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Abstract

We prove a weak upper bound on the coarsening rate of the discrete-in-space version of
an ill-posed, nonlinear diffusion equation. The continuum version of the equation violates
parabolicity and lacks a complete well-posedness theory. In particular, numerical simula-
tions indicate very sensitive dependence on initial data. Nevertheless, models based on its
discrete-in-space version, which we study, are widely used in a number of applications, in-
cluding population dynamics (chemotactic movement of bacteria), granular flow (formation
of shear bands), and computer vision (image denoising and segmentation). Our bounds have
implications for all three applications.

1 Introduction.

We prove a weak upper bound on the coarsening rate of a family of discrete-in-space evolution
equations. Although the equations are well-posed, they resemble finite difference approxima-
tions of ill-posed nonlinear diffusion equations, leading us to call them discrete ill-posed
nonlinear diffusion equations in the title. The equations arise in the study of population dy-
namics as a class of reinforced random walks on a lattice [14, 24], and in granular flow as a
simplified one-dimensional model for the formation of shear bands by anti-plane shear in a
granular medium [29]. They also have strong connections to an algorithm introduced by Per-
ona and Malik for image denoising [10, 26]. Our results apply to the Perona-Malik method in
one space dimension.

We study equations that share an interesting phenomenon: a nonlinear instability leads to
the formation of spikes (in the case of reinforced random walks) or jump discontinuities (in
the granular flow and image processing examples). The spikes and jump discontinuities each
have a width of exactly one grid point. After their initial formation, the features do not move
laterally, but either grow or shrink until they disappear. The average distance between them
establishes a length scale that increases with time at a measurable rate (called the coarsening
rate).

For typical applications of these systems, the most relevant questions concern their coars-
ening behavior; for example, coarsening in the image denoising model represents a gradual
simplification of images by merging neighboring regions. In this case, one would like the
coarsening to occur as quickly as possible, since this may result in a faster algorithm. In gran-
ular flow, the coarsening represents a merging of shear bands, and in population dynamics
it represents collective movement to population centers. Our contribution in this paper is to
show how recently developed methods for analyzing coarsening rates can be applied to these
models to answer questions raised previously [29].

Although the evolution equations appear to be finite difference approximations of PDEs,
those PDEs are ill-posed, and the schemes do not converge to them in any obvious way [10].
One could study the PDEs using some type of regularization [1, 2, 3, 4, 6, 22] or by defining
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an appropriate weak solution [5, 30], but we take a different viewpoint here. We consider
applications for which the PDEs serve only as heuristic models for problems that are discrete
in nature; for example, digital images and granular media each have a minimum length scale
(pixel and grain sizes, respectively) that could be represented by the distance between grid
points. In addition, the discrete-in-space equations display all the dynamics essential to the
applications – namely, the nonlinear instability and the subsequent coarsening. In fact, it turns
out that discreteness plays a crucial role in the coarsening process, as we discuss below. We
thus focus our attention on the discrete evolution equations, not the ill-posed PDEs.

Our analysis closely follows a method introduced by Kohn and Otto in [17] for obtaining
weak upper bounds on the coarsening rates of energy driven systems. Given the energy E and
a quantity L that describes the system length scale, their method requires only a dissipation
inequality between dL

dt and dE
dt and an interpolation inequality relating L to E. These inequal-

ities are then combined with an ODE argument to prove a time-averaged lower bound on the
energy that is conceptually equivalent to an upper bound on the coarsening rate. Kohn and
Otto first applied the method to Cahn-Hilliard models for the coarsening of an equal-volume
fraction binary mixture [17], and it has more recently been applied to both mean-field [8] and
phase-field [9] models of phase separation, in addition to multicomponent phase separation
[19], Mullins-Sekerka evolution of a binary mixture in the small volume fraction regime [7],
epitaxial growth [18], and thin film droplets [23]. Our discrete setting is different from these
previous applications of the method.

In following the arguments of [17] in our discrete setting, we pay close attention to the
dependence of estimates on the grid size. Indeed the coarsening rates depend on the uniform
grid cell width, h, for the finite differences involved. Numerical experiments show that coars-
ening slows to a halt as h → 0 [29], so any useful bound on the coarsening rates must account
for this dependence. Although our results can be stated in arbitrary space dimensions, for
clarity we present them for one and two space dimensions only, and limit our discussion in
the first few sections to just one dimension.

The remainder of Section 1 describes the coarsening behavior observed in the discrete-in-
space evolution equations (Sections 1.1-1.3), and then explains the overall method of proof
and states our main theorem (Section 1.4) for the equations in one dimension. Section 2 is
devoted to establishing some basic properties of the dynamics. Section 4 notes how the energy
dissipation inequality, one of the ingredients needed in Kohn and Otto’s argument, appears
in our discrete setting. Section 4 is devoted to establishing the second ingredient, namely
the relevant interpolation inequality for our problem. Numerical experiments corroborating
our bounds follow in Section 5. Finally, Section 6 shows how to extend the interpolation
inequality of Section 4 to two space dimension, allowing us to generalize our main theorem
to two dimensions.

