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Abstract

Threshold dynamics and its extensions have proven useful in comput-
ing interfacial motions in applications as diverse as materials science and
machine learning. Certain desirable properties of the algorithm, such as
unconditional monotonicity in two-phase flows and gradient stability more
generally, hinge on positivity properties of the convolution kernel and its
Fourier transform. Recent developments in the analysis of this class of
algorithms indicate that sometimes, as in the case of certain anisotropic
curvature flows arising in materials science, these properties of the con-
volution kernel cannot be expected. Other applications, such as machine
learning, would benefit from as great a level of flexibility in choosing the
convolution kernel as possible. In this paper, we establish certain desir-
able properties of threshold dynamics, such as gamma convergence of its
associated energy, for a substantially wider class of kernels than has been
hitherto possible. We also present variants of the algorithm that extend
some of these properties to even wider classes of convolution kernels.

1 Introduction

Originally proposed by Merriman, Bence, and Osher (MBO) in [21, 20], thresh-
old dynamics – also known as diffusion or convolution generated motion – is a
very efficient algorithm for approximating the motion by mean curvature of an
interface. The algorithm generates a discrete in time approximation to mean
curvature motion by alternating two very simple steps: convolution with a ker-
nel, and pointwise thresholding. Among its benefits are 1. implicit represen-
tation of the interface as in the phase field or level set methods, allowing for
graceful handling of topological changes, 2. unconditional stability, where the
time step size is restricted only by accuracy considerations, and 3. very low per
time step cost when implemented on uniform grids.

Motion by mean curvature arises as L2 gradient descent, in an appropriate
sense, for perimeter of sets, which in turn appears in variational models for
a great variety of applications. These range from image processing and com-
puter vision (e.g. the Mumford-Shah model [24] for image segmentation) to
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materials science (e.g. Mullins’ model [23] for grain boundary motion in poly-
crystals). More recently, such variational models and their minimization via
gradient descent have also been applied in the context of machine learning and
artificial intelligence (e.g. graph partitioning models for supervised clustering
of data [13]). The MBO scheme, its variants, and its extensions have attracted
sustained interest in the context of each one of these applications.

The elegant, streamlined nature of threshold dynamics has made it amenable
to analysis and the focus of a number of theoretical investigations, see e.g.
[16, 7, 10, 17, 9] and references therein. The various consistency, stability,
and convergence statements contained in these contributions require various as-
sumptions on the kernel used in the convolution step of the algorithm, such as
positivity in the physical or the Fourier domain. In this paper, we present a
number of new results on the original threshold dynamics algorithm and some
of its variants and extensions that significantly enlarge the class of admissible
kernels. We also demonstrate that some of the remaining restrictions are nec-
essary. There are multiple reasons for seeking an extension of the theory to
more general kernels. Two of these are: 1. Recent results in [9] indicate that
positivity of the kernel cannot always be maintained for extensions of the MBO
scheme to anisotropic (weighted) motion by mean curvature. 2. In applications
such as graph partitioning, there is often little control on the properties of the
convolution kernel that is typically constructed from the given edge weights of
the graph.

2 Preliminaries and Notation

We will be concerned with possibly anisotropic interfacial energies defined on
partitions of a domain D. D will typically be the d-dimensional annulus, i.e. a
cube in Rd with periodic boundary conditions. By a partition of D, we mean a
prescribed number N of sets Σ1, . . . ,ΣN ⊆ D that satisfy

N⋃
i=1

Σi = D and Σi ∩ Σj = (∂Σi) ∩ (∂Σj) for i 6= j (1)

Let Hs denote the s-dimensional Hausdorff measure on D. Given a non-
negative, continuous, even function σ : Sd−1 → R+ with σ(x) > 0 for x 6= 0, we
first consider the two-phase surface energy

E(Σ, σ) =

∫
∂Σ

σ(n(x)) dHd−1 (2)

where n(x) denotes the outward unit normal to ∂Σ. We will also consider the
multiphase extension of energy (2) to partitions. Let N ∈ N+ denote the number
of phases, and define the set of distinct pairs of indices:

IN = {(i, j) ∈ {1, . . . , N} × {1, . . . , N} : i 6= j}. (3)
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Our multiphase energy is:

E(Σ, σ) =
∑

(i,j)∈IN

∫
(∂Σi)∩(∂Σj)

σi,j(n(x)) dHd−1(x) (4)

where we write Σ = (Σ1, . . . ,ΣN ) . It will be convenient to assume that σ has
been extended to σ : Rd → R+ as

σ(x) = |x|σ
(
x

|x|

)
for x 6= 0

so that it is positively 1-homogeneous. We will assume that σ is then a convex
function on Rd; this condition will ensure well-posedness of the two-phase energy
(2). Define the unit ball (i.e. the Frank diagram) Bσ of σ as

Bσ = {x : σ(x) ≤ 1}

which is thus a closed, convex, centrally symmetric set. We will further require
Bσ to be smooth and strictly convex; this implies that we stay clear of the
crystalline cases (where Bσ is a polytope) except via approximation. In two
dimensions, we will also write σ = σ(θ), where θ is the angle that the unit
normal makes with the positive x1-axis. In that case, strict convexity of Bσ is
equivalent to the condition

σ′′(θ) + σ(θ) > 0.

The Wulff shape Wσ associated with the anisotropy σ is defined as

Wσ =

{
y : sup

x∈Bσ
x · y ≤ 1

}
.

The sets Bσ can in turn be obtained from Wσ by the formula

Bσ =

{
x : sup

y∈Wσ

x · y ≤ 1

}
,

exhibiting the well known duality between Bσ and Wσ. Our assumptions on Bσ
imply that Wσ is also strictly convex and has smooth boundary.

For d = 2 or 3, we will study approximations for L2 gradient flow of energies
(2) and (4), which are known as weighted mean curvature flow (of an interface
and a network). The normal speed of an interface in three dimensions under
this flow is given by

v⊥(x) = µ(n(x))
((
∂2
s1σ(n(x)) + σ(n(x))

)
κ1(x) +

(
∂2
s2σ(n(x)) + σ(n(x))

)
κ2

)
(5)

where κ1 and κ2 are the two principal curvatures, and ∂si denotes differentiation
along the great circle on S2 that passes through n(x) and has as its tangent the
i-th principal curvature direction. In two dimensions, the expression simplifies
to

v⊥(x) = µ(n(x))σ(n(x)) (κ1(x) + κ2(x)) . (6)
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In addition to (5), a condition known as the Herring angle condition [15]
holds along triple junctions: For d = 3, at a junction formed by the meeting of
the three phases Σi, Σj , and Σk , this condition reads

(`× ni,j)σi,j(ni,j) + (`× nj,k)σj,k(nj,k) + (`× nk,i)σk,i(nk,i)
+ nj,iσ

′
i,j(ni,j) + nk,jσ

′
j,k(nj,k) + ni,kσ

′
k,i(nk,i) = 0 (7)

where ni,j is the unit normal vector to the interface (∂Σi) ∩ (∂Σj) pointing in
the Σi to Σj direction, ` = nj,k × ni,j is a unit vector tangent to the triple
junction, and σ′i,j(ni,j) denotes derivative of σi,j taken on S2 in the direction of
the vector `× ni,j . In the isotropic setting, (7) simplifies to the following more
familiar form, known as Young’s law:

σi,jni,j + σj,knj,k + σk,ink,i = 0. (8)

Finally, we note that well-posedness (lower semi-continuity) of the multi-
phase energy (4) in its full generality is a complicated matter [3]. At the very
least, the surface tensions σi,j : Rd → R+ need to be convex and satisfy a
pointwise triangle inequality

σi,j(n) + σj,k(n) ≥ σi,k(n) (9)

for all distinct i, j, and k, and all n ∈ Sd−1. In case the σi,j are positive
constants, (9) is known to be also sufficient for well-posedness of model (4).

3 Previous Work

In its simplest form, the two-phase MBO algorithm as presented in the original
paper [20] generates a discrete in time, continuous in space approximation to
the motion by mean curvature of an interface ∂Σ0 (given as the boundary of an
initial set Σ0) as follows:

Algorithm 1: (MBO’92): Given a time step size δt > 0, alter-
nate the following steps:

1. Convolution:

ψk =
1

(δt)
d
2

K

(
x√
δt

)
∗ 1Σk (10)

2. Thresholding:

Σk+1 =

{
x : ψk(x) ≥ 1

2

}
. (11)

where Σk denotes the approximate solution at time t = kδt, and the convolution
kernel K ∈ L1(Rd) satisfies

K(x) ∈ L1(Rd) , xK(x) ∈ L1(Rd), and K(x) = K(−x) (12)
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together with ∫
Rd
K(x) dx = 1. (13)

For convenience, we will write

Kε(x) =
1

εd
K
(x
ε

)
for the rescaled versions of a given convolution kernel K. In the original papers
[21, 20], the kernel K is taken to be the Gaussian:

G(x) =
1

(4π)
d
2

exp

(
−|x|

2

4

)
although the possibility of choosing it to be not necessarily radially symmetric
for anisotropic curvature motions is also mentioned.

