
Diffusion Generated Motion using Signed

Distance Functions

Selim Esedoḡlu ∗ Steven Ruuth † Richard Tsai ‡

September 9, 2009

Abstract

We describe a new class of algorithms for generating a variety of geometric inter-
facial motions by alternating two steps: Construction of the signed distance function
(i.e. redistancing) to the interface, and convolution with a suitable kernel. These
algorithms can be seen as variants of Merriman, Bence, and Osher’s threshold dynam-
ics [25]. The new algorithms proposed here preserve the computational efficiency of
the original threshold dynamics algorithm. However, unlike threshold dynamics, the
new algorithms also allow attaining high accuracy on uniform grids, without adaptive
refinement.

1 Introduction

In [25], Merriman, Bence, and Osher (MBO) proposed an intriguing algorithm for approx-
imating the motion by mean curvature of an interface by alternating two computationally
efficient steps: Convolution, and simple thresholding. To be precise, let Σ ⊂ R

N be a do-
main whose boundary ∂Σ is to be evolved via motion by mean curvature. Given a time
step size δt > 0, the MBO algorithm generates a time discrete approximation {∂Σn} to
motion by mean curvature (where ∂Σn is the approximation at time t = nδt) according to
the following prescription for obtaining Σn+1 from Σn:

1. Convolution step: Form u : R
N → R as

u(x) = (Gt ∗ 1Σn
)(x) (1)

where Gt(x) is the N -dimensional Gaussian kernel

Gt(x) =
1

(4πt)N/2
e−

|x|2

4t . (2)

∗Department of Mathematics, University of Michigan. Ann Arbor, MI 48109, USA. email:

esedoglu@umich.edu.
†Department of Mathematics, Simon Fraser University. Burnaby, B.C. V5A 1S6, Canada. email:

sruuth@math.sfu.ca.
‡Department of Mathematics, University of Texas. Austin, TX 78712, USA. email:

ytsai@math.utexas.edu.

1

esedoglu
Typewritten Text
Corrected version of the 3/20/2009 paper (UCLA CAM Report 09-29).

2. Thresholding step: Return to the realm of sets:

Σn+1 =

{

x : u(x) ≥ 1

2

}

. (3)

This algorithm has been rigorously verified to converge to motion by mean curvature in the
limit δt → 0+; see e.g. [17], [4]. One of its major advantages is unconditional stability:
The choice of time step size δt is constrained only by accuracy considerations; the scheme
remains stable (in fact, monotone) for all choices, independently of spatial resolution. In
addition, for any choice of δt, the computational complexity of each time step is low: The
bottleneck is the convolution step, which can be accomplished using e.g. the fast Fourier
transform (FFT) at O(n log n) cost when a uniform grid of n points is used for spatial
discretization. This is a major benefit over standard level set based approaches [27] which
invariably involve the solution of a degenerate, very nonlinear PDE; however, see e.g. [36]
for some semi-implicit level set schemes. The thresholding based algorithm of MBO has
been generalized in subsequent papers (e.g. [24, 30, 32]) to other geometric motions, and
more recently to some fourth order flows [20, 14, 15].

Although the MBO algorithm is thus very attractive from a computational complexity
point of view, it has well known drawbacks. Chief among them is its inaccuracy on uniform
grids. Indeed, unless grid size is refined concurrently with the time step size, the approximate
motion generated by the algorithm gets “stuck” [25]. Less severely, even at moderately
large time step sizes, there can be very large errors in the computed dynamics. Hence, in
practice, it is necessary to discretize the MBO scheme using a method which can provide
subgrid resolution of the interface position. This is accomplished in [31] while maintaining
the efficiency of the algorithm through the use of unequally spaced FFTs. Unequally spaced
FFTs also enable the use of adaptive grids to concentrate the computational effort near the
interface. Such a spatially adaptive strategy proves especially indispensable in simulating
high order motions.