1.1 The Scheme.

We will work with uniform grids on [0,1] in one space dimension, and on [0,1]2 in two
dimensions. In both cases, let h = 1

N denote the uniform grid size. The one dimensional
scheme that we study is

dvi

dt
= D+

h D−
h (R(vi)) i = 0, ...N −1 (1)

where
D+

h vi =
vi+1 − vi

h
, (2)

D−
h vi =

vi − vi−1
h

, (3)

are forward and backward difference quotients. Periodic boundary conditions will be used,
which are common and natural in many applications of these models; thus, when i = 0 or
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i = N −1 we set:
vi = v j j = i mod N when i 6= 0, ...N −1. (4)

Requiring (4) ensures that the dynamics of (1) leave the total mass,

µ := 1
N ∑

i
vi, (5)

unchanged. This property and all our subsequent results also hold when Neumann boundary
conditions are imposed.

System (1) has a non-increasing energy, given by

E(v) =
N−1

∑
i=1

f (vi)h, (6)

where
f (s) =

Z s

0
R(ξ)dξ. (7)

For smooth, strictly convex functions f , the scheme (1) gives a convergent (as h → 0) finite
differences approximation of the parabolic PDE

vt = (R(v))xx = R′(v)vxx +R′′(v)v2
x (8)

on the interval [0,1] with periodic boundary conditions. Such systems are well-understood;
in this paper we are concerned instead with a special class of non-convex functions f that are
convex on some interval [a,b) but concave on (b,∞). In that case, R′(s) < 0 whenever s > b,
so that equation (8) becomes backwards parabolic wherever the solution v is large enough.
More precisely, we will make the following assumptions on R,a, and b :

1. R : R → R is smooth,

2. R′(s) > 0 whenever s ∈ (a,b),

3. R′(s) < 0 whenever s ∈ (b,∞), and

4. R(a) ≤ lims→∞ R(s).

(9)

The switch of sign in R′(s) at s = b corresponds to the switch from convexity to concavity in
f .

In applications, one of the most important examples of such a nonlinearity R is the original
choice made by Perona and Malik [25, 26] in the context of image processing, namely

R(s) =
s

1+ s2 , (10)

a primitive for which is
f (s) =

1
2 log

(

1+ s2). (11)

In this case a = 0 and b = 1. (This nonlinearity also turns out to be relevant in granular flow
models, as explained in the next section). We also refer the reader to [20], where coarsening
is examined for a model of epitaxial growth that has an energy similar to (11).

Other choices for R that appear in image processing literature and respect the properties
listed above include

R(s) =
ps

(1+ s2)
2−p

2
with p ∈ (0,1),

a primitive for which is
f (s) = (1+ s2)

p
2 (12)

Figure 1 shows f , R, and R′ for f given by (11). The bounds we obtain in this paper apply to
all these choices; the downside is that our bounds are not sharp enough to distinguish between
different choices of nonlinearities.
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1.2 Applications of (1).
Using f defined by (11), system (1) describes a reinforced random walk on a lattice and is
used to model the movement of biological organisms affected by some external field that is in
turn affected by the organisms’ presence [14, 24]. Examples of such organisms include ants,
which create and follow ant trails, and the bacteria Myxcoccus Xanthus, which glides along
a substance produced by other members of the population. Denoting population density by v,
(1) arises for external fields proportional to the number of entities present.

The dynamics of (8) share many qualitative features with an ill-posed nonlinear PDE that
arises in image processing [25, 26] and granular flow [29, 28]:

ut = (R(ux))x . (13)

These similarities should be expected, since (8) may be derived from (13) by letting v = ux

and taking a spatial derivative of (13). For functions f such as (11), which have the additional
properties of being nonnegative and even with

f (0) = 0,

(13) is a one-dimensional restriction of

ut = ∇ · (R(|∇u|)∇u) , (14)

which was introduced by Perona and Malik to denoise digital images represented by the func-
tion u [25, 26]. Intending to smooth noisy regions of the image without blurring edges (object
boundaries), they required that f , the primitive of R, satisfy exactly the conditions discussed
above.

Equation (13) has also been studied as a simplified one-dimensional model for the forma-
tion of shear bands in a granular medium [29]. In this case, f is defined by

f (s) = sinαsinφ log
∣

∣

∣

∣

cosφ+ s+
√

1+2scosφ+ s2
∣

∣

∣

∣

+ cosα
√

1+2scosφ+ s2, (15)

with 0 < α < π
2 and 0 ≤ φ ≤ π. This choice for f has a = −∞ and

b = − sin(α−φ)

sinα
.

