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Abstract

An accurate and efficient algorithm, closely related to the level set method, is pre-

sented for the simulation of Mullins’ model of grain growth with arbitrarily prescribed

surface energies. The implicit representation of interfaces allows for seamless transi-

tions through topological changes. Well-resolved large-scale simulations are presented,

beginning with over 650,000 grains in two dimensions and 64,000 grains in three dimen-

sions. The evolution of the misorientation distribution function (MDF) is computed,

starting from random and fiber crystallographic textures with Read–Shockley surface

energies. Prior work had established that with random texture the MDF shows little

change as the grain network coarsened whereas with fiber texture the MDF concen-

trates near zero misorientation. The lack of concentration about zero of the MDF

in the random texture case has not been satisfactorily explained previously since this

concentration would decrease the energy of the system. In this study, very large-scale

simulations confirm these previous studies. However, computations with a larger cut-

off for the Read–Shockley energies and an affine surface energy show a greater tendency

for the MDF to concentrate near small misorientations. This suggests that the rea-

son the previous studies had observed little change in the MDF is kinetic in nature.

In addition, patterns of similarly oriented grains are observed to form as the MDF

concentrates.
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1 Introduction

Macroscopic properties of a polycrystalline material depend on its crystallographic

texture and grain boundary character. These properties can evolve under thermome-

chanical processing such as heat treatment or deformation. Ignoring recrystallization,

the evolution of the texture and the grain boundary character is largely determined

by properties of the initial grain boundary network. The motion of this network of

surfaces is often modeled as steepest descent for a weighted surface energy, where low

angle grain boundaries (formed between adjacent grains with similar orientations and

said to have low misorientation) receive lower weights than high angle ones. A specific

functional dependence due to Read and Shockley [22] with a standard extension for

high-angle grain boundaries (see e.g. [12]) is commonly used to assign the weight to a

grain boundary in terms of the orientations of the two adjacent grains.

In the anisotropic case there are two aspects to this energy minimization process.

First is grain growth: As some grains grow others must shrink, and as such the total

length of the grain boundaries must decrease. In fact, in the isotropic case this is

the only mode of energy reduction. However, in the anisotropic case, the energy will

decrease if the grain boundary energy is reduced. This can happen when two grains

with similar orientations happen to meet. Therefore, it might be expected that the

distribution of misorientations in the system will also change as the grain network

coarsens.

For this reason, a useful statistical descriptor of the grain boundary character is

the misorientation distribution function (MDF), which measures the relative area of

interfaces in the network with a given misorientation. It is useful to note that if

the grain boundary energy is isotropic then as the grain network evolves the MDF is

expected to remain stationary. On the other hand, if the grain boundary energy is a

increasing function of misorientation (as it is often modeled) then one would expect that

as the grain network evolves, low misorientation grain boundaries would predominate

and as a consequence the MDF would concentrate near small misorientations.

The time evolution of the MDF has attracted attention. Holm et al. [12, 13] studied

2



the evolution of the MDF via kinetic Monte Carlo (KMC) simulations of grain growth

in two dimensions. In one case, orientations were chosen randomly from SO(3), and

misorientations were computed with regard to cubic symmetry, resulting in an initial

MDF following the well-known Mackenzie distribution [16]. They observed that the

MDF evolved into a steady state quite close to the initial Mackenzie distribution,

characterized by a slight enhancement of the low misorientation boundaries. More

recently, Gruber et al. [9] carried out larger KMC simulations, both in two and three

dimensions, that helped remove the statistical uncertainties in some of the results of

[12, 13]. Their initial conditions contained over 75,000 well-resolved grains in two

dimensions and they obtained essentially the same results as found by Holm et al. [12].

These results are rather surprising in view of the discussion above. From an ener-

getic point of view, one would expect that MDF would concentrate for small misorien-

tations. Indeed, both Holm et al. and Gruber et al. also considered simulations with

initial conditions dominated by a single-component texture. In this case they observed

that the MDF evolves in such a way that it tends to concentrate at low misorientations.

In addition, the fiber texture case was studied by Holm et al. and Kinderlehrer et al.

[15] (using front tracking, with a different misorientation to surface energy map). Both

investigations observed the concentration of the MDF at zero misorientation.

Barmak et al. [2] went on to further suggest that the MDF converges to a Boltzmann

distribution, namely

g(φ) =
1

Zλ
e−

1

λ
σ(φ) (1)

where φ is the misorientation, σ(φ) is the grain boundary energy associated with a

misorientation φ, and Zλ a normalization factor. Notice if the surface energy is a

strictly increasing function of the misorientation angle then (1) will have a maximum

value at zero misorientation. From a thermodynamic point of view (1) is reasonable.

In addition, there is a remarkable formulation to determine the “thermal energy,” λ.

This value of λ is the one that yields the fastest decrease of the relative entropy [2].