There have been multiple studies devoted to the question of convergence
for Algorithm 1. In [19], [26], [25], consistency of the scheme is studied via
Taylor expansion after one step of the algorithm is applied on a set with a
smooth boundary. Rigorous convergence results were first given in [11] and
[4]. [16] studies the algorithm with fairly general convolution kernels K, and
establishes its convergence to the viscosity solution [12, 8] of certain anisotropic
curvature flows provided that K satisfies certain conditions, chief among which
is positivity. Positivity of K implies that the scheme preserves a comparison
principle known to hold for the evolution (5) and is crucial in the viscosity
solutions approach.

In [10], a variational formulation for the original MBO scheme (10) & (11)
was given. In particular, it was shown that the following functional defined on
sets, with kernel K chosen to be the Gaussian G, which had previously been
established [1, 22] to be a non-local approximation to (isotropic) perimeter, is
dissipated by the MBO scheme at every step, regardless of time step size:

E√δt(Σ,K
√
δt) =

1√
δt

∫
Σc
K√δt ∗ 1Σ dx. (14)

Thus, (14) is a Lyapunov functional for Algorithm 1, establishing its uncondi-
tional gradient stability. Moreover, the following minimizing movements [2, 18]
interpretation involving (14) for Algorithm 1 was given in [10]:

Σk+1 = arg min
Σ

E√δt(Σ,K
√
δt) +

1√
δt

∫
(1Σ − 1Σk)K√δt ∗ (1Σ − 1Σk) dx (15)

where the kernel K was again taken to be the Gaussian. In [10], variational
formulation (14) & (15) was also extended to the multiphase setting.

Let us recall the following fact from [10] that ensures (14) is a Lyapunov
functional for Algorithm 1, establishing the connection between the variational
problem (14) and threshold dynamics, and underlining the significance of K̂:
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Proposition 3.1. (from [10]) Let K satisfy (12) and (13). If K̂ ≥ 0, thresh-
old dynamics algorithm (10) & (11) decreases energy (14) at every time step,
regardless of the time step size.

In [10], the variational formulation (15) was then extended to the multiphase
energy (4) in case the surface tensions σi,j are constant but possibly distinct:

E(Σ, σ) =
∑

(i,j)∈IN

σi,jH
d−1(∂Σi ∩ ∂Σj) (16)

in which case the Lyapunov functional becomes

E√δt(Σ,K
√
δt) =

1√
δt

∑
(i,j)∈IN

σi,j

∫
Σj

K√δt ∗ 1Σi dx. (17)

We also consider a relaxation of (17):

E√δt(u,K
√
δt) =

1√
δt

∑
(i,j)∈IN

σi,j

∫
D

ujK√δt ∗ 1Σi dx (18)

over the following convex set of functions satisfying a box constraint:

K =

{
u ∈ L1(D, [0, 1]N ) :

N∑
i=1

ui(x) = 1 a.e. x ∈ D

}
. (19)

There is a corresponding minimizing movements scheme that can be derived
from (51) that leads to the following extension of threshold dynamics, Algorithm
2, to the constant but possibly unequal surface tension multiphase energy (16).

Algorithm 2: ([10]): Given a time step size δt > 0, alternate
the following steps:

1. Convolution:

ψki = K√δt ∗
∑
j 6=i

σi,j1Σkj
. (20)

2. Thresholding:

Σk+1
i =

{
x : ψki (x) ≤ min

j 6=i
ψkj (x)

}
. (21)

Various conditions are provided in [10] for ensuring that Algorithm 2 is uncon-
ditionally gradient stable (decreases energy (17) for any δt > 0). The question
turns out to be interesting, with connections to isometric embeddability of finite
metric spaces into Euclidean spaces. In particular, the triangle inequality (9)
on σi,j appears to be neither necessary nor sufficient.

Turning to anisotropy, i.e. normal dependent surface tensions σ = σ(n) and
the more general convolution kernels it requires, we recall the following facts
from [9]:
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Proposition 3.2. (from [9]) Let Σ be a compact subset of Rd with smooth
boundary. Let K : Rd → R be a kernel satisfying (12). Then:

lim
δt→0+

E√δt(Σ,K
√
δt) =

∫
∂Σ

σK
(
n(x)

)
dHd−1(x)

where the surface tension σK : Rd → R+ is defined as

σK(n) :=
1

2

∫
Rd
|n · x|K(x) dx. (22)

We will in fact prove a stronger, Gamma convergence version of Proposition
3.2 below for a class of kernels that include sign changing ones. In polar coor-
dinates, the expression for the surface tension σK that corresponds to a given
convolution kernel K is:

σK(n) =
1

2

∫ ∞
0

rd
∫
Sd−1

|n · x|K(rx) dHd−1(x) dr. (23)

In [9], the following expression is obtained for the mobility µK associated with
a given kernel K:

µK(n) :=

∫
n⊥
K(x) dHd−1(x). (24)

Let us also note the following Barrier Theorem from [9] that places a restriction
on the positivity of convolution kernels in terms of the Wulff shape Wσ of the
given anisotropy σ.

Theorem 3.3. (from [9]) Threshold dynamics algorithm (10) & (11) with a
positive kernel K can approximate weighted mean curvature flow (5) associated
with an anisotropic surface tension σ : Sd−1 → R (for some choice of mobility
µ : Sd−1 → R) if and only if the corresponding Wulff shape Wσ is a zonoid.

Zonoids are centrally symmetric convex bodies that are limits, in the Haus-
dorff topology, of zonotopes, which are defined as (finite) vector sums of line
segments. In Rd, a convex polytope with nonempty interior is a zonotope if and
only if every d−1 dimensional face of it is a zonotope. Thus, for d = 2, any cen-
trally symmetric, convex body is a zonoid. For d = 3, this is no longer the case.
A simple example of a non-zonoid in R3 is the octahedron. Moreover, there
exists a neighborhood of the octahedron that contains no zonoids. Theorem 3.3
implies that there is no monotone threshold dynamics scheme for an anisotropy
σ the Wulff shape Wσ of which falls into such a neighborhood, even though Wσ

may be smooth and strictly convex. See [14, 6] for these facts and much more
information about zonoids. Thus, as promised in Section 1, this is an example
of an application where positivity properties of the convolution kernel has to be
compromised.
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Figure 1: One step of the standard algorithm under the action of kernel K1 on the peri-
odic lattice Z/6Z

⊕
Z/5Z. The updated configuration has a higher energy than the starting

configuration.

4 New Variants of Threshold Dynamics

Here, we will consider extensions of the basic MBO algorithm (10) & (11) that
allow us to dispense with various requirements on the convolution kernel K and,
in the multiphase setting, on the surface tensions σ.

4.1 Non-monotone energy and oscillating solutions

We first establish a partial converse to Proposition 3.1, showing that assumption
K̂ ≥ 0 on the Fourier transform of the kernel is not spurious.

Example 1:

Let the convolution kernel be given by

K1

(
(x1, x2)

)
=


1/3 (x1, x2) = (±1, 0)

1/9 (x1, x2) = (0,±1) or (0, 0)

0 otherwise

Then the Fourier transform of K1 must change signs since the origin is
not the global maximum of K1. Figure 1 shows an example where a step of the
algorithm with K1 increases the energy. The right hand side configuration has 6
broken horizontal bonds and 6 broken vertical bonds, while the left hand side has
4 broken horizontal bonds and 8 broken vertical bonds. K1 assigns horizontal
bonds a strength of 1/3 and vertical bonds a strength of 1/9 thus if we compare
the two energies we see that ERHS−ELHS = 6∗1/3+6∗1/9−(4∗1/3+8∗1/9) =
8/9 thus the energy has increased under the algorithm.

Example 2:

In fact it is possible for the algorithm to get trapped in a periodic cycle where
one of the configurations in the cycle has a higher energy than the others. Figure
2 shows an example of the algorithm with K1 getting trapped in a 2-cycle where
the right hand configuration has a higher energy. Both configurations have the
same number of broken horizontal bonds. However the left hand side has 4
broken vertical bonds while the right hand side has 8 broken vertical bonds.
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Figure 2: Behavior of the standard algorithm under the action of kernel K1 on the peri-
odic lattice Z/6Z

⊕
Z/5Z. The algorithm gets trapped in a periodic loop between the two

configurations above. The configuration on the right has a higher energy

4.2 A new variant: Single growth

Next, we show how to modify the original two-phase MBO algorithm, Algorithm
1, to a slightly more costly version (entailing two convolutions per time step as

opposed to one) so that the assumption K̂ ≥ 0 can be dramatically relaxed
while maintaining the energy dissipation property.