See [29] for an explanation of the parameters α and φ in relation to granular flow. Figure 2
includes a comparison of (11) with (15) for α = π

4 and φ = π
8 . It is important to note that the

behavior of the granular flow nonlinearity (15) at infinity is essentially the same as that of the
Perona-Malik nonlinearity (11). Indeed, up to subtracting off a linear term in s (which makes
no difference in the resulting flow according to (13)), the function (15) has logarithmic growth
at infinity just like (11) does.

Much attention has been devoted to ill-posed equations such as (8) and especially (13). In
particular, there is a lot of recent effort that concerns developing an existence theory [16, 15,
30, 5, 11, 12, 13]. Another topic of research has been appropriately regularized versions of
the PDEs [6, 3, 2, 4, 1, 22]. But some work regarding the two PDEs has actually focused on
discretizations like (1) and the similar discretization of (13),

d
dt

ui = D−
h

(

R(D+
h ui)

)

. (16)

We may derive (1) from (16) by letting

vi = D+
h ui (17)

and applying D+
h to (16). Although the limiting behavior of (1) and (16) as h → 0 is unclear

for non-convex f (see [10] for a particular scaling limit), the schemes have nonetheless been
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studied in relation to each of the above mentioned applications. In image processing, the
discretization is actually more important than the intended PDE model, as applications of the
model on digital images involve only discretizations of (13). In population dynamics, (1) may
be thought of as an example of a reinforced random walk on a lattice. The authors of [28, 29],
pointed out that discrete models like (1) are of interest in of granular flow, which is inherently
discrete with minimum length scales determined by the grain sizes.

1.3 Coarsening behavior.

The one dimensional system (1) under study is a gradient descent for energy (6) with respect
to the discrete H−1 norm, which can be expressed by duality as

‖ vi ‖H−1 := sup
φi

{

1
N

N

∑
i=0

(vi −µ)φi,
1
N

N

∑
i=1

[(φi+1 −φi)N]2 ≤ 1
}

. (18)

If the initial data v j(0) of (1) satisfies v j(0) ∈ (a,b) so that it lies completely in the forward
parabolic regime, the evolution proceeds as a typical parabolic smoothing. If on the other
hand the initial data’s mean value µ satisfies

µ > b, (19)

then part of the mass of the data always lies in the ill posed regime (b,∞) due to conservation
of mass. In this case, the evolution creates a more interesting behavior: The conserved total
mass of the data quickly aggregates into a terrain of spikes. These are locations on the grid
where the solution exceeds the parabolicity threshold b, i.e. we adopt the following terminol-
ogy:

There is a spike at the j-th grid point if v j ≥ b. (20)

Each spike appears to be supported on a single grid point and does not move; however, the
heights of the spikes can change. During subsequent evolution the concavity of f (s) on (b,∞)
encourages accumulation of mass into fewer and bigger spikes. As a result, smaller spikes
get absorbed into larger ones until only a single spike containing most of the mass remains
(see Figure 3). The growing distance between spikes establishes a system length scale that
coarsens.

Possible stationary states for the system can be easily worked out by noting that at equi-
librium, one must have R(v j) = C for all j, for some constant C. Concentrating on solutions
v j with v j ≥ a for all j, we see from the assumptions on R that this equation can have at most
two solutions which we denote v− and v+, with the assumption that v+ > b > v− ≥ a. Under
assumption (19), there is at least one j at which v j = v+. Concavity of f (s) at s = v+ now
implies that stable stationary states contain exactly one spike; hence at (N −1) grid points the
solution has value v−, and at one grid point it has value v+. Conservation of mass implies

v+ +(N −1)v− = Nµ. (21)

Together with
R(v+) = R(v−) (22)

these two conditions now suffice to solve for v+ and v− given µ. For example, if f is given by
(11), then (22) implies

v+ =
1

v−
.

Combining with (21) gives

v± =
Nµ±

√

(Nµ)2 −4(N −1)

2 .
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This formula shows in particular that most of the mass is indeed concentrated in the single
spike. The gradient descent structure of (1) drives the vi to this energy minimum and may be
stopped only by the possible interference of a saddle point corresponding to another stationary
state of (1). However, such interference is rare, since the single spike solution is the only
stable steady state solution for initial data satisfying (19). A complete study of all steady state
solutions of (1), including an investigation of stability, may be found in [21], [24] and [29].

Though the initial aggregation of system mass to spikes occurs rapidly, the evolution slows
down as the number of spikes (denoted below by K) decrease. The authors of [29] used
numerical simulations of (1) to measure this coarsening rate and observed that the number of
spikes scale like

K ∼
(

N
t

)
1
3
. (23)

Despite a remarkable correlation with the numerical data (see [29] or Section 5 of this paper),
this paper presents the first rigorous result indicating this rate.