The difference between the results observed in the fiber texture and strongly textured

simulations as compared to the random texture case is remarkable: In the former,

concentration of the MDF about zero misorientation is clearly observed. In the latter,
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only a small deviation from the Mackenzie distribution is observed. The “stability” of

the Mackenzie distribution is peculiar since an energetic point of view suggests that

the MDF should tend to concentrate near zero.

We propose to explore this issue with a numerical approach capable of simulating

a very large number of grains over much longer periods of time. This is accomplished

by introducing a new computational approach to anisotropic (unequal surface energy)

grain growth that in two dimensions can readily simulate the coarsening of approxi-

mately 670,000 grains down to less than 4,000. This new algorithm allows arbitrary

surface energies to be specified between any two grains in the network. It is accu-

rate, robust, efficient, and easily parallelized. It builds on the distance function-based

diffusion-generated motion (DFDGM) approach [7], which was used in earlier work

[4, 5] to simulate long time isotropic (equal surface energy) grain growth with very large

numbers of grains. The initial simulations presented demonstrate this method recovers

previous results using KMC simulations [9, 12, 13] and front tracking [15, 2]. Subse-

quent simulations demonstrate the importance of the surface energy-to-misorientation

map in predicting the time evolution of the MDF and suggests a framework capable of

explaining the different MDFs obtained in the fiber texture and random texture cases.

2 The Model

We will use Mullins’ model [11, 20] of normal grain growth. Denoting the boundary

between two adjacent grains Σj and Σk as Γjk, the specific form of Mullins’ model we

consider is

E =
∑

j<k

σjkArea
(

Γjk

)

. (2)

The constants σjk are known as surface energies associated with the Γjk. In particu-

lar, this model ignores the dependence of the energy density on the boundary plane.

Moreover, we assume constant mobilities for all Γjk. Accordingly, Γjk moves by the

normal speed

vn(Γjk) = σjk κjk, (3)
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where κjk denotes the mean curvature of Γjk. At a triple junction formed by the

meeting of three distinct phases Σj, Σk, and Σℓ, Herring angle conditions [10] hold;

they stipulate:

0 = σjknjk + σkℓnkℓ + σℓjnℓj, (4)

so that the angles formed by the normals njk, nkℓ, nℓj to the three interfaces Γjk, Γkℓ,

Γℓj along the triple curve are determined by the surface energies σjk, σkℓ, and σℓj.

The surface energies σjk will be assumed to be positive and to respect the triangle

inequality

σjk + σkℓ > σℓj for any distinct j, k, and ℓ, (5)

which turns out to be necessary to rule out wetting. Otherwise, the σjk are arbitrary.

3 The Algorithm

This section presents our new algorithm for model (3) and (4) with arbitrarily pre-

scribed surface energies σjk, suitable for large-scale simulations of grain networks. Our

previous work [4, 5] developed an efficient algorithm for the same model in the equal

surface energy (i.e. σjk = 1) case, in both two and three dimensions. As in that

previous work, our approach uses distance function-based diffusion generated motion

[7]. The extension described here to arbitrary surface energies from [4, 5] is highly

non-trivial. We start by reviewing distance function based diffusion generated motion

in its most elementary form.

3.1 Distance Function Diffusion Generated Motion

We start with the simplest setting of two-phase curvature flow: Consider a single

grain, Σ, surrounded by another grain of infinite extent. To evolve the boundary ∂Σ

with normal speed vn = κ using the level set method, one would first take a level set

function φ so that Σ = {x : φ(x) > 0} and φ = 0 on ∂Σ; then, one would evolve φ by

∂tφ = κ|∇φ|. Among the many possible level set representations of Σ, if φ is chosen

to be the signed distance function, d, then the level set equation greatly simplifies:
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∆d = κ along the interface, and |∇d| = 1, by which the level set equation reduces

to ∂tφ = ∆φ. However, during this evolution φ will not remain a signed distance

function even if it starts as one; it must be reinitialized to remain as such. Therefore,

alternating repeatedly these two operations, namely linear diffusion and reinitialization,

yields motion by mean curvature. The threshold dynamics scheme proposed in [18, 19]

and developed further in [23] for this problem applies a similar approach using the

characteristic function of Σ rather than the signed distance function.

To be more precise, let ds(x) be the signed distance function at times s∆t, s =

0, 1, 2, ..., where ∆t is the time step. The solution of the heat equation for one time

step with ds as an initial condition is G∆t ∗ d
s where Gt = (4πt)−D/2e−|x|2/(4t) in

D dimensions. Finally, d = Redist(φ) is the operation that will produce a distance

function from φ where both d and φ have the same zero level set. The resulting

algorithm is

Algorithm 1

1. A = G∆t ∗ d
s

2. ds+1 = Redist(A)

Under the algorithm above, the surfaces defined implicitly via {ds = 0} move by an

approximation to motion by mean curvature with mobility equal to one; convergence

to the exact flow takes place as ∆t→ 0.