Algorithm 3: Alternate the following steps:

1. 1st Convolution:

ψk+ 1
2 =

1

(δt)
d
2

K

(
x√
δt

)
∗ 1Σk (25)

2. 1st Thresholding:

Σk+ 1
2 = Σk ∪

{
x : ψk+ 1

2 (x) ≥ 1

2

}
. (26)

3. 2nd Convolution:

ψk+1 =
1

(δt)
d
2

K

(
x√
δt

)
∗ 1

Σk+ 1
2

(27)

4. 2nd Thresholding:

Σk+1 = Σk+ 1
2 \
{
x : ψk+1(x) ≤ 1

2

}
. (28)

Proposition 4.1. If the convolution kernel K is of the form K = K1 + K2

with K1 ≥ 0 and K̂2 ≥ 0, then Algorithm 3 dissipates energy (14) at every
step. Furthermore if K1 is positive in a neighborhood of the origin or K̂2(0) is
positive then if an iteration of Algorithm 1 changes a configuration Σ by a set of
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positive measure, an iteration of Algorithm 3 also changes Σ by a set of positive
measure and strictly decreases the energy.

Proof. We will show that energy (14) is dissipated going from Σk to Σk+ 1
2 . The

argument going from Σk+ 1
2 to Σk+1 is essentially the same. Let ϕ = 1

Σk+ 1
2
−1Σk .

Then ϕ(x) is pointwise nonnegative since Σk ⊂ Σk+ 1
2 . Comparing the energies

we have:

E√δt(Σ
k+ 1

2 ,K√δt)− E√δt(Σ
k,K√δt)

=
1√
δt

( ∫
D

ϕ(x)(K√δt ∗ (1(Σk)c − 1Σk))(x) dx−
∫
D

ϕ(x)(K√δt ∗ ϕ)(x) dx
)
.

Note that (K√δt ∗ (1(Σk)c − 1Σk))(x) > 0 if and only if ψk+ 1
2 (x) < 1

2 and
thus if and only if ϕ(x) = 0. Therefore

1√
δt

∫
D

ϕ(x)(K√δt ∗ (1(Σk)c − 1Σk))(x) dx ≤ 0.

To establish the dissipation of energy, it remains to show that

− 1√
δt

∫
D

ϕ(x)(K√δt ∗ ϕ)(x) dx ≤ 0.

Let L be the periodic lattice associated to D. Then using the Fourier series
expansion we have

−
∫
D

ϕ(x)(K√δt ∗ ϕ)(x) dx = −
∑
α∈L

ϕ̂(α)2K̂(α
√
δt). (29)

If K is nonnegative then it is clear that the left hand side of the above
equation is ≤ 0 and if K̂ is nonnegative then is clear that the right hand side is
≤ 0. Therefore if K can be split into a sum K = K1 + K2 where K1 ≥ 0 and
K̂2 ≥ 0 we have

E√δt(Σ
k+ 1

2 ,K√δt)− E√δt(Σ
k,K√δt) ≤ 0.

Now we prove the second statement. By the above it is enough to show that
one of the steps of Algorithm 3 strictly decreases the energy. Let Σ0 = Σ and
let Σ1 and Σ̃1 be the configurations obtained from Σ0 after a single iteration of
Algorithm 1 and Algorithm 3 respectively. Let ϕ(x) = 1Σ1−1Σ0 . By assumption
the support of ϕ(x) has positive measure. Let Σ̃1/2 be the intermediate set
obtained after applying the first two steps of Algorithm 3 to Σ0. Then

1Σ̃1/2 − 1Σ0 = max(ϕ(x), 0) = ϕ+(x).

First suppose that the support of ϕ+(x) also has positive measure. Consider
the change in energy

E√δt(Σ̃
1/2,K√δt)− E√δt(Σ

0,K√δt) ≤ −
1√
δt

∫
D

ϕ+(x)(K√δt ∗ ϕ+)(x) dx =

10



− 1√
δt

∫
D

ϕ+(x)(K1√
δt
∗ ϕ+)(x) dx− 1√

δt

∑
α∈L

(ϕ̂+(α))2K̂2(α
√
δt).

It is enough to show that one of the two terms is strictly negative.
If K̂2(0) is positive then we only need to show that ϕ̂+(0) 6= 0. This must

be the case as ϕ+ does not change signs and has support of positive measure.
If K1 is positive in a neighborhood of the origin then there exists δ0 > 0 and

b0 > 0 such that K1(z) ≥ b0 for all z ∈ B(0, δ0). By the nonnegativity of K1

we have

−
∫
D

ϕ+(x)(K1√
δt
∗ ϕ+)(x) dx ≤ −b0

∫
D

ϕ+(x)

∫
B(0,δ0)

ϕ+(x+ z
√
δt) dz dx.

By the Lebesgue differentiation theorem

lim
δ0→0

1

m(B(0, δ0))

∫
B(0,δ0)

ϕ+(x+ z
√
δt) dz = 1

for almost every x ∈ supp(ϕ+). Therefore

−b0
∫
D

ϕ+(x)

∫
B(0,δ0)

ϕ+(x+ z
√
δt) dz < 0.

On the other hand if ϕ+(x) has support of measure zero then Σ̃1/2 is equal
to Σ0 except on a set of measure zero. Therefore

1

(δt)
d
2

K

(
x√
δt

)
∗ 1Σ̃1/2 =

1

(δt)
d
2

K

(
x√
δt

)
∗ 1Σ0 .

It then follows that

1Σ̃1 − 1Σ̃1/2 = min(ϕ(x), 0) = ϕ−(x).

Since ϕ+ had support of measure zero, ϕ− must have positive support. An
analogous argument to the above implies that the energy must decrease.

In addition to extending energy dissipation property to far more general ker-
nels as described above in Proposition 4.1, Algorithm 3 maintains convergence
to viscosity solution [12, 8] of the level set formulation of flow (5) in case the
convolution kernel happens to be positive, with suitable decay and regularity,
as we explain next. We will adapt to our new algorithm (3) the convergence
argument that was given in [16] for the standard MBO scheme (1) for positive
but otherwise fairly general convolution kernels. Hence, for the remainder of
this subsection, we assume that kernel K satisfies the positivity, regularity, and
decay properties (3.1) through (3.7) in [16], which are more stringent than as-
sumptions needed elsewhere in this paper. In this framework, first threshold
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dynamics is extended from sets (binary functions) to L1(Rd) in a level set–by–
level set fashion: For ϕ ∈ L1(R), let

Shϕ(x) = (K√h ∗ ϕ)(x) (30)

Ghϕ(x) = sup{λ ∈ R : Sh1{y:ϕ(y)>λ}(x) ≥ 1/2} (31)

in keeping with the notation of [16]. If ϕ happens to be a characteristic function,
applying Gh gives one step of the standard MBO algorithm (1) with time step
size h. The new, single growth version of threshold dynamics described in
Algorithm 3 can be written in terms of Gh as well. To that end, define the
following two new operators:

G↑hϕ(x) = max(ϕ(x), Ghϕ(x)) (32)

G↓hϕ(x) = min(ϕ(x), Ghϕ(x)). (33)

Then, one step of Algorithm 3 applied to a function ϕ(x) is given by

G↓hG
↑
hϕ(x). (34)

Next, define a piecewise constant–in–time approximation to the propagator
of the limiting continuum flow:

Qht =
(
G↓hG

↑
h

)j−1
if (j − 1)h ≤ t < jh with j ∈ N. (35)

We can now state our convergence result.

Theorem 4.2. Let g : Rd → R be a bounded, uniformly continuous function.
Let u : Rd × [0,∞)→ R be the unique viscosity solution of the PDE{

ut = −F (D2u,Du)

u(x, 0) = g(x)

where F is given by

F (M,p) = −
(∫

p⊥
K(x) dHd−1(x)

)−1(
1

2

∫
p⊥
〈Mx, x〉K(x) dHd−1(x)

)
(36)

for d× d symmetric matrices M and p ∈ Rd. Then, for any T ∈ [0,∞),

Qht g(x) −→ u(x, t) uniformly on Rd × [0, T ]

as h→ 0+.

Operator G↓hG
↑
h shares the following properties with Gh that are essential

for the framework of [16]:

1. G↓hG
↑
h(ρ ◦ ϕ) = ρ ◦ (G↓hG

↑
hϕ) for all continuous, nondecreasing functions

ρ : R→ R,
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2. G↓hG
↑
hψ ≥ G

↓
hG
↑
hφ whenever ψ ≥ φ,

3. G↓hG
↑
h(φ+c) = G↓hG

↑
hφ+c, G↓hG

↑
hc = c, andG↓hG

↑
hφ(·+y) = (G↓hG

↑
hφ)(·+y)

for a constant c ∈ R and y ∈ Rd.