The physical meaning of the coarsening process of (1) depends on the particular applica-
tion. For granular flow, where the energy function given by (15), the coarsening corresponds
to a decreasing number of shear bands in the granular medium (see Figure 5). When con-
sidering f given by (11), the coarsening represents an aggregation of biological organisms
into population centers. For the nonlinearities used in image processing, our analysis applies
only to entirely nonnegative data (and may be easily modified for entirely non-positive data).
Since we study the signal’s discrete derivative, we are examining the coarsening of the terraces
produced by the Perona-Malik method along a single edge (see Figure 4). This coarsening
corresponds to a simplification of the processed image. At early stages the image is close
to the original, perhaps noisy image, while at later stages, fine structures (including noise)
disappear and only the larger features remain. An accurate understanding of the coarsening
speed of (16) might be used to estimate the computation time needed to process an image up
to a desired state of complexity.

1.4 Our main result and method of proof.

Once we choose a measurement, L, of the system length scale, our analysis requires two in-
equalities relating L with the system’s energy, E : a decay estimate bounding dL

dt by a function
of dE

dt , and an interpolation inequality that is a one-sided version of

E ∼ 1
L

. (24)

We must therefore carefully choose L so that it accurately measures the system length scale
while allowing us to prove both required estimates.

Our discussion of the system dynamics suggests choosing L = 1
K with K denoting the

number of spikes. The interpolation inequality would easily follow for this choice: since f is
an increasing function of v, on [a,∞), the K spikes dominate the system energy and

E ∼ K
N

.

On the other hand, a decay estimate for K would be difficult to prove, since it only takes on
integer values. Instead we pick

L =‖ vi ‖H−1 , (25)

which is similar to length scales used in [17, 18, 23]. To justify our choice, we provide
numerical evidence in Section 5 that L ∼ 1

K .

Having defined L, we next state our decay estimate,
∣

∣L̇
∣

∣≤
(

−Ė
)

1
2 , (26)
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and our interpolation estimate,
EL ≥ C

N
. (27)

Since (1) is a gradient descent of E with respect to the discrete H−1 norm, (26) follows from
a slight variation of arguments presented in [17]. The proof of (27) is more interesting. The
discrete setting of this problem, which is unlike the setting of other coarsening rate bounds
[8, 9, 17, 18, 19, 23], requires that we pay attention to the dependence of our estimates on the
grid size h = 1

N . Indeed, although our decay estimate relating E with L does not depend on N,
the interpolation estimate does. We strive for the most favorable dependence we can manage
and obtain precisely the one observed in numerical experiments reported in [29].

We present bounds on the coarsening rate in one and two space dimensions. First, we
prove the following time averaged lower bound on the energy of the one dimensional scheme
(1); the result in 2D is presented in Section 6.

Theorem 1. Suppose a ≤ vi(0) for 1 ≤ i ≤ N,

b < µ =
1
N ∑

i
vi, (28)

and vi(0) > b for at most N
2 values of i. Then there exists a universal constant C < ∞ such that

1
T

Z T

0
EθrL−(1−θ)rdt ≥CI

[

(

N2T
)− 1

3

]r

(29)

for T ≥
√

3
C NL(0)3 and for any 0 ≤ θ ≤ 1 and r > 0 satisfying

r < 3, r θ > 1, and (1−θ) r < 2. (30)

Proof: The decay and interpolation inequalities (26), (27) that will be derived in Sections 3
and 4, respectively, imply the result once we define the rescaled variables

Ẽ = N
2
3 E and L̃ = N

1
3 L

and apply to Ẽ and L̃ Lemma 1 that we quote below from [17].

Lemma 1. (From [17]) If 0 ≤ θ ≤ 1 and r > 0 satisfy (30), then EL ≥ C and
(

L̇
)2 ≤ −Ė

imply
1
T

Z T

0
EθrL−(1−θ)rdt ≥CT− r

3

for T � L3
0.

Theorem 1 applies to large time behavior of (1), since K � N (and is certainly less than
N
2 ) after a transient initial period where the vi rapidly separate into spikes and background.
As discussed in [17], the methods used here will not provide a lower bound on the coarsening
rate of (1). Proving a suitable lower bound would likely be more difficult, since the dynamics
of (1) may be slowed by a variety of factors, including the interference of saddle points of the
energy; hence there is in fact no lower bound in the naive sense. On the other hand, a system
can not coarsen any faster than its energy landscape allows.

2 Preliminaries.

We consider only initial data satisfying vi(0) ≥ a. The following lemma shows that the vi

retain this lower bound at all later times.
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Lemma 2. Suppose vi solves (1) for t ∈ [0,T ) and satisfies

vi(0) ≥ a

for i = 0, ...,N −1. Then a solution vi exists for all later times and

vi(t) ≥ a

for i = 0, ...,N −1 and all t ≥ 0.

Proof. Our assumptions on the function R (Section 1.1) imply it is globally Lipschitz on
[a− 1,∞). Standard ODE theory implies the existence of a T > 0 so that solutions to the
following ODE systems can be found on [0,T ]:

dvε

dt
= =

R
(

vε
i+1 (t)

)

−2R(vε
i (t))+R

(

vε
i−1 (t)

)

h2 + ε (31a)

vε
i (0) = vi(0) (31b)

under the hypothesis on vi(0). Also, vε
i → vi uniformly on [0,T ] as ε → 0, provided that T > 0

is small enough. We show that for small enough ε > 0, vε
i (t) > a−ε for all i and t ∈ [0,T ]. Fix

an ε > 0 and assume not. Let t∗ ∈ (0,T ] be the first time there is a j such that vε
j(t∗) = a− ε.