In the multiphase setting, let Γjk denote the boundary between grains Σj and Σk,

with j, k ∈ {1, 2, . . . , N}. Let dsj denoted the signed distance function for the j-th grain

at time step s; i.e. Σs
j = {x : dsj(x) > 0}. First, diffuse all of the distance functions

dsj , denoting the result As
j = G∆t ∗ d

s
j . Then, each spatial point x must be reassigned

to a single grain, which is done according to the following rule: If As
k(x) is the largest

among all the convolutions, then x is assigned to grain k. Thus, the algorithm is:

Algorithm 2

1. Aj = G∆t ∗ d
s
j

2. Bj =
1
2 (Aj −maxk 6=j Ak)

3. ds+1
j = Redist(Bj)
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The resulting normal speed for the boundary of each grain under Algorithm 2 is

vn = κ. Furthermore, the relevant Herring angle condition is satisfied along triple

curves. Algorithms 1 and 2 are due to Esedoglu et al. [7].

In [4, 5], Algorithm 2 was extended by recognizing that a separate signed distance

function is not needed for each individual grain: Well-separated grains can be lumped

into families. A single signed distance function is then computed to represent an

entire family, which can contain thousands of distant grains. This partitioning is

constantly updated to ensure the well-separation of grains belonging to the same family,

preventing unphysical interactions and mergers. In practice, as few as 18 families can

be sufficient to simulate over 670, 000 grains in two dimensions. This procedure will be

discussed in more detail below. In [6], we further extended this algorithm to models of

recrystallization. The schemes have thus proven their mettle in very large-scale, fully

resolved, accurate simulations in both two and three dimensions, handling hundreds of

thousands of topological changes along the way.

3.2 Arbitrary Surface Energies

Extending DFDGM to the case of arbitrarily prescribed surface energies, the algorith-

mic meat of the present paper, is based on two observations. First, Algorithm 2 for

equal surface energies extends to the additive surface energy case quite easily. We call

a set of surface energies σjk additive if they arise as

σjk =
1

2
(γj + γk), (6)

for N arbitrarily chosen nonnegative weights γj. Note that this is a very small subset

(of dimension N) of all admissible surface energies (a set of dimension N(N − 1)/2).

Nevertheless, our second observation is that any three-grain model satisfying (3) and

(5) can be expressed in terms of the additive case. The energy (2) of the system

becomes

E =

N
∑

j=1

γjArea(∂Σj). (7)

This suggests the following modification to Algorithm 2:
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Algorithm 3

1. Aj = Gγj∆t ∗ d
s
j

2. Bj =
1
2 (Aj −maxk 6=j Ak)

3. ds+1
j = Redist(Bj)

Notice that the only difference between Algorithms 2 and 3 is the convolution kernel

used in the first step. Under Algorithm 3, the normal speed of the grain boundary Γjk is

vn = 1
2(γj+γk)κ. Numerical tests presented in Section 3.3 indicate that the appropriate

Herring angle conditions (4) are also enforced by this modified algorithm.

One drawback of Algorithm 3 compared to Algorithm 2 is the necessity to rep-

resent and convolve each grain separately. In our original Algorithm 2, all grains are

convolved with the same Gaussian kernel, allowing us to represent many well-separated

grains with a single signed distance function to their union, which allows computing

their convolutions all at once. This allowed for great computational efficiency and the

simulation of over one hundred thousand well-resolved grains in both two and three

spatial dimensions. In Algorithm 3, as each grain may be associated with a different

value of γj, either the convolutions must be performed locally (prohibiting the use

of the efficient discrete Fourier transform), or each grain must be represented in its

own signed distance function. To redress this drawback of Algorithm 3, we make the

following observation:

Let Ξj denote the union of all grains represented by dj , i.e. {dj > 0} = Ξj. Next,

we define γj(x) = γk for the grain Σk ⊆ Ξj nearest to x. We can now replace Aj in the

Algorithm 3 by

Aj(x) =
γj(x)

γ∗
(

Gγ∗∆t ∗ d
s
j

)

+

(

1−
γj(x)

γ∗

)

dsj , (8)

with γ∗ = maxi γi. It can be shown that the expressions for Aj given above and in

step 1 of Algorithm 3 agree to O(∆t) along smooth interfaces Γij away from triple

junctions.

Let Algorithm 4 denote the modification of Algorithm 3 that replaces its step 1

with (8). The major resultant gain is the use of a single convolution kernel, which

allows computing the convolutions of many grains all at once with a single FFT and
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inverse FFT pair.