Property 2, in particular, says that G↓hG
↑
h is, just like Gh, monotone. Thanks

to these properties, it follows from [5, 16] that to prove convergence of Algorithm
3, it is sufficient to establish the following consistency lemma:

Lemma 4.3. For ϕ ∈ C2(D) for every z ∈ D such that Dϕ(z) 6= 0 and for
ε > 0 there exists δ > 0 such that for all x ∈ B(z, δ) and h ≤ δ we have the
following inequalities:

G↓hG
↑
hϕ(x) ≤ ϕ(x) + (ε− F (D2ϕ(z), Dϕ(z)))h (37)

G↓hG
↑
hϕ(x) ≥ ϕ(x) + (−ε− F (D2ϕ(z), Dϕ(z)))h (38)

Furthermore if ϕ(x) =
√
x2 + 1 then there exists δ > 0 and C > 0 such that for

every x and h ≤ δ

G↓hG
↑
h(ϕ)(x) ≤ ϕ(x) + Ch (39)

G↓hG
↑
h(−ϕ)(x) ≥ −ϕ(x)− Ch (40)

Lemma 4.3 will follow from the following analogous statement for the operator
Gh that can be found in [16], where it plays a pivotal role:

Lemma 4.4 ([16]). If ϕ ∈ C2(D) then for every z ∈ D such that Dϕ(z) 6= 0
and ε > 0 there exists δ > 0 such that for all x ∈ B(z, δ) and h ≤ δ we have the
following inequalities:

Ghϕ(x) ≤ ϕ(x) + (ε− F (D2ϕ(z), Dϕ(z)))h (41)

Ghϕ(x) ≥ ϕ(x) + (−ε− F (D2ϕ(z), Dϕ(z)))h (42)

Furthermore if ϕ(x) =
√
x2 + 1 then there exists δ > 0 and C > 0 such that

for every x and for h ≤ δ

Gh(ϕ)(x) ≤ ϕ(x) + Ch (43)

Gh(−ϕ)(x) ≥ −ϕ(x)− Ch (44)

We now show how to obtain Lemma 4.3 from Lemma 4.4:

Proof of Lemma 4.3. First, observe that

G↓hG
↑
hϕ ≥ Ghϕ for any ϕ. (45)
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Indeed,

G↓hG
↑
hϕ = min

(
max(Ghϕ,ϕ) , Gh max(Ghϕ,ϕ)

)
≥ min

(
max(Ghϕ,ϕ) , Ghϕ

)
≥ min

(
Ghϕ , Ghϕ

)
= Ghϕ

where we used the monotonicity of Gh to get the first inequality. Inequality
(38) now follows from (45) and inequality (42) of Lemma 4.4.

Next, observe that if all lower (or upper) level set of ϕ are strictly convex,

then G↓hG
↑
hϕ = Ghϕ. Thus, inequalities (39) & (40) follow immediately from

inequalities (43) & (44) of Lemma 4.4.
What remains is inequality (37). Observe that if ε−F (D2ϕ(z), Dφ(z)) ≥ 0,

then

G↓hG
↑
hϕ ≤ max(ϕ,Ghϕ) (46)

≤ max
(
ϕ(x), ϕ(x) + (ε− F (D2ϕ(z), Dϕ(z)))h

)
(47)

= ϕ(x) + (ε− F (D2ϕ(z), Dϕ(z)))h. (48)

Hence, all that remains is to establish inequality (37) in the case ε−F (D2ϕ(z), Dϕ(z)) <
0. For the remainder of the argument we will write F = F (D2ϕ(z), Dϕ(z))) to
simplify notation. By Lemma 4.4 there exists δ0 such that for all x ∈ B(z, δ0)
we have Ghϕ(x) ≤ ϕ(x) + (ε/2− F )h. Then let

Ex = {y : ϕ(y) ≥ ϕ(x) + (ε− F )h}

and θ(x) = Sh1Ex(x). It follows that θ(x) < 1/2 for every x ∈ B(z, δ0). Thus
θc = supx∈B(z,δ0) θ(x) < 1/2. Therefore we may choose δ so small that for every
x ∈ B(z, δ) and h ≤ δ∫

B(z,δ0)c
K√h((x− y)) dy < 1/2− θc.

Since (ε − F )h < 0 we know that for every y ∈ B(z, δ0) we must have

G↑hϕ(y) = ϕ(y). Therefore if we consider the set

E↑x = {y : G↑hϕ(y) ≥ ϕ(x) + (ε− F )h}

it can only differ from Ex on B(z, δ0)c. Thus E↑x ⊂ Ex ∪ B(z, δ0)c. Taking
x ∈ B(z, δ) we get the chain of inequalities

Sh1E↑x(x) ≤ Sh1Ex(x) + Sh1B(z,δ0)c(x) ≤ θc + Sh1B(z,δ0)c(x) < 1/2.

Therefore G↓hG
↑
hϕ(x) ≤ ϕ(x) + (ε− F )h for x ∈ B(z, δ) and h ≤ δ as desired.
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4.3 Multiphase Single Growth Algorithm

In this section we describe versions of the single growth algorithm that dissipate
the multiphase MBO energy, with quite general interfacial energies, at every
step. Assume that D is partitioned into N > 2 sets, and recall that we denote
the partition by Σ = (Σ1, . . .ΣN ).

As noted in [9], the natural candidate for approximating the most general
form of multiphase interfacial energy (4) in the style of Lyapunov functionals
(14) and (17) is

Eε(Σ,Kε) =
1

ε

∑
(i,j)∈IN

∫
Σj

(Ki,j)ε ∗ 1Σi dx (49)

which requires choosing a possibly different convolution kernel for the anisotropy
σi,j : RN → R+ associated with each interface (∂Σi) ∩ (∂Σj) in the network.
Here, we only require that each Ki,j satisfy

Ki,j(x) = Kj,i(x) = Ki,j(−x) (50)

for all i 6= j and all x.
Following the general strategy described in [10] for deriving threshold dynamics-

type algorithms from non-local approximate energies such as (49), we first ex-
tend energy (49) to functions u ∈ K, with time step δt satisfying ε =

√
δt:

E√δt(u,K
√
δt) =

1√
δt

∑
(i,j)∈IN

∫
D

uj(Ki,j)√δt ∗ ui dx (51)

Then, a threshold dynamics algorithm can be systematically derived by lineariz-
ing (51) at a given configuration and minimizing it over the entire box constraint
set K. Fix a partition Σ, and let ui = 1Σi . The linearization of relaxed energy
(51) at u = (u1, . . . , uN ), evaluated at some function ϕ = (ϕ1, . . . , ϕN ) turns
out to be:

Lu,
√
δt(ϕ) = E√δt(u,K

√
δt) +

2√
δt

N∑
i=1

∫
D

ϕi
∑
j 6=i

(Ki,j)√δt ∗ uj dx (52)

Minimizing (52) over (19) yields the following algorithm from [9], which is the
obvious extension of Algorithm 2 to normal dependent surface tensions:
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Algorithm 4: ([9]): Given a time step size δt > 0, alternate
the following steps:

1. Convolution:

ψki =
∑
j 6=i

(Ki,j)√δt ∗ 1Σkj
. (53)

2. Thresholding:

Σk+1
i =

{
x : ψki (x) ≤ min

j 6=i
ψkj (x)

}
. (54)

Algorithm 4 is natural, and appears to work well in practice; see [9] for
some examples. However, the question of whether it in fact decreases the corre-
sponding energy (49) for any choice of δt > 0 is now an even more complicated
problem than in the case of Algorithm 2 for energy (17), not least because there
are multiple ways to construct a convolution kernel corresponding to a given
anisotropy: the stability of the algorithm is likely to depend not only on the
properties of the surface tensions σi,j , but also the particular convolution kernels
Ki,j used to approximate them.

To make some headway, here we will instead consider new and slightly more
expensive versions of Algorithm 4 that are motivated by the Gauss-Seidel version
given in [10] of Algorithm 2, as well as Algorithm 3 of the previous section. To
that end, given a partition Σ, define

imin(x) = arg min
1≤i≤N

∑
j 6=i

∫
(Ki,j)√δt ∗ 1Σj dx

so that x ∈ Σimin(x) after one step of Algorithm 4. Also, let iΣ(x) denote the

unique i such that x ∈ Σi, and let en ∈ RN denote the nth standard basis
vector. Then the direction of perturbation affected by Algorithm 4 on the
current configuration is given by

ϕ(x) = eimin(x)− eiΣ(x) (55)

for each x ∈ D.
Below, we present Algorithms 5 and 6 which differ from Algorithm 4 by

placing a single growth constraint on the perturbation direction ϕ. For each
x ∈ D, if imin(x) and iΣ(x) fall into certain classes (that depend on the iteration
number) then ϕ(x) is chosen as in equation (55), otherwise ϕ(x) is set to 0. In
other words, only a subset of the points x ∈ D are redistributed among the
phases as indicated by (55). The essential advantage this brings is to compute
convolutions with the phases more frequently, thus yielding a more reliable
descent direction. It turns out that this simple modification guarantees energy
dissipation for a wide class of kernels as we describe below.
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Algorithm 5: Given an initial partition of D into N sets
Σ0 = {Σ0

i }Ni=1 and a time step δt the (k+ 1)th iteration Σk+1 is
obtained from Σk by a series of substeps indexed by (m,n) ∈ IN
For (m,n) 6= (1, 2) let p(m,n) denote the predecessor of (m,n)
in the dictionary ordering of IN and define Σk,p(1,2) = Σk and
Σk,(N,N−1) = Σk+1. Then Σk,(m,n) is obtained from Σk,p(m,n)

as follows:

1. For each (i, j) ∈ IN form the convolutions:

ψ
k,(m,n)
i,j (x) = (Ki,j)√δt ∗ 1

Σ
k,p(m,n)
j

(56)

2. For each i form the sums:

Ψ
k,(m,n)
i (x) =

∑
j 6=i

ψ
k,(m,n)
(i,j) (x) (57)

3. Threshold the mth function:

Gk,(m,n) = {x ∈ D : min
i

Ψ
k,(m,n)
i (x) = Ψk,(m,n)

m (x)}
(58)

4. Grow set m into set n only:

Σk,(m,n)
m = Σk,p(m,n)

m ∪ (Gk,(m,n) ∩ Σk,p(m,n)
n ) (59)

5. Update set n:

Σk,(m,n)
n = Σk,(m,n)

n \ (Gk,(m,n) ∩ Σk,p(m,n)
n ) (60)

Proposition 4.5. Suppose that each kernel Ki,j may be split into a sum Ki,j =

K1
i,j+K

2
i,j such that K1

i,j ≥ 0 almost everywhere and K̂2
i,j ≥ 0 almost everywhere

then Algorithm 5 dissipates the energy (49) at each step. Furthermore if for
every (i, j) ∈ IN either K1

i,j is positive in a neighborhood of the origin or K̂2
i,j(0)

is positive then if an iteration of Algorithm 4 changes a configuration Σ by a
set of positive measure, an iteration of Algorithm 5 also changes Σ by a set of
positive measure and strictly decreases the energy.

Proof. We show that at each substep the energy is dissipated moving from
Σk,p(m,n) to Σk,(m,n). Set ϕk,(mn) = 1Σk,(m,n) − 1Σk,p(m,n) . Observe that we
may write

E√δt(Σ
k,(m,n),K√δt)− E√δt(Σ

k,p(m,n),K√δt) =

LΣk,p(m,n),
√
δt(ϕ

k,(m,n))− E√δt(Σ
k,p(m,n),K√δt) +Q√δt(ϕ

k,(m,n)). (61)

where LΣk,m,
√
δt is given in equation (52) and Q√δt is a quadratic function that

does not depend on Σk,m. By the discussion preceding Algorithm 5 we know
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that LΣk,m,
√
δt(ϕ

k,m+1)−E√δt(Σ
k,m+1,K√δt) ≤ 0. Therefore it suffices to show

that Q√δt(ϕ
k,m+1) ≤ 0. This term is given by

Q√δt(ϕ
k,(m,n)) =

1√
δt

∑
(i,j)∈IN

∫
D

ϕ
k,(m,n)
i (x)

(
(Ki,j)√δt∗ϕ

k,(m,n)
j

)
(x) dx. (62)

This formula actually simplifies dramatically as ϕ
k,(m,n)
i ≡ 0 unless i = m or

i = n. Furthermore ϕ
k,(m,n)
m is nonnegative pointwise and ϕ

k,(m,n)
n = −ϕk,(m,n)

m .
Thus nearly every term of Q√δt(ϕ

k,(m,n)) is zero and we get

Q√δt(ϕ
k,(m,n)) = −2

∫
D

ϕk,(m,n)
m (x)((Km,n)δt ∗ ϕk,(m,n)

m )(x) dx.

Recalling equation (29) and the subsequent argument in Proposition 4.1 energy
dissipation is proven.

Now we turn to the second statement. Let Σ0 = Σ. Let Σ1 be the config-
uration obtained from a single iteration of Algorithm 4 and let Σ0,(m,n) be the
configurations obtained from the substeps of Algorithm 5. As before set

ϕ(x) = 1Σ1(x)− 1Σ0(x)

and
ϕ0,(m,n)(x) = 1Σ0,(m,n)(x)− 1Σ0,p(m,n)(x).

Using the above inequality for the quadratic term and following the proof of
the second statement of Proposition 4.1, we only need to show that for some

(m,n) ∈ IN the function ϕ
0,(m,n)
m (x) has support of positive measure.

Suppose that for every (m,n) ∈ IN the function ϕ
0,(m,n)
m has support of zero

measure. In this case it follows that no set has grown or shrank by more than a
set of measure zero. Thus for any function f ∈ L1(D) and any label 1 ≤ i ≤ N
we have ∫

Σ0
i

f(x) dx =

∫
Σ

0,(1,2)
i

f(x) dx = · · · =
∫

Σ
0,(N−1,N)
i

f(x) dx

As a result we may compute every convolution in the substeps of Algorithm

5 against Σ0 without changing the result. This allows us to write ϕ
0,(m,n)
m in

terms of ϕ:
ϕ0,(m,n)
m = max(ϕm(x), 0)|min(ϕn(x), 0)|.

If we then sum over n 6= m we get∑
n 6=m

ϕ0,(m,n)
m = max(ϕm(x), 0).

The support of ϕ may be decomposed as

supp(ϕ) =
⋃

1≤m≤N

supp
(

max(ϕm(x), 0)
)
.

Thus ϕ has support of measure zero a contradiction.
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Below we describe a variant of Algorithm 5 that requires fewer convolutions
but imposes a more restrictive condition on the kernels.

Algorithm 6: Given an initial partition of D into N sets
Σ0 = {Σ0

i }Ni=1 and a time step δt the (k + 1)th iteration Σk+1

is obtained from Σk by computing the following N substeps
Σk,0, . . . ,Σk,N where Σk,0 = Σk and Σk,N = Σk+1. For each
0 ≤ m ≤ ` − 1 the partitions Σk,m+1 are obtained from Σk,m

as follows:

1. For each (i, j) ∈ IN form the convolutions:

ψk,m+1
i,j (x) = (Ki,j)√δt ∗ 1Σk,mj

(63)

2. For each i form the sums:

Ψk,m+1
i (x) =

∑
j 6=i

ψk,m+1
(i,j) (x) (64)

3. Threshold the (m+ 1)th function:

Gk,m+1 = {x ∈ D : min
i

Ψk,m+1
i (x) = Ψk,m+1

m+1 (x)} (65)

4. Grow the (m+ 1)th set:

Σk,m+1
m+1 = Σk,mm+1 ∪Gk,m+1 (66)

5. Update the other sets:

Σk,m+1
i = Σk,mi \Gk,m+1 ∀i 6= m+ 1 (67)

Proposition 4.6. Suppose that each kernel Ki,j may be split into a sum Ki,j =

K1
i,j +K2

i,j such that K1
i,j ≥ 0 almost everywhere, K̂2

i,j ≥ 0 and for almost every

x ∈ Rd and i, j, k distinct we have the pointwise triangle inequality

Ki,k(x) ≤ Ki,j(x) +Kj,k(x) (68)

then Algorithm 6 dissipates the energy (49) at each step. Furthermore if for
every (i, j) ∈ IN either K1

i,j is positive in a neighborhood of the origin or K̂2
i,j(0)

is positive then if an iteration of Algorithm 4 changes a configuration Σ by a
set of positive measure, an iteration of Algorithm 6 also changes Σ by a set of
positive measure and strictly decreases the energy.

Proof. We proceed by showing that the energy is dissipated moving from substep
Σk,m to Σk,m+1. Let ϕk,m+1(x) = 1Σk,m+1(x)− 1Σk,m(x).
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As in the argument of Proposition 4.5 the change in energy

E√δt(Σ
k,m+1,K√δt)− E√δt(Σ

k,m,K√δt)

will be nonnegative as long as the quadratic term in the difference Q√δt(ϕ
k,m)

is nonnegative. Equations (66) and (67) show that ϕk,m+1
m+1 (x) is pointwise

nonnegative and ϕk,m+1
i (x) is pointwise nonpositive for i 6= m + 1. In fact

ϕk,m+1
m+1 (x) = −

∑
i 6=m+1 ϕ

k,m+1
i (x). Plugging this into the formula for Q from

equation (62) and defining

IN (m+ 1) = {(i, j) ∈ IN : i, j 6= m+ 1}

we get

−
∑

i 6=m+1

∑
j 6=m+1

∫
D

|ϕk,m+1
i (x)|

((
(Ki,m+1)√δt+(Kj,m+1)√δt

)
∗|ϕk,m+1

j |

)
(x) dx+

∑
(i,j)∈IN (m+1)

∫
D

|ϕk,m+1
i (x)|

(
(Ki,j)√δt ∗ |ϕ

k,m+1
j |

)
(x) dx.