The whole point is:
R(s) ≥ a for all s ≥ a

according to the assumptions (9) on the function R. Hence, we must have

d
dt

vε
j =

1
h2
(

R(vε
j+1)+R(vε

j−1)−2R(a)
)

+ ε ≥ ε > 0

for all t ∈ [0, t∗] close enough to t∗. This is a contradiction since a− ε is the strict minimum
of v j(t) on t ∈ [0, t∗]. Taking ε → 0 now proves

vi(t) ≥ a

for all t ∈ [0,T ]. That in return implies the solution extends to all t ≥ 0 and remains above a
for all time.

We next separate the vi into spikes and background. Recall that we call vi a spike if vi > b,

where b is the parabolicity threshold discussed previously. By selecting b as the dividing
value, we ensure that the number of spikes does not increase:

Lemma 3. If
vi(t0) ≤ b

for some i and some t0 ≥ 0, then
vi(t) ≤ b

for all t ≥ t0.

Proof. The same argument from previous Lemma 2 can be applied, but now the essential fact
is that R(s) achieves its maximum at s = b. Indeed, we can consider the system

d
dt

vε
i =

R(vi+1(t))−2R(vi(t))+R(vi−1(t))
h2 − ε.

Assuming that the conclusion is false for some grid point j, one sees that at the first time t∗ at
which vε

j(t∗) = b, it has to be the case that

d
dt

vε
j =

1
h2

(

R(vε
j+1)+R(vε

j−1)−2R(b))
)

− ε < 0

which leads to a contradiction as before.
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3 Decay relation.

Lemma 4.
∣

∣L̇
∣

∣≤
(

−Ė
)

1
2 .

Proof. Our selected length scale (18) allows a simple application of the proof of Lemma 2 in
[17] to this discrete setting. We provide the details only for the reader’s benefit. From (6), we
have

−Ė = −
N−1

∑
i=0

R(vi)v̇ih = −
N−1

∑
i=0

R(vi)D
+
h D−

h (R(vi))h.

Summing by parts and using the boundary condition (4) gives

−Ė =
N−1

∑
i=0

[

D−
h (R(vi))

]2
h. (32)

Pick t1, t2 with 0 ≤ t1 < t2 and let ξ be the optimal test function in the definition of L(t2) (see
(18) and (25)) so that

L(t2) = ‖v(t2)‖H−1 =
N−1

∑
i=0

(vi (t2)−µ)ξih

and
N−1

∑
i=0

∣

∣D+
h ξi
∣

∣

2
h ≤ 1.

Then we have

L(t2)−L(t1) ≤
N−1

∑
i=0

(vi (t2)− vi (t1))ξih

=

Z t2

t1

N−1

∑
i=0

v̇iξihdt

=

Z t2

t1

N−1

∑
i=0

D+
h D−

h (R(vi))ξihdt

= −
Z t2

t1

N−1

∑
i=0

D−
h (R(vi))D−

h ξihdt

≤
Z t2

t1

(

N−1

∑
i=0

∣

∣D−
h (R(vi))

∣

∣

2
h

) 1
2

dt.

Repeating the above with ξ′i optimal in the definition of L(t1) gives

|L(t2)−L(t1)| ≤
Z t2

t1

(

N−1

∑
i=0

∣

∣D−
h (R(vi))

∣

∣

2
h

)
1
2

dt. (33)

Combining (33) with (32) shows that L is an absolutely continuous function of t satisfying
(26).

4 Interpolation inequality

In this section, we establish the second ingredient necessary for applying Kohn and Otto’s
technique to our problem: an interpolation inequality between the system’s energy (6) and
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length scale (25). The following lemma establishes the required inequality in one space di-
mension; we present the two dimensional version in Section 6.1.

Recall that we work on the unit interval [0,1] divided into a uniform grid with N + 1
points 0 = x0 < x1 < .. . < xN = 1, where xi = i

N . Let {vi} be a function defined on the grid,
satisfying the boundary condition vN = v0. As before, K denotes the number of spikes in v,
i.e. the number of indices i ∈ {0, . . . ,N −1} where vi ≥ b.

Lemma 5. Let L be defined by (25) and (18), and E by (6). Assume that K ≤ N
2 . Then

EL ≥ C
N

for some C > 0 that depends only on µ and b.