Next, observe that in the three-phase case, arbitrary surface energies σ12, σ13, and

σ23 can be mapped to γ1, γ2, γ3 so that σ12 = (γ1 + γ2)/2, etc., by the mapping













γ1

γ2

γ3













=













1 1 −1

1 −1 1

−1 1 1

























σ12

σ13

σ23













(9)

where the triangle inequality for σjk implies that γj are positive. This observation has

independently been made recently by [17]. Thus, Algorithm 3 is sufficient to generate

three-phase motion with arbitrarily chosen surface energies. For N -phase motion, we

note that there is, in general, no assignment of surface energies γj so that the arbitrary

σjk can be written as σjk = (γj + γk) /2.

Algorithm 3 or 4, together with (9), can be used to update grain boundaries Γjk,

including at and around triple curves. Note that quadruple junctions are common at

all times on the face of three-dimensional grains as the meeting place of triple curves,

and higher multiplicity junctions arise, e.g. during topological transitions. We now

explain how four and higher multiplicity junctions are handled.

Our approach is related to the weighted averages used in [23] for handling junctions

of high multiplicity. In our version, for a phase j present at the junction, we calculate

convolution values for each of the triple junctions it can form with any two of the

remaining phases at the same junction, and take a weighted average of how it would

have been updated had it been at a triple junction with them. Consider the case of

a quadruple junction. First, compute Aj as given in (8) for the γj computed by (9)

for each of the three possible triplets that phase j can participate in, and denote those

values ψj;kℓ. For example, for j = 1 we apply (9) and (8) to compute ψ1;23, ψ1;34, and

ψ1;24. Next we compute the quantity

T1(x) =
1

3
(ψ1;23 + ψ1;34 + ψ1;24)

Analogous quantities T2, T3 and T4 are also computed.
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An important observation is that

if x is well inside of Σj then Aj(x) > K and

if x is well outside of Σj then Aj(x) < −K,

where K = 2.5
√

∆t log(1/(4π∆t). By “well inside (outside),” we mean that a single

step of Algorithm 4 will not bring x out of (into) set Σj. It therefore follows that if x is

well inside grain Σ1 then T1(x) > K and if x is well outside grain Σ1 then T1(x) < −K.

This leads us to define the following weight function

wj(x) =































ε, Tj(x) < −K

ε+ (1− ε)
(

1
2 +

Tj(x)
2K

)

, |Tj(x)| < K

1, Tj(x) > K.

(10)

Therefore if w1(x) = 1 then we are in grain Σ1 and if w1(x) = ε we are not in grain

Σ1. w2(x), w3(x), and w4(x) are also computed.

To understand the third step, consider the quantity w1wjwk and let the values jM

and kM be the j and k, respectively, that maximize it. Then grains jM and kM are

interacting most strongly with grain Σ1. This would suggest that we might replace A1

by ψ1;jM ,kM . In practice, we do something smoother, namely

A1(x) =

∑4
j,k=2, j<k w1wjwk ψ1;jk
∑4

j,k=2, j<k w1wjwk

.

In a similar way we compute A2, A3, A4. The above procedure now replaces step 1 of

Algorithms 3 or 4.

The general algorithm is now stated.

Algorithm 5: Full Algorithm for Arbitrary Surface Energies

Fix ∆t, ε andK > 0. Define γj;kℓ to be the weight γj obtained from solving (9) with

inputs σjk, σkℓ, and σℓj, and ψ(x, dsj , σj(x)) to be the right-hand side of (8). Define

M ≤ N collections Ξj of disjoint grains so that
⋃M

j=1 Ξj =
⋃N

j=1Σj. Maintain M

signed distance functions dj(x), giving the signed distance to the collection Ξj, with

dj(x) > 0 for x ∈ Ξj. The signed distance functions are updated by the following:

For s = 0, . . . , smax and j = 1, . . . ,M , perform steps 1–4.
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1. Update: For each grid location x, define R(x) = {i : di(x) > −ε}, and let

r(x) = #R(x).

(a) If R(x) = {j}, set Aj(x) = dsj(x).

(b) If R(x) = {j, k}, set Aj(x) = ψ(x; dsj , σjk), and Ak(x) = ψ(x; dsk, σjk).

(c) If R(x) = {j, k, ℓ}, set Aj(x) = ψ(x; dsj , γj;kℓ), Ak(x) = ψ(x; dsk, γk;jℓ), and

Aℓ(x) = ψ(x; dsℓ , γℓ;jk).

(d) If r(x) > 3,

• For each i ∈ R, compute

Ti(x) =
1

(r(x)−1
2

)

∑

j,k∈R\{i}
j<k

ψ(x; dsi , γi;jk). (11)

• Next compute wi(x) by (10).

• Set

Ai(x) =

∑

j,k∈R\{i}
j<k

wiwjwk ψ(x; di, γi;jk)

∑

j,k∈R\{i}
j<k

wiwjwk

. (12)

2. Redistribute: Construct

Bj(x) =
1

2

(

Aj(x)−max
k 6=j

Ak(x)

)

(13)

to remove overlaps and vacuums from the previous step.