Applying (68) the above is

≤ −2
∑

i6=m+1

∫
D

|ϕk,m+1
i (x)|

(
(Ki,m+1)√δt ∗ |ϕ

k,m+1
i |

)
(x) dx

The remainder of the argument proceeds exactly as in the proof of Proposi-
tion 4.5

4.4 Extension to General Graphs

The MBO Algorithm extends naturally to partitioning problems formulated on
graphs, see e.g. [13]. In this section, we briefly discuss extending to the setting
of graphs the new variants of threshold dynamics (and their associated stability
statements) presented in previous sections.

We define an undirected graph G = (V, E) as a collection of vertices V =
{1, 2, . . . , n} and an edge set consisting of unordered pairs of vertices E ⊂ V ×
V. An undirected weighted graph G = (V, E ,W ) has the extra structure of a
symmetric weight matrix W : V ×V → R. W describes the connection strength
between two vertices in V. Note that even if some pair (v1, v2) /∈ E it is still
possible that W (v1, v2) 6= 0. Indeed in many applications it is useful to assign
a nonzero weight to a pair of vertices that share a neighbor but not necessarily
an edge, or more generally to a pair that are separated by a sufficiently short
path.
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Figure 3: Behavior of the standard algorithm under the action of the weights W1 on a
graph. The algorithm gets trapped in a periodic loop between the two configurations above.
The configuration on the right has a higher energy.

Now we are ready to discuss the extension of MBO to graphs. For a given
undirected weighted graph G = (V, E ,W ) we define the binary MBO energy of
a partition Σ ∪ Σc = V as

E(Σ, G,W ) =
1

|V|2
∑
v1∈Σ

∑
v2∈Σc

W (v1, v2). (69)

Algorithms 1 and 3 are easily adapted to the graph case by replacing the
convolutions with the discrete sums

ψ(v1) =
∑
v2∈Σ

W (v1, v2). (70)

Recall that by Proposition 3.1 and Example 1, the continuous version of
Algorithm 1 decreases the energy (14) at every step if the convolution kernel K
has positive Fourier transform. Unsurprisingly an analogous result holds for the
graph version of the algorithm as well. Algorithm 1 decreases the energy (69) at
every step if W is a positive semidefinite matrix. As in the continuous version,
it is easy to describe an example where the failure of this condition leads to the
algorithm increasing the energy.

Example 3:

Let A be the adjacency matrix of the graph in Figure 3, I the identity matrix
and take W1 = A+λI for any λ < 2. Applying Algorithm 1 to the graph causes
it to get trapped in a periodic loop between the two configurations above. The
left hand side has 8 edges between vertices in different classes while the right
hand side has 9 edges between vertices in different classes. Thus the algorithm
increases the energy every time it moves from left to right.

The failure of Algorithm 1 to dissipate energy for weights as simple as a
multiple of the identity plus the adjacency matrix of the graph is a serious
detriment. Indeed for many graphs working with a PSD weight matrix may be
either computationally time consuming or unnatural for the application. On
the other hand a simple modification of Proposition 4.1 shows that Algorithm
3 will decrease the energy for a wide choice of weights.
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Proposition 4.7. Suppose that the weight matrix W may be decomposed into a
sum W = W 1 +W 2 where W 1 ≥ 0 entrywise and W 2 is PSD. Then the graph
analogue of Algorithm 3 decreases the energy (69) at every step. Furthermore if
either W 1(v, v) > 0 for each v ∈ V or W 2 is PD then if an iteration of Algorithm
1 changes the class of one or more vertices then an iteration of Algorithm 3 also
changes the class of one or more vertices and strictly decreases the energy.

We may also define a multiclass MBO energy for graphs. Given an N class
partition Σ = (Σ1, . . . ,ΣN ) of V and for each (i, j) ∈ IN a symmetric weight
matrix Wi,j with Wi,j = Wj,i the multiclass MBO energy is defined as

E(Σ, G,W ) =
1

|V|2
∑

(i,j)∈IN

∑
v1∈Σi

∑
v2∈Σj

Wi,j(v1, v2). (71)

As with the binary algorithms the multiclass Algorithms 5 and 6 may be ex-
tended to the graph case by replacing the convolutions with the discrete sums

ψi,j(v1) =
∑
v2∈Σj

Wi,j(v1, v2). (72)

Minor modifications to Propositions 4.5 and 4.6 give the following statements.

Proposition 4.8. Suppose that for each (i, j) ∈ IN the weight matrix Wi,j can
be decomposed into a sum W 1

i,j + W 2
i,j such that W 1

i,j has nonnegative entries

and W 2
i,j is PSD. Then the graph analogue of Algorithm 5 dissipates energy (71)

at every step. Furthermore if for each (i, j) ∈ IN either W 1
i,j(v, v) > 0 for every

v ∈ V or W 2
i,j is PD then if an iteration of Algorithm 4 changes the class of

one or more vertices then an iteration of Algorithm 5 changes the class of one
or more vertices and strictly decreases the energy.

Proposition 4.9. Suppose that for each (i, j) ∈ IN the weight matrix Wi,j can
be decomposed into a sum W 1

i,j + W 2
i,j such that W 1

i,j has nonnegative entries

and W 2
i,j is PSD and for all v1, v2 ∈ V and i, j, k distinct we have the triangle

inequality
Wi,j(v1, v2) ≤Wi,k(v1, v2) +Wj,k(v1, v2).

Then the graph analogue of Algorithm 6 dissipates energy (71) at every step.
Furthermore if for each (i, j) ∈ IN either W 1

i,j(v, v) > 0 for every v ∈ V or

W 2
i,j is PD then if an iteration of Algorithm 4 changes the class of one or

more vertices then an iteration of Algorithm 6 changes the class of one or more
vertices and strictly decreases the energy.

5 Convergence of non-local energies

In [10], Gamma convergence of the Lyapunov functional (17) to the interfacial
energy (16) is established for radially monotonic and symmetric, nonnegative
kernels. However, Algorithms 3, 5, and 6 guarantee energy dissipation for a
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much larger class of kernels. Thus it is desirable to have a more general Gamma
convergence result.

In this section, we establish the Gamma limit of (17) for a much wider class
of kernels, including sign changing kernels. The key property that we require of
the kernel is a strong positive core near the origin; otherwise, the kernel is free
to oscillate above and below zero at the outskirts. The positive core ensures
that any negative mass further out will be sufficiently counterbalanced. To that
end, let

BVK =
{

u ∈ K s.t. ui(x) ∈ BV (D) for i ∈ {1, 2, . . . , N}
}

and for any u ∈ K define the energy

E(u, σ) =


∑

(i,j)∈IN

∫
D

σi,j(∇ui) + σi,j(∇uj)− σi,j
(
∇(ui + uj)

)
if u ∈ BVK,

+∞ otherwise.

(73)

Theorem 5.1. Let the kernel K satisfy (12). In addition, assume that there
exist positive constants a, α, β such that the following conditions hold:

1. α( 2
a )d+2 ≤ β,

2. K(z) ≥ β for |z| ≤ a,

3. |min(K(z), 0)| ≤ α|z|−(d+2) for all z.

Given constant surface tensions σi,j > 0 satisfying the triangle inequality
(9), define

σi,j(n) = σi,j

∫
Rd
K(z)|z · n| dz

Then as ε → 0 the Lyapunov functionals Eε(·,Kε) given in (51) Gamma con-
verge in the L1 topology over K to the energy E(·, σ) given in (73). Furthermore
if for some sequence uε we have supε>0Eε(uε,Kε) <∞ then uε is pre-compact
in L1(D) and the set of accumulation points is contained in BVK(D).

The proof of Theorem 5.1 will be built over the following lemmas and propo-
sitions. First we will prove the theorem for nonnegative kernels that satisfy (12)
and are positive in a neighborhood of the origin.

Lemma 5.2. Suppose that K is a nonnegative kernel that satisfies (12) and
is positive in a neighborhood of the origin. If for some sequence uε we have
supε>0Eε(uε,Kε) < ∞ then uε is pre-compact in L1(D) and the set of accu-
mulation points is contained in BVK(D).

Proof. K is strictly positive in a neighborhood of the origin thus there exists
some s, t ∈ (0, 1) such that K(z) ≥ s for all |z| ≤ t. Let J(z) = cs(1 − |z/t|)
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for |z| < t and 0 otherwise, where c is chosen so that J has unit mass. Then
1
cJ(z) ≤ K(z) for all z ∈ Rd. Therefore

sup
ε>0

Eε(uε,
1

c
Jε) ≤ sup

ε>0
Eε(uε,Kε).

Since the energy is linear in the kernel it follows that supε>0Eε(uε, Jε)
is bounded. In addition |∇J(z)| = cs

t for |z| < t and 0 for |z| > t. Thus
|∇J(z)| ≤ 2

t J(z/2) for all z. Now J fits into the framework of Lemma 5 in [10],
which gives the desired result.

Next we show that the functional (18) converges pointwise to E(u, σ). This
ensures that lim sup inequality needed for the Gamma convergence argument
will be satisfied. If u /∈ BVK(D) then the pointwise convergence follows im-
mediately from Lemma 5.2. Indeed we must have limε→0Eε(u,Kε) = ∞ for
otherwise the constant sequence u would have an accumulation point in BVK(D)
implying u ∈ BVK(D).