Proof:
Since f is a non-negative function with f (s)≥ f (b) for all s≥ b, we have the immediate lower
bound

E ≥ K
N

f (b) , (34)

and we only need to show that L ≥ C
K for some constant C depending only on µ and b. It

is convenient to establish this using the characterization of the H−1-norm given in (18). In
particular, we construct a “test function” {φi} to get from (18) a lower bound on ‖v‖H−1 . To
that end, define the integer ` as

` = b N
2K

c. (35)

Note that ` ≥ 1 since K ≤ N
2 by hypothesis. It is easy to see that, for the same reason,

` ≥ N
4K

. (36)

We now partition the grid into 2K adjacent, disjoint intervals I j, each containing the indices
of ` consecutive grid points, i.e.

I j =
{

i : ` j ≤ i < `( j +1)
}

.

There are exactly 2K such subintervals, I0, . . . , I2K−1, on the grid. Since there are only K
spikes, we see that at least K of the subintervals must contain no spikes. Let

S =
{

j : I j contains no spikes.
}

so that
#S ≥ K (37)

We now define the test function {φi} on the grid as follows: On a subinterval that contains no
spikes, we let −φ be the distance function to the boundary of the subinterval; specifically,

φi = − 1
N

min
{

(

i− ` j +
1
2
)

,
(

`( j +1)+
1
2 − i

)

}

if i ∈ I j for some j ∈ S. (38)

Everywhere else, we let φ ≡ 0, i.e.

φi = 0 if i 6∈
[

j∈S

I j. (39)

Then, first of all, according to (38) and (39), |D+φi| ≤ 1 for all i, so that

‖φ‖H1 ≤ 1. (40)
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Second, if I is a subinterval containing no spikes, then

1
N ∑

i∈I
(−φi) ≥

`2

4N2 (41)

which is also an easy consequence of our definition (38) above.
We can now use the test function φ in the definition (18) of the H−1 norm. First, note that

due to assumption (28), we have

vi < b < µ whenever i ∈
[

j∈S

I j. (42)

Then,

L := ‖v‖H−1 ≥ 1
N

N−1

∑
i=0

φi(vi −µ) (by (18) and (40)) (43)

=
1
N ∑

j∈S
∑
i∈I j

φi(vi −µ)≥ 1
N ∑

j∈S

(µ−b) ∑
i∈I j

(−φi) (by (39) and (42)) (44)

≥ (µ−b) ∑
j∈S

`2

4N2 (by (38) and (41)) (45)

≥ (µ−b)K

(

1
4N2

)(

N2

16K2

)

= (µ−b)
1

64K
(by (37) and (36)). (46)

Combined with (34), this establishes the claim with C = (µ−b)
64 .

5 Numerical evidence.

We next demonstrate the actual coarsening rate of (1), by discretizing in time and solving
numerically. In particular, we show a dependence of the coarsening rate on N, as our upper
bound indicates. We use f defined by (11) in all examples and remark that similar results are
discussed in [29] for f given by (15).

Let
F(vn

i ) =
R
(

vn
i+1
)

−2R(vn
i )+R

(

vn
i−1
)

h2 . (47)

We remind the reader that h = 1
N and note that we intermittently use h instead of N, since

that notation is likely more familiar to those having experience with numerical PDEs. We first
consider the forward Euler method,

vn+1
i − vn

i

τ
= F (vn

i ) . (48)

To demonstrate the coarsening rate of (48), we use a perturbation of vi = 3 for initial data:

vi(0) = 3+10−6 sin
(

πi
N

)

. (49)

Notice that in a system with N grid points, K = N for (49), since b = 1 for f given by (11).
Figure 6 shows a plot K

N versus N2t for the solution of (48)with N = 200,300, ...,1400,1500.

After a transient initial period, the coarsening strongly corresponds with the predicted power
law

(

N2t
)− 1

3 . Our analysis does not include the early time dynamics, since our results only
hold for the later times when K ≤ N

2 . Figure 7 shows a plot of LN versus N2t. Its correspon-
dence with with the power law

(

N2t
)

1
3 supports our claim that L ∼ 1

K . The quantity L as given
by the H−1 norm (18) was computed using the following equivalent characterization:

‖v‖2
H−1 =

1
N ∑

j

(

D+
h w j

)2 where D+
h D−

h w = v with periodic b.c. (50)

11



Since the explicit scheme (48) restricts time steps to be O(h2), one might naturally turn
to implicit schemes with weaker time step requirements. Surprisingly, the error caused by
taking relatively larger time steps in such schemes significantly slows the coarsening process.
To demonstrate this phenomenon, we focus on the implicit midpoint method,

vn+1
i − vn

i

τ
= F

(

vn
i + vn+1

i

2

)

, (51)

which has less stringent time step requirements than (48) and is typically more accurate than
the backward Euler method. Figure 8 shows results for (51) when time steps are not taken
larger than 10h2. The coarsening occurs significantly slower, especially for large N (small
h). We use Newton’s method to solve (51) at each time step, using explicit time stepping
to provide an initial guess for the Newton iterations. To ensure rapid convergence of the
iterations, we use an adaptive time step – reducing the time step when many iterations are
required, and increasing when only 0-5 iterations are required. We use the Sherman-Morrison
formula [27] and the tridiagonal matrix solver in LAPACK to solve the linear systems for
each Newton iteration. Typically smaller time steps are required only at the beginning stages
of evolution.