3. Redistance: Set Cj(x) to be the signed distance function to the zero-level set

of Bj(x).

4. Swap: As necessary, swap appropriate grains between signed distance functions

Cj to ensure a minimum separation between grains associated with the same

signed distance function. Redistance around swapped grains and denote the re-

sulting signed distance functions as ds+1
j (x).

3.3 Validation

In this section we provide numerical results demonstrating the accuracy of Algorithms

3, 4, and 5. The first two examples are three-phase evolutions: A generalized version
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of the well-known “Grim Reaper” exact solution, and an initial conditions devoid of

symmetry where we compare with front tracking. Then, we investigate the ability of

Algorithm 5 to preserve stable quadruple junctions, the existence of and conditions for

which have been previously studied by Cahn [3].

3.3.1 “Grim Reaper” Profile

A derivation for a constantly transported profile in the axially symmetric case σ12 =

σ13, commonly referred to as the “Grim Reaper,” is given in the Appendix of [8]. We

straightforwardly extend this calculation to the more general case where all surface

energies may be chosen independently of each other. The derivation is omitted but

follows that in [8] closely. We choose σ12 = 1, σ13 = 0.8, and σ23 = 1.2. The simula-

tion was performed using Algorithms 3, 4, and 5. All results are in good qualitative

agreement. We measure the interfacial velocity by interpolating to find the location of

the interfaces corresponding to µ12(x) and µ13(x) at t = 0 and t = 3/128. The L2 error

in interfacial velocity converges approximately linearly. The maximal error occurs near

the triple junctions and appears to be converging at a sublinear rate. These results

agree with analysis performed on the basic, isotropic algorithm in [7].

3.3.2 Comparison to Front Tracking

To verify that the numerics of the previous experiment are not influenced by the axial

symmetry or the vertical interface of the “Grim Reaper” profile, we also study a three-

phase evolution with asymmetric curved interfaces. In this case, an exact solution

is not known, so we compare with a very high resolution front-tracking simulation

containing over 4, 800 points instead. The results obtained are displayed in Figure

1(a). The evolving front-tracking solution was periodically reparameterized to maintain

approximately constant spacing between the discretized points. The surface energies

were chosen as σ12 = 1, σ13 = 2/3, and σ23 = 4/3; here, the first phase is the upper

interior region, the second phase is the “background,” and the third phase is the

lower interior region. The numerical solutions generated by Algorithms 3, 4, and 5

were compared to the reference solution generated by the front tracking code. Due
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(a) (b) (c) (d)

Figure 1: (a) The initial condition (solid line) and final result (dashed line) obtained by the front tracking
code for the simulation of Section 3.3.2. The results obtained by the algorithm proposed here Algorithm
4 (red) and Algorithm 5 (blue) are displayed in (b), (c), and (d), with ∆x = 1/128, 1/256, and 1/512,
respectively. They are visually indistinguishable from the front tracking solution (dashed line) for resolutions
∆x ≤ 1/512 at this scale.

to very close agreement between Algorithms 3 and 4, only the results obtained from

Algorithms 4 and 5 are displayed in Figure 1. Due to the excellent agreement between

the various algorithms, we use Algorithm 5, which allows for the full generality of (3),

in all subsequent simulations.

3.3.3 Stable Quadruple Junctions

With equal surface energies, quadruple junctions are unstable under multiphase curva-

ture motion in the plane. Cahn [3] investigated the stability of quadruple junctions in

the case where there are two “types” of phases, which he denotes type α and type β.

Let qαβγδ describe a quadruple junction with the α and γ phases opposite each other.

The condition

σ2αα + σ2ββ ≥ 4σ2αβ (14)

is shown to be necessary and sufficient condition for a qαβαβ quadruple junction to be

stable over a range of opening angles. Denote the opening angle of the α phases to

be Φα and the opening angle of the β phases to be Φβ. As long as Φα is larger than

the angle θα arising from the Herring angle condition (4) for the tαββ triple junction

and Φβ is larger than the angle θβ for the tβαα triple junction, the quadruple junction

remains stable.

In our tests, we considers phases Σ1 and Σ3 to be of type α (see Figure 2), and
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Figure 2: Evolution proceeds from left to right, top to bottom. Surface energies are chosen so that the
quadruple junction is stable until the angles made by phases Σ2 and Σ4 at the quadruple junction are smaller
than those indicated by the dashed guide lines. Good agreement is seen with this analytical prediction.

phases Σ2 and Σ4 to be of type β. In the first simulation, we choose σαα = σββ = 1.85,

and σαβ = 1. The qαβαβ junction should be stable as long as both Φα and Φβ are

greater than arccos(.71125) ≈ 44.66◦. Φβ = arccos(.71125) is marked in dashed lines

on Figure 2. Numerically, the quadruple junction does persist (appearing as two triple

junctions separated by a Γ13 interface which has length O(∆x)) until Φβ passes through

the critical angle.