For u ∈ BVK(D) we recall Lemma 4 from [10] which gives pointwise con-
vergence under very mild conditions on the kernel. Although the argument in
[10] is given for radially symmetric kernels, the modification to general kernels
is straight forward.

Lemma 5.3. (from [10]) Let K be a kernel satisfying (12) and u ∈ BVK then
limε→0Eε(u,Kε) = E(u, σ).

To complete the Gamma convergence argument for nonnegative kernels we
only have left to prove the lim inf inequality. A key tool that we will need is
the following Lemma from [10] that says that integer scalings of the parameter
ε are guaranteed to decrease the energy.

Lemma 5.4. (from [10]) If the kernel K is nonnegative and the σi,j satisfy the
triangle inequality then for every N ∈ Z+ we have ENε(u,KNε) ≤ Eε(u,Kε).

Now we are ready to present the lim inf argument.

Proposition 5.5. If K satisfies (12) and in addition K is nonnegative then for
any sequence uε converging to u in L1 the inequality lim infε→0Eε(uε,Kε) ≥
E(u, σ) holds.

Proof. K is pointwise nonnegative therefore if we fix some L > 0 and let

KL(z) = K(z)1B(0,L)(z)

then we decrease the energy by replacing Eε(uε,Kε) with Eε(uε,K
L
ε ). Now fix

δ > 0 and for each ε let δε = nεε where nε ∈ Z+ is chosen such that |δ − δε|
is minimized. It follows immediately that |δ − δε| ≤ ε/2. Since δε is obtained
from ε by an integer scaling we may use Lemma 5.4 to get the inequality

Eε(uε,K
L
ε ) ≥ Eδε(uε,KL

δε).
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Now we wish to replace δε with δ. Thus we must estimate the resulting error

Rε,δ = |Eδε(uε,KL
δε)− Eδ(uε,K

L
δ )|.

We have:

Rε,δ ≤
∑

(i,j)∈IN

σi,j

∫
D

∫
B(0,L)

uε,i(x)uε,j(x+ z)

∣∣∣∣δ−(d+1)
ε K

(
z

δε

)
− δ−(d+1)K

(z
δ

)∣∣∣∣ dz dx
≤ max

(i,j)∈IN
N2σi,j

∫
D

∫
B(0,L/δ)

δ−1

∣∣∣∣∣
(
δ

δε

)(d+1)

K

(
δ

δε
z

)
−K(z)

∣∣∣∣∣ dz dx.
Since smooth functions are dense in L1(Rd) we may approximate the above
integral to arbitrary precision by replacing K with a smooth function f . The
spaces D and B(0, L/δ) have finite measure thus uniform continuity shows that

lim
ε→0

∫
D

∫
B(0,L/δ)

δ−1

∣∣∣∣∣
(
δ

δε

)(d+1)

f

(
δ

δε
z

)
− f(z)

∣∣∣∣∣ dz dx = 0.

It then follows that
lim
ε→0

Rε,δ = 0.

Combining the above with the L1 convergence of uε to u we obtain:

lim inf
ε→0

Eε(uε,K
L
ε ) ≥ lim inf

ε→0
Eδ(uε,K

L
δ ) = Eδ(u,K

L
δ )

Now if we allow δ to go to zero the question of the liminf inequality has been
reduced to the question of pointwise convergence of the functional. However
this is already covered above thus

lim
δ→0

Eδ(u,K
L
δ ) = E(u, σL)

where

σLi,j(n) = σi,j

∫
Rd
KL(z)|z · n| dz.

By monotone convergence limL→∞E(u, σL) = E(u, σ).

This completes the proof of Theorem 5.1 for nonnegative kernels that are
positive in a neighborhood of the origin. To extend the result to kernels that
change sign we show that it is possible to rearrange the mass of the kernel so
that it becomes nonnegative, while also decreasing the energy functional (18).
It is essential that this process does not change the limiting energy E(u, σ) and
that the rearranged kernel still is positive in a neighborhood of the origin and
satisfies (12). The following lemma shows that these goals can be accomplished
simultaneously.
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Lemma 5.6. Suppose that K satisfies the conditions in Theorem 5.1. Then
there exists a nonnegative kernel K̃ such that K̃ is positive in a neighborhood of
the origin, K̃ satisfies (12), the inequality Eε(u,Kε) ≥ Eε(u, K̃ε) holds and for
every n ∈ Sd−1 ∫

Rd
|z · n|K(z)dz =

∫
Rd
|z · n|K̃(z) dz.

Proof. Split K into K+ = max(K, 0) and K− = min(K, 0). Recall the constants
a, α, β from Theorem 5.1. For j ∈ Z+ let

Aj = {z ∈ Rd : |z| ∈ (a2j−1, a2j)}

Define

K̃(z) = K+(z) +

∞∑
j=1

2j(d+1)K−(2jz)1Aj (2
jz).

From this construction we see that K̃ is possibly negative only for z satisfying
|z| ∈ (a/2, a). Recall that |K−(z)| ≤ α|z|−(d+2) and K(z) ≥ β for |z| < a.
Choose some z0 such that |z0| ∈ (a/2, a) then using these inequalities we see

K̃(z0) = K+(z0)+

∞∑
j=1

2j(d+1)K−(2jz0)1Aj (2
jz0) ≥ β−α(

2

a
)d+2

∞∑
j=1

2−j = β−α(
2

a
)d+2 ≥ 0.

It is clear that K̃ satisfies the symmetry condition K̃(z) = K̃(−z) since K+

and K− satisfy this condition and the Aj are radially symmetric sets. Near the

origin K̃ = K+ so there must be a neighborhood where K̃ is strictly positive.
Next we recall that Eε(u,Kε) is linear in the kernel. Therefore using the

linearity and Fubini’s theorem we may write

Eε
(
u, K̃ε(z)

)
= Eε

(
u,K+

ε (z)
)

+

∞∑
j=1

2j(d+1)Eε
(
u, (K−1Aj )ε(2

jz)
)
.

All of the terms in the infinite sum are negative, thus if we decrease their
magnitude the overall energy will increase. By Lemma 5.4 we know that

|Eε
(
u, (K−1Aj )ε(2

jz)
)
| ≥ |Eε2j

(
u, (K−1Aj )ε2j (2

jz)
)
|.

Writing out the formula for the energy functional

Eε2j
(
u, (K−1Aj )ε2j (2

jz)
)

=
∑

(i,j)∈IN

σi,j
1

ε2j

∫
D

ui(x)

∫
Rd

1

(ε2j)d
K(

z

ε
)1Aj (z/ε)uj(x+ z) dz dx

=
1

2j(d+1)
Eε
(
u, (K−1Aj )ε(z)

)
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Therefore,

Eε
(
u,K+

ε (z)
)

+

∞∑
j=1

2j(d+1)Eε
(
u, (K−1Aj )ε(2

jz)
)

≤ Eε
(
u,K+

ε (z)
)

+

∞∑
j=1

Eε
(
u, (K−1Aj )ε(z)

)
.

Now note that K+
ε (z) +

∑∞
j=1(K−1Aj )ε(z) = Kε(z) almost everywhere. There-

fore

Eε
(
u,K+

ε (z)
)

+

∞∑
j=1

Eε
(
u, (K−1Aj )ε(z)

)
= Eε(u,Kε)

and thus we have the desired result

Eε(u,Kε) ≥ Eε(u, K̃ε).

It remains to show
∫
Rd |z · n|K(z)dz =

∫
Rd |z · n|K̃(z) dz. This reduces to

showing that∫
Rd
|z · n|K−(z) dz =

∞∑
j=1

2j(d+1)

∫
Rd
|z · n|K−(z2j)1Aj (z2

j) dz.

Changing variables z′ = z2j for each integral on the right hand side and then
summing the results gives the equality. The equality implies that zK̃ ∈ L1(Rd)
and since K̃ = K+ near the origin it also follows that K̃ ∈ L1(Rd).

This completes the proof of Theorem 5.1.
Note that the kernel inequalities given in Theorem 5.1 were only used to

show that a certain rearrangement of the negative mass of the kernel K could
produce a nonnegative kernel K̃. Indeed the actual necessary conditions on K
needed to find a properly rearranged nonnegative K̃ are much weaker than the
given inequalities. However, a necessary and sufficient condition is extremely
difficult to describe in terms of the physical properties of the kernel. Thus in
the next lemma we instead describe all rearrangements that will decrease (18)
and preserve E(u, σ) along with (12) and positivity in a neighborhood of the
origin. As a result if for some kernel K one of the following rearrangements
produces a nonnegative K̃ then Eε(u,Kε) Gamma converges to E(u, σ).