We further demonstrate the slow-down due to larger time steps by fixing N = 200 and
solving (51) to a fixed time t∗ for a range of maximal time steps. Figure 9 shows a plot of K
at t∗ = 10 as a function of the maximum time step used in computation. These results should
be of interest to those in the image processing community – in image processing applications,
the length scale is more important than the actual time, which is in fact artificial. In particular,
these results suggest that while implicit time stepping may remove time step restrictions, little
real gain in processing speed might be made.

6 Two dimensions.

We easily generalize (1) to two dimensions by considering a system vi, j, i, j = 0, ...,N − 1
satisfying

v̇i, j = D+
1,hD−

1,h(R(vi, j))+D+
2,hD−

2,h(R(vi, j)) (52)

with the rules
vi, j = vi mod N, j mod N for i, j 6= 0, ...,N −1 (53)

and
vi, j ≥ a. (54)

Here, D+
i,h and D−

i,h are the forward and backward difference quotient operators, respectively,
in the i-th coordinate direction. This system is a standard centered differencing discretization
of

vt = ∆(R(v)) (55)

with periodic boundary conditions. Although (52) has no relation to the Perona-Malik method
for image denoising or to shearing in granular materials, it is a natural generalization of the
reinforced random walk model to a two dimensional lattice, and has been studied in [14, 24].
The behavior of (52) is very similar to (1), with mass aggregating in spikes that coarsen with
time. System (52) has

E (vi, j) =
N−1

∑
i, j=0

f (vi, j)h2 (56)

for an energy. Condition (53) ensures that

µ := 1
N2

N

∑
i, j=1

vi, j (57)

12



does not change.
We generalize the definition of L to this two dimensional lattice:

L(vi, j) =‖ vi, j ‖H−1 := sup
φi, j

{

1
N2

N−1

∑
i, j=0

(vi, j −µ)φi, j,
N−1

∑
i, j=0

[

(φi+1, j −φi, j)
2 +(φi, j+1 −φi, j)

2
]

≤ 1
}

.

(58)
In this case, we expect L ∼ 1√

K
where K is again the number of vi, j > b. Lemmas 2-4 are all

easily seen to hold also for (52); however the interpolation inequality is different as it depends
on dimension.

6.1 Interpolation inequality

Lemma 6. Let L be defined by (58) and E by (56). Assume that K ≤ N
2 . Then,

EL2 ≥ C
N2 (59)

for some constant C > 0 that depends only on µ and b.

Proof.
We proceed in analogy with the one dimensional case covered in Lemma 5. The setting is
now the domain [0,1]2, discretized by the uniform grid (xi,y j) where xi =

i
N and y j = j

N . This
time, we have the immediate bound

E ≥ K
N2 f (b) (60)

on the energy. Hence, it will be enough to show that L ≥ C√
K

for some C. To that end, we will
partition the grid into disjoint cubes of side length

` = b N√
2K

c. (61)

Then, ` ≥ N
2
√

2K
. The cubes Qm,n are:

Qm,n =
{

(i, j) : `m ≤ i < `(m+1) and `n ≤ j < `(n+1)
}

. (62)

There are 2K such cubes completely contained on the grid. Since there are at most K spikes,
at least K of these cubes contain no spikes at all. Let

S =
{

(m,n) : Qm,n contains no spikes .
}

. (63)

As before, we define a “test function” {φi, j} on the grid, as follows:
1. If (i, j) ∈ Qm,n for some (m,n) ∈ S, then

φi, j = −dist∂Qm,n(i, j)

= min
{

(

i− `m+
1
2
)

,
(

`(m+1)+
1
2 − i

)

,
(

j− `n+
1
2
)

,
(

`(n+1)+
1
2 − j

)

} (64)

2. Otherwise, φi, j = 0.
It follows that ‖φ‖H−1 ≤ 1. Moreover, if (m,n) ∈ S, then

1
N2 ∑

(i, j)∈Qm,n

(−φi, j) ≥C
`3

N3 (65)

13



for some constant C. Using φi, j in (58) to bound L from below, we get:

L := ‖v‖H−1 ≥ 1
N2 ∑

i, j
φi, j(vi, j −µ)

=
1

N2 ∑
(m,n)∈S

∑
(i, j)∈Qm,n

φi, j(vi, j −µ)≥ 1
N2 ∑

(m,n)∈S

(µ−b) ∑
(i, j)∈Qm,n

(−φi, j)

≥ (µ−b) ∑
(m,n)∈S

C
`3

N3

≥C(µ−b)K

(

N3

K
√

K

)(

1
N3

)

=
C(µ−b)√

K
.

