystallized
grain radius is unphysically small. A significantly larger grid and the attendant memory requirements would
be necessary to simulate three-dimensional recrystallization for this many (approximately 200) physically
realistic unrecrystallized grains while maintaining the unrecrystallized nucleus size.

Just as in two dimensions, the three-dimensional simulations agree well with the JMAK predictions, as
shown in Figure 21. In three dimensions, the predicted Avrami slope is 3 for site-saturated nucleation. Figure
22 shows the evolution of the microstructure as evolution progresses. At t = 5.02× 10−2, recrystallization is
10% complete. The surviving recrystallized grains are still much smaller on average than the unrecrystallized
grains. 50% recrystallization occurs at t = 8.45×10−2. By this time, there are fewer surviving recrystallizing
grains (158) than unrecrystallized grains (216), so the recrystallizing grains are slightly larger on average at
50% recrystallization. At all stages of the evolution, the recrystallizing grains are visibly faceted, consistent
with the Herring angle condition even though as before surface tension is negligible compared to bulk energy
along the faces of the recrystallizing grains by the time they have grown to be comparable to the length scale
of the initial grain network.

Figure 23 compares the evolution of mean grain volume and mean number of faces for recrystallized
and unrecrystallized grains through time. Early in the evolution, the recrystallizing grains are very small
and have few faces as compared to the unrecrystallized grains. The bulk energy term allows some of the
recrystallization nuclei to grow despite their small size and low number of faces. The present authors
demonstrate in [11] that, for normal grain growth, a grain with few faces is, on average, likely to be a
shrinking grain, in agreement with the inexact three-dimensional extension of the von Neumann–Mullins
prediction given in [26].

6 Conclusions

We apply the algorithm developed in [10,12] based on diffusion generated motion of signed distance functions
to simulations of recrystallization in two and three dimensions. The use of this algorithm allows for fully-
resolved simulations of the PDE-based version of the recrystallization model introduced in the seminal works
of Srolovitz et al. [33, 34]. Due to the computational efficiency and subgrid resolution of this algorithm, we
obtained previously unseen levels of detail in our simulations. This detail allows for the identification of
some numerical artifacts in the Monte Carlo simulations of [33,34], and thus for separation of these artifacts
from features inherent to the model.
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Figure 19: Microstructure from two-dimensional simulation with continuous nucleation. (a) At t = 4.55 ×
10−3, with F = 0.05. All growing nuclei are located along grain boundaries or at triple junctions, as
predicted. Many tiny nuclei can be seen throughout the microstructure. These nuclei have recently been
nucleated but are not large enough to survive. (b) F = 0.15 at t = 7.07 × 10−3. Four new nuclei have
successfully initiated visible growth since (a). All are quite small relative to the recrystallized grains that
were also present in (a). (c) F = 0.50 at t = 1.25 × 10−2. Successful nuclei are of a wide variety of sizes,
due to their varying nucleation times. Compare to Figure 15(b), where the nucleated grains are much closer
in size, and size differences appear to be primarily due to impingement. (d) Recrystallization is complete at
t = 2.92 × 10−2. The resultant grains are of a wide variety of sizes and shapes due to inhomogeneities in
nucleation locations and varying nucleation times.
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Figure 20: (a) The recrystallized area fraction F evolves sigmoidally as expected for the large-scale simulation
of continuous nucleation in two dimensions. (b) The Avrami plot shows a long initial transition period in
which nuclei are continuously placed in the microstructure but disappear at the same rate due to their small
sizes and corresponding high curvatures. The expected Avrami exponent, 3, is seen at later times.
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Figure 21: Recrystallized volume fraction F and Avrami plot for three-dimensional site saturated nucleation.
(a) F evolves sigmoidally in time, as expected. (b) The Avrami plot is approximately linear throughout the
bulk of the evolution and demonstrates the expected slope of 3 for site-saturated homogeneous nucleation
in three dimensions.
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(a)

(b)

Figure 22: (a) Surface planes at F = 0.1, F = 0.5, and F = 1, respectively. Recrystallizing grains are
shown in shades of yellow, unrecrystallized grains in shades of green. (b) Subsets of grains are shown at the
same points in the evolution. Note that recrystallizing grains are clearly faceted, and that at early times,
recrystallizing grains appear to have fewer faces on average than the unrecrystallized grains.
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Figure 23: (a) Mean volume of recrystallized grains (circles) and of unrecrystallized grains (triangles) through
time. (b) Mean number of faces among recrystallized (circles) and unrecrystallized (triangles) grains through
time. Early in the evolution, recrystallized grains are quite small and are likely to meet less grains than the
larger unrecrystallized grains. The bulk energy evolution causes the recrystallized grains to grow on average
despite their smaller sizes and numbers of neighbors until the situation is reversed at later times.

Section 3 presents new analysis of the model. In particular, it is shown that surface tension effects are
always important, even when the surface tension is vanishingly small in comparison to the bulk energy
driving force. It is demonstrated that our algorithm capably captures the O(1) effect described even for
vanishingly small surface tensions and displays good agreement with the classification of parameter regimes
presented here.

New simulations of recrystallization under this model are presented, with physically-relevant parameter
choices. These parameter regimes could not be approached via the standard Monte Carlo method. For certain
parameter choices in this range, we obtain microstructures at the conclusion of recrystallization composed
primarily of extremely elongated grains. A simulation of three-dimensional grain growth is also presented.
Though computational constraints prevent this simulation from taking physically-relevant parameters, good
agreement with JMAK predictions is still obtained.
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