4 Large-Scale Simulations

In this section, we use Algorithm 5 to study the evolution of large networks of grains

starting from random and fiber textured initial data, as discussed in the introduc-

tion. Simulations are performed in both two and three spatial dimensions. Compu-

tational requirements allow for the two-dimensional simulations to be initialized with

over 650,000 well-resolved grains. In three dimensions, we take an initial condition with

approximately 64,000 well-resolved grains. We focus primarily on the results from the

simulations performed in two spatial dimensions, as the results are more statistically

reliable due to the larger number of grains; however, qualitatively similar results are

observed in three spatial dimensions. The results seen in these simulations will be seen

to confirm the observations of the prior numerical work [1, 2, 9, 12, 13].

4.1 Two Spatial Dimensions

As discussed in the introduction, two significantly differing types of simulation results

have been seen in the literature. For randomly textured initial conditions, KMC simu-
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lations [9, 12, 13] show only slight evolution from the initial MDF, which is a Mackenzie

distribution. In contrast, the strong single component texture and fiber textured sim-

ulations [12, 13, 15] demonstrate sharpening of the MDF about zero misorientation

from an initially uniform MDF. We perform a number of very large-scale, well-resolved

simulations in two spatial dimensions to (1) confirm the results of these other much

smaller simulations and (2) to give an explanation for the dissimiliar character of these

results.

4.1.1 Effect of Texture

We begin by comparing two simulations with different initial orientation distributions.

In the first simulation, fiber-textured grain orientations are assigned, so only the angle

in the axis–angle description of grain orientation varies, and are chosen uniformly at

random. In the second simulation, fully random orientations from SO(3) are assigned

to each grain.

The simulations were initialized with same microstructure of 671,088 well-resolved

grains, chosen as the approximate Voronoi diagram to points placed uniformly at ran-

dom in the simulation domain. The simulations were run until t = 1.22 × 10−3, when

less than 4,000 grains remain in each case. To make the computation on this long time

scale computationally feasible, the simulation begin on a 8192× 8192 grid discretizing

[0, 1)2, and is downsampled onto a 2048 × 2048 grid at t = 7.15 × 10−5, when less

than 40,000 grains remain in each simulation. The time step is also commensurately

increased at this time.

The surface energy σjk is determined based on the following mollified Read-Shockley

relationship [22]:

σjk =















σmin + (1− σmin)
|φjk|
φmax

[

1− log
(

|φjk|
φmax

)]

if |φjk| ≤ φmax

1 if |φjk| > φmax.

(15)

where φjk is the misorientation angle between the j-th and k-th grains. The value σmin

is chosen to be 1/10 to prevent numerical artifacts related to stationary interfaces. For

these simulations, we choose φmax = 30◦ to agree with simulations performed in [9, 12]
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and to lie within the experimentally observed range [24].

The results for the fiber texture case and the random texture case are shown in

Figure 3. The evolution of the MDF for each case is shown in Figures 3(b,e). The

initial MDF (thin red bars) is approximately uniform in the fiber texture case. The

MDF is seen to rapidly sharpen around zero misorientation, consistent with prior

investigations [12, 13, 15]. For random texture, the MDF is initially the Mackenzie

distribution. Our simulations show that the MDF evolves very slowly in time revealing

only a slight preference for low misorientation grain boundaries at the expense of

high misorientation grain boundaries. These results are also consistent with the KMC

simulations of [9, 12].

Let us now examine the grain microstructure. In the fiber texture case, the crystal-

lographic orientation is determined by a single angle. This means its orientation can

be easily represented by a color scale. The entire microstructure is displayed at time

t = 1.15 × 10−3 (Figure 3(a)). We observe that grains of similar orientations tend to

form connected domains, a phenomena we shall refer to as grain clustering. The inter-

faces between grains of similar orientations have very small surface energies associated

with them, and so have lower velocities and contribute much less to the energy of the

system than the interfaces between grains of very different orientations; as such, it is

reasonable that these interfaces disappear much more slowly than high-misorientation

interfaces. At the end of the simulation, remaining high–energy interfaces (interfaces

between grains of very different orientations) tend to be quite straight. Badmos et al.

[1] also reported the phenomena of grain clustering, on much a smaller scale, using

front tracking.

We point out that the formation of grain clusters should be expected from general

considerations. As the grain network coarsens the orientation distribution of the grains

is not expected to change. However, it is energetically favorable for grains with similar

orientations to be next to each other. Therefore, over time one might expect clusters

of grains to form. Since the orientation distribution does not change significantly as

the grain network evolves, this clustering phenomena can be rather complex.