(66)

Combined with (60), this establishes the claim. �

6.2 Final result in two dimensions.

Theorem 2. Suppose a ≤ vi, j(0) for 1 ≤ i, j ≤ N,

b < µ =
1

N2

N

∑
i, j=1

vi, j, (67)

and vi, j(0) > b for at most N2
2 ordered pairs (i, j). Then for each σ ∈ (1,2], there exist univer-

sal constants C1 (σ) ,C2 (σ) < ∞ such that for all 0 < T0 ≤ T,

1
T −T0

Z T

T0
Eσdt ≥C1 (σ)

[

(

N2 (T −T0)
)− 1

2

]σ
(68)

for (T −T0) ≥C2 (σ)N2L(T0)
4
. If 1 < σ < 2, (68) also holds forT0 = 0.

Proof. The proof may be obtained by setting Ẽ = NE and L̃ = N
1
2 L, and then using inequali-

ties (26) and (59) to apply Lemma 4.2 in [23] (with α = 2 in the statement of that lemma) to
Ẽ and L̃.

6.3 Numerical evidence for the 2D case.

We use Forward Euler time stepping (48) to solve (52). Although we observed a stability
restriction on the explicit scheme of about τ ≤ h2

4 , standard implicit schemes provide little
speed-up, due to the computation required by repeated Newton iterations and the slow down
of coarsening caused by large time steps (see Section 5).

We evolve an N ×N system with N = 2n ×10 for 1 ≤ n ≤ 6. Figure 10 shows K
N2 versus

Nt compared with the power law
(

N2t
)− 1

2 . Each simulation has the same initial condition,

vi, j(0) = 3+10−6 sin
(

iπ
N

)

sin
(

jπ
N

)

. (69)

The results match our proved bound (68).

7 Discussion.

Our numerical experiments indicate that not only are the upper bounds we establish attained,
but they are in fact generically observed for energy densities with logarithmic growth at in-
finity, such as (11) that appear in many applications. Our bounds certainly hold for energy
densities that have faster (e.g. power law) growth at infinity; the hypothesis of our claims

14



clearly allow them. However, numerical experiments indicate that the bounds are not optimal
in these cases. It would be interesting to see how the bounds could be improved for these
energies, since this would help clarify the role of different nonlinearities in models such as
Perona-Malik.

We studied evolution equations that are continuous in time, but those computing these
systems (particularly in the image processing community) also care about discrete-in-time
versions. The two should be closely related for sufficiently small time steps, but anyone
interested in reducing computation time would prefer taking the largest time steps possible.
In Section 5 we discussed a slow-down of coarsening caused by taking larger time steps in
numerical simulations. This leads one to ask whether a bound on the coarsening rate can be
found in terms of the number of time steps in discrete-in-time systems, possibly indicating the
amount of computation needed to denoise images with the Perona-Malik method.

Our work focuses on problems best described by discrete-in-space evolution equations,
but it would be interesting to see whether our results could be extended to the notions of
solution developed for the related ill-posed PDEs in recent literature (e.g. [5, 30]). One
might also apply these methods to regularized versions of the PDEs, such as those analyzed
in [1, 2, 3, 4, 6, 22]. In this case, we might expect to find that the coarsening rate depends
on the regularization parameter just as the coarsening rate depends on grid cell size for the
discrete-in-space equations.

Acknowledgments. We thank Robert V. Kohn for recommending this problem, and for
his advice and encouragement throughout the paper’s development. We also thank Felix Otto
and Dejan Slepčev for helpful comments.
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Figure 1: The functions f , R, and R′ for f (s) = 1
2 log
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Figure 2: Comparison of R and R′ when f is defined by (11) (left) and (15) (right).
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Figure 3: The dynamics of (1) for N = 200 and vi(0) = 3+ηi with a random perturbation |ηi| ≤
10−5. The vi quickly aggregate to spikes that decrease in number until a single spike contains most
of the mass.
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Figure 4: Perona-Malik equation. The dynamics of (16) for N = 200 and f given by (11).
Thicker lines denote later stages of the evolution.
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Figure 5: Shear bands in granular flow. The dynamics of (16) for N = 200 and f given by (15).
Thicker lines denote later stages of the evolution.
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Figure 6: After an initial transient period, the jump density, K
N corresponds closely with the proved

coarsening bound (29).
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Figure 7: The length scale behaves like L ∼ 1
K , supporting our claim that (25) defines a valid

measure of length scale.
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Figure 8: Evolving length scale (top) and jump density (bottom) for the implicit scheme (51).
Although implicit schemes have no time step restriction for stability, the coarsening rate badly
reflects the error caused by larger time steps.
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Figure 9: Coarsening slow-down. Although implicit schemes have no time step requirements for
stability, errors due to large time steps have a significant effect on the coarsening rate. Using the
initial data given by (49), we set N = 200 and plot K at t = 10 as a function of the maximal time
step used in (51) (this is the time step used except at the earliest stages of evolution, where τ may
be smaller to ensure convergence of the Newton iterations).
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Figure 10: A comparison of the evolving jump density K
N2 with the expected coarsening rate (68)

for the two-dimensional system (52).
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