Lemma 5.7. Given a kernel K that satisfies (12) and has a neighborhood of
the origin U such that U = −U and K(U) ⊂ (0,∞), let {Ω+

m} and {Ω−j } be

measurable decomposition of supp(K+) \ U and supp(K−) respectively and let
{ψ+

m} and {ψ−j } be sequences of nonnegative functions supported on supp(K+)

and supp(K−) respectively such that

Ω+
m = −Ω+

m and Ω−j = −Ω−j for all m, j
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1

j
· Ω−j ∩ U = ∅ for all j

∞∑
n=1

ψ+
m(z) = 1 for all z ∈ supp(K+) \ U

∞∑
m=1

ψ−j (z) = 1 for all z ∈ supp(K−).

ψ+
m(z) = ψ+

m(−z) and ψ−j (z) = ψ−j (−z) for all m, j, z

Define

K̃(z) = K+(z)1U (z) +

∞∑
m=1

1

md+1
K+(z/m)1Ω+

m
(z/m)ψ+

m(z/m)

+

∞∑
j=1

jd+1K−(jz)1Ω−j
(jz)ψ−j (jz).

Then K̃ satisfies (12), K̃ is positive in a neighborhood of the origin, the energies
satisfy the inequality Eε(u,Kε) ≥ Eε(u, K̃ε) and for every n ∈ Sd−1∫

Rd
|z · n|K(z)dz =

∫
Rd
|z · n|K̃(z) dz.

Proof. By design K̃ is strictly positive in a neighborhood of the origin and
K̃(z) = K̃(−z). As in the proof of Lemma 5.6 the equality

∫
Rd |z · n|K(z)dz =∫

Rd |z · n|K̃(z) dz will follow by changing variables and recollecting the various

terms in the sums. Therefore we know zK̃(z) ∈ L1(Rd). Since K̃ and K are
equal on U it also follows that K̃ ∈ L1(Rd).

Again we use the fact that the energy is linear in the kernel to write

Eε(u, K̃ε) = E
(
u, (K+1U )ε

)
+

∞∑
m=1

1

md+1
Eε
(
u, (K+1Ω+

m
ψ+
m)ε)(z/m)

)
+

∞∑
j=1

jd+1Eε
(
u, (K−1Ω−j

ψ−j )ε(jz)
)

as well as

Eε(u,K) = E
(
u, (K+1U )ε

)
+

∞∑
m=1

Eε
(
u, (K+1Ω+

m
ψ+
m)ε(z)

)
+

∞∑
j=1

Eε
(
u, (K−1Ω−j

ψ−j )ε(z)
)
.
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Thus we only need to show

1

md+1
Eε
(
u, (K+1Ω+

m
ψ+
m)ε)(z/m)

)
≤ Eε

(
u, (K+1Ω+

m
ψ+
m)ε(z)

)
and

jd+1Eε
(
u, (K−1Ω−j

ψ−j )ε(jz)
)
≤ Eε

(
u(K−1Ω−j

ψ−j )ε(z)
)
.

The second inequality follows from an argument identical to the one in
Lemma 5.6. For the first inequality we can use Lemma 5.4 in the opposite
direction to get

1

md+1
Eε
(
u, (K+1Ω+

m
ψ+
m)ε)(z/m)

)
≤ 1

md+1
Eε/m

(
u, (K+1Ω+

m
ψ+
m)ε/m)(z/m)

)
.

Simplifying the right hand side of the above equation we see that it is indeed
Eε
(
u, (K+1Ω+

m
ψ+
m)ε(z)

)
. Thus the argument is complete.

The discussion preceding Lemma 5.7 proves the following more general ver-
sion of Theorem 5.1

Theorem 5.8. Let K(z) be a kernel such that K is positive in a neighborhood
of the origin, K satisfies (12) and for some rearrangement described in Lemma
5.7 the resulting K̃ is nonnegative. Given constant surface tensions σi,j > 0
satisfying the triangle inequality (9), define

σi,j(n) = σi,j

∫
Rd
K(z)|z · n| dz

Then as ε → 0 the Lyapunov functionals Eε(·,Kε) given in (51) Gamma con-
verge in the L1 topology over K to the energy E(·, σ) given in (73). Furthermore
if for some sequence uε we have supε>0Eε(uε,Kε) <∞ then uε is pre-compact
in L1(D) and the set of accumulation points is contained in BVK(D).

In practice it is difficult to check whether a given kernel K has a nonneg-
ative rearrangement K̃. However the following proposition gives a very simple
necessary condition.

Proposition 5.9. Suppose that some rearrangement of K produces a nonnega-
tive K̃. Then for every s ∈ (−∞, 1] and every X ⊂ Rd that is star shaped with
respect to the origin the integral

∫
X
|x|sK(x) dx is nonnegative.

Proof. For t ∈ R+ let t ·X = {x ∈ Rd : x/t ∈ X}. Then since X is star shaped
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with respect to the origin t ·X ⊂ X for t < 1 and X ⊂ t ·X for t > 1.∫
X

|x|sK(x) dx =

∞∑
j=1

∫
X

|x|sK(x)1Ω+
j

(x)ψ+
j (x) dx

−
∞∑
m=1

∫
X

|x|s|K(x)|1Ω−m
(x)ψ−m(x) dx

=

∞∑
j=1

1

js+d

∫
j·X
|x|sK(x/j)1Ω+

j
(x/j)ψ+

j (x/j) dx

−
∞∑
m=1

ms+d

∫
1
m ·X
|x|s|K(mx)|1Ω−m

(mx)ψ−m(mx) dx

≥
∫
X

|x|sK̃(x) dx ≥ 0

6 Conclusions

Recent developments in our understanding of threshold dynamics entail various
assumptions on the convolution kernel used. However, much of the theory can
be extended to a greater variety of kernels; the analysis presented in this paper
provides several examples. The added flexibility in the choice of the kernel is
significant in applications ranging from machine learning to materials science.
Moreover, restrictions can often be sidestepped by alternate forms of the basic
algorithm that maintain its most beneficial qualities. Several such variants were
introduced and rigorously studied in this paper.
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[10] S. Esedoḡlu and F. Otto. Threshold dynamics for networks with arbi-
trary surface tensions. Communications on Pure and Applied Mathematics,
68(5):808–864, 2015.

[11] L. C. Evans. Convergence of an algorithm for mean curvature motion.
Indiana University Mathematics Journal, 42:553–557, 1993.

[12] L. C. Evans and J. Spruck. Motion of level sets by mean curvature. I.
Journal of Differential Geometry, 33:635–681, 1991.

[13] C. Garcia-Cardona, E. Merkurjev, A. L. Bertozzi, A. Flenner, and A. G.
Percus. Multiclass data segmentation using diffuse interface methods on
graphs. IEEE Transactions on Pattern Analysis and Machine Intelligence,
36(8):1600–1613, 2014.

[14] Paul Goodey and Wolfgang Weil. Centrally symmetric convex bodies and
the spherical Radon transform. Journal of Differential Geometry, 35:675–
688, 1992.

[15] C. Herring. The Physics of Powder Metallurgy, chapter Surface tension as
a motivation for sintering, pages 143–179. McGraw Hill, 1951.

[16] H. Ishii, G. E. Pires, and P. E. Souganidis. Threshold dynamics type
approximation schemes for propagating fronts. Journal of the Mathematical
Society of Japan, 51:267–308, 1999.

31



[17] T. Laux and F. Otto. Convergence of the thresholding scheme for multi-
phase mean-curvature flow. Technical Report 33/2015, Max Planck Insti-
tute for Mathematics in the Sciences, 2015.

[18] S. Luckhaus and T. Sturzenhecker. Implicit time discretization for the mean
curvature flow equation. Calculus of Variations and Partial Differential
Equations, 3(2):253–271, 1995.

[19] P. Mascarenhas. Diffusion generated motion by mean cur-
vature. CAM Report 92-33, UCLA, July 1992. (URL =
http://www.math.ucla.edu/applied/cam/index.html).

[20] B. Merriman, J. K. Bence, and S. Osher. Motion of multiple junctions:
a level set approach. Journal of Computational Physics, 112(2):334–363,
1994.

[21] B. Merriman, J. K. Bence, and S. J. Osher. Diffusion generated motion
by mean curvature. In J. Taylor, editor, Proceedings of the Computational
Crystal Growers Workshop, pages 73–83. AMS, 1992.

[22] M. Miranda, D. Pallara, F. Paronetto, and M. Preunkert. Short-time heat
flow and functions of bounded variation in RN . Ann. Fac. Sci. Toulouse,
Mathematiques, 16(1):125–145, 2007.

[23] W. W. Mullins. Two dimensional motion of idealized grain boundaries. J.
Appl. Phys., 27:900–904, 1956.

[24] D. Mumford and J. Shah. Optimal approximations by piecewise smooth
functions and associated variational problems. Communications on Pure
and Applied Mathematics, 42:577–685, 1989.

[25] S. J. Ruuth. A diffusion generated approach to multiphase motion. Journal
of Computational Physics, 145:166–192, 1998.

[26] S. J. Ruuth. Efficient algorithms for diffusion-generated motion by mean
curvature. Journal of Computational Physics, 144:603–625, 1998.

32