For the random texture case, we make use of a coloring scheme designed by Patala
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Figure 3: Comparison of two-dimensional simulation results. The top row shows results from the fiber
texture simulation, while the bottom row shows results from the random orientation case. From left to
right: The full microstructure when approximately 4,000 grains remain, and the evolution of the MDF and
the SEDF (wider bars correspond to later times). The surface energy is Read–Shockley, with φmax = 30◦.
For the fiber texture case, grains are colored by orientation angle so that grains of similar orientations have
like colors. Large connected components composed of grains of similar orientations are observed to form.
In the random case, grains are colored by misorientation to a randomly-chosen reference grain using the
algorithm of Patala, et al. [21]. The spatial grouping of grains of similar orientation is not observed as in
the fiber texture case. The MDF concentrates about 0◦ misorientation in the fiber texture case but remains
close to the Mackenzie distribution in the random texture case. The SEDF shows that there are many more
low–energy grain boundaries present initially in the fiber texture case than in the random texture case.

et al. [21] which maps the fundamental zone for cubic symmetry (432-misorientation

space) onto the HSV color space in such a way that low misorientations are represented

by lighter colors and high misorientations are represented by darker colors. Following

their work, we select a reference grain randomly among those surviving until the end

of the simulation, and color all grains by their misorientation with respect to this

particular grain. Snapshots of the microstructure when 4,000 grains remain are shown

in Figure 3(d). In contrast to the fiber texture case, there appears to be no significant

grain clustering. While consistent with the result that the MDF did not change much
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from the initial Mackenzie distribution, it is surprising that clusters seem to be unable

to form.

To gain some insight into this, we introduce the distribution of surface energies and

define the histogram of area-weighted grain boundaries as a function of surface energy

to be the surface energy distribution function (SEDF). It is customary in both experi-

ment and simulation to study the MDF rather than the SEDF. From an experimental

viewpoint, it is much easier to measure grain orientations than it is to measure surface

energies. The former can be measured, for example, by electron backscatter diffraction

techniques. In contrast, the latter is indirectly measured using a variety of techniques

[14] (for example, by measuring triple junction angles and appealing to (4)). However,

no such barrier exists in our numerical simulations. Indeed, a functional form for sur-

face energy as a function of misorientation is assumed and thus the surface energy of

any interface can be determined directly from the simulation results.

In the Read–Shockley case, the SEDF is initially very sharply peaked about the

maximum surface energy (Figure 3(f)). Very few interfaces interact with any other

surface energy, and so there is little opportunity for the system to form low misorienta-

tion interfaces. In contrast, fiber texture case has an initial SEDF that is less sharply

peaked at the maximum surface energy (Figure 3(c), note the different scale) and has a

significant fraction of low energy grain boundaries. As a consequence, more interfaces

feel a sub-maximal surface energy, allowing the grain network to more quickly lower

its total energy. As the MDF concentrates near zero, grain clustering occurs.

4.1.2 Effect of Surface Energy

In order to more fully explain the differences in results of the fiber texture and random

texture simulations presented previously, the role played by the surface energies must

be more fully appreciated. To this end, we perform two additional simulations. In these

simulations, we take the same randomly-textured initial microstructure as before, but

assign different forms of the surface energy. We choose an affine surface energy function,

σjk = σmin + (1− σmin)
|φjk|

φmax
(16)
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Figure 4: Full microstructure of simulations initialized with random texture when 4,000 grains remain,
and time evolution of the MDF and SEDF for the Read–Shockley surface energy (a–c) and the affine surface
energy (d–f), both with φmax = 62.8◦. The MDF evolves much more with the affine surface energy, though
both MDFs are initially Mackenzie. The SEDF shows that far fewer low–energy grain boundaries are present
initially in the Read–Shockley case than in the affine case.

and also again consider the Read–Shockley surface energy. In these cases, we again

choose σmin = 1/10 but now choose φmax to be the maximum possible misorientation,

≈ 62.8◦. These forms both satisfy the triangle inequality (5).

Figure 4 shows the microstructure of these new simulations when 4,000 grains re-

main, and the time evolution of the MDF and SEDF, with the Read–Shockley surface

energy in the top row and the affine surface energy below. Both simulations ini-

tially have the Mackenzie distribution as the initial MDF; however, in both cases the

time evolution of the MDF is noticeably different from the Read–Shockley case with

φmax = 30◦. The difference is most pronounced in the affine case. The differences

in each of these three cases can be understood by the corresponding initial SEDFs.

If we compare the SEDF for the Read–Shockley case with φmax = 60◦ with the one
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for φmax = 30◦ we see that it is less concentrated at the maximum surface energy

and comparing with the affine case the SEDF is dramically different — there is no

concentration at the highest surface energy.

When the SEDF is heavily concentrated at the highest surface energy, it means

very few interfaces feel any other surface energy, and so there is little opportunity for

the system to form low misorientation interfaces. In contrast, the affine surface energy

gives an initial SEDF which is shaped like the Mackenzie distribution. This means

that many more interfaces have a sub-maximal surface energy in this case and are thus

energetically preferred to survive. Thus the lower misorientation interfaces are even

more preferred, and the MDF evolves to reflect this. This effect can be controlled

by the value of φmax. As φmax → 0, the surface energy function becomes uniform

and the SEDF is completely concentrated at its maximal value. Since the network

is independent of the grain orientations in this case, we expect that the MDF should

remain exactly a Mackenzie distribution. Following this logic, we speculate that the

reason the MDF stays close to the Mackenzie distribution for nonzero values of φmax

is that the energy pathway for minimization is kinetically limited.

Finally, we remark that in these two cases we see some evidence of grain clustering

but it is certainly not as prominent as in the fiber texture case. This is consistent with

the evolution of the MDF. In both of these cases the MDF was only enhanced at low

misorientations whereas in the fiber texture case a strong concentration of the MDF

at zero misfit was observed. Therefore is reasonable to expect more grain clustering in

the fiber texture case as compared to the random texture case.

4.2 Three Spatial Dimensions

In three dimensions, the simulation is performed on a 400× 400× 400 grid discretizing

[0, 1)3. The initial microstructure contains 64,000 grains. Orientations are assigned

uniformly at random. Three simulations are run until t = 8.50 × 10−3. At this time,

fewer than 1,050 grains remain in each simulation. The first simulation, with mi-

crostructure and MDF shown in Figure 5, takes the Read–Shockley surface energy

with φmax = 30◦. The simulation is repeated, as before, with the same initial mi-
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Figure 5: (a) The initial microstructure contains 64,000 grains. (b) At the end of simulation, only 616
grains remain. (c) The evolution of the MDF through time shows a slight increase at low misorientation.
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Figure 6: For fully three-dimensional simulations, time evolution of the MDF (a) and SEDF (c) for Read–
Shockley surface energies with φmax = 62.8◦ and the MDF (b) and SEDF (d) for the affine surface energy.
Compare to Figure 4(b,c,e,f).

crostructure and orientations, but with the Read–Shockley surface energy and affine

surface energy with φmax = 62.8◦. Too few grains remain at the end of the simulation

to make statistical inferences about the evolution of the MDF, but the evolution of the

MDFs and SEDFs, shown in Figure 6, is in qualitative agreement with the results in

two spatial dimensions. In this case, the simulation was not large enough to observe

the presence or absence of any grain clustering.

5 Summary

We have introduced an algorithm for simulating multiphase curvature motion with

arbitrary surface energies. The algorithm represents interfaces implicitly, and much like

a level set method, allows for automatic handling of topological changes. In addition,
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this method is unconditionally stable and achieves good accuracy on uniform grids. We

have demonstrated that this algorithm is useful for simulations of normal grain growth

— an important problem in computational materials science. The algorithm can be

extended to include other physical effects, for example, the addition of bulk energy

terms for modeling recrystalization can be incorporated using the approach proposed

by Elsey et al. [6]. Further generalizations, for example to anisotropic surface energies,

are currently under investigation.

The numerical simulations described here show good agreement with the results of

prior simulations [9, 12, 13, 15] but allow for the accurate evolution of much larger grain

boundary networks. These simulations show that the MDF evolves quite differently in

the fiber texture and random texture cases. In particular, the MDF concentrates at

zero misorentation for the fiber texture case whereas in the random texture case the

MDF remains close to its initial Mackenzie distribution. Our large-scale simulations

reveal that different microstructures arise in these two cases. In the fiber texture case,

grains of similar orientation cluster together whereas in the random texture case this

does not appear to occur. We argue that while clustering would further decrease the

energy in the random texture case, the rarity of low-misorientation interfaces makes

clustering difficult to achieve by grain growth kinetics.

Our simulations suggest that the difference in the evolution of the grain network

between the fiber texture and randomly textured cases is kinetic in nature and is tied to

the properties of the initial conditions. In the random texture case many fewer grains

have low misorientation as compared to the fiber texture case. For example, with fiber

texture crystallography, 22% of interfaces initially can be expected to have misorienta-

tion of less than 10◦. On the other hand, for the random texture case, less than 0.7% of

randomly selected interfaces are expected to have such a low misorientation and over

80% of randomly selected interfaces have misorientations greater than 30◦. Using the

Read–Shockley surface energy (15) with φmax = 30◦, this means that the vast majority

of interfaces will have the maximal surface energy. Such a simulation has only a small

proportion of interfaces with lower surface energy and so it must be expected that the

evolution of the MDF in this regime will be dramatically slower. Indeed, our simu-
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lations using the Read–Shockley surface energy with φmax = 30◦ show little change

in the MDF whereas using the Read–Shockley surface energy with φmax = 62.8◦ and

the affine surface energy show the MDF evolving quite far from a Mackenzie distribu-

tion. We observe similar behavior in three dimensional simulations as well. Finally,

we mention that this work seems to suggest that as the MDF concentrates for low

misorentations clusters of grains with a similar orientation must occur.
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