This paper explores a different class of diffusion generated motion algorithms, where the
thresholding step is replaced by another fast procedure: Construction of the signed distance
function to the interface. The motivation is very easy to explain: Unlike characteristic func-
tions, signed distance functions can be accurately represented on uniform grids at subgrid
accuracies due to their Lipschitz continuity. This alleviates the inaccuracies involved in
the original (finite difference) MBO algorithm. The second step of MBO type algorithms,
namely the convolution step, remains the same in character (though details might need to be
different; see Section 5). Since there are a variety of existing algorithms for fast computation
of signed distance functions (e.g. fast marching, fast sweeping, etc. [40, 35, 39, 29, 11]), the
modification to the original MBO algorithm proposed here does not sacrifice efficiency (up
to a constant factor, of course) for the resulting improved accuracy. Moreover, they lead to
highly accurate computations on uniform grids – in our opinion, one of the greatest benefits
of the proposed method.

2 Main idea and outline of results

In this section we discuss the main ideas of the paper, provide general motivation for the
proposed algorithms, and give an outline of the results presented.

2

The inaccuracy of the original MBO threshold dynamics algorithm on uniform grids
stems from representing characteristic functions of sets (i.e. binary functions) on such grids.
Indeed, the thresholding step of the algorithm necessitates this at every time step. However,
using a binary function on a uniform grid, the boundary of the set cannot be located with
better accuracy than δx, the grid size. In particular, there is no way to interpolate and thus
locate the interface with subgrid accuracy: The interface is essentially forced to follow grid
lines.

Our observation is quite simple: In order to derive MBO type algorithms, the essential
point is to

Represent the interface by a level set function ψ(x) whose 1D pro-
file φ : R → R along every normal to the interface is identical, and
satisfies

φ′(0) 6= 0 and φ′′(0) = 0. (4)

In particular, this 1D profile need not be the Heaviside function as it is in the original
algorithm, the discontinuous nature of which is the cause of poor accuracy on uniform
grids. For example, the 1D profile φ can be chosen to be any other smooth, odd, monotone
function of one variable that takes the value 0 at 0. Indeed, in case the level set function
ψ(x) representing the interface has identical profiles along every normal, it can then be
written as

ψ(x) = φ
(

d(x)
)

in a neighborhood of the interface, where d is the signed distance function to the interface.
Then, for any such representation we have

∆ψ(x) = φ′
(

d(x)
)

∆d(x) + φ′′
(

d
)

|∇d|2 = φ′(0)κ(x)

when evaluated at a point x on the interface (so that d(x) = 0), under the assumption (4)
on φ; here κ denotes mean curvature.

Indeed, as long as the level set function that represents the interface has the same
profile along every normal to the interface, it is easy to see that alternating the construction
of such a representation for the interface and convolution with positive, symmetric, unit
mass kernels would always generate motion by mean curvature as the leading order motion,
just as the original MBO scheme. In addition, a smooth profile with a uniform bound on
its derivative would allow interpolation to locate the interface with accuracy considerably
greater than δx. See Figure 1 for an illustration of this basic point. The simplest smooth,

Figure 1: The discontinuous, Heaviside function based profile of the characteristic function used to rep-
resent interfaces in the original MBO threshold dynamics does not allow to locate the interface at subgrid
accuracy via interpolation (left). A function with a smooth normal profile, such as the signed distance
function, does (right).

3

odd, 1D profile is the identity function φ(ξ) = ξ; this leads us to represent the interface
with the signed distance function, and is the basis of the algorithms derived in the present
paper. In particular, in this paper we ask: What kind of interesting geometric flows can we
generate by alternating convolution and the construction of the signed distance function?

To explore this idea, in Section 4 we obtain Taylor expansions for the distance function
of an interface in the plane in terms of its geometric quantities (such as curvature and
derivatives of curvature). In particular, we concentrate on two situations: Points where the
interface is smooth, and points where two smooth curves meet in a corner with given angle.
The first expansion is relevant for deriving algorithms in two-phase flow, and the second is
used for algorithms for multi-phase motion, such as the motion of triple junctions. Section
5 is devoted to utilizing the expansions in Section 4 to derive algorithms for various types of
motion. Section 5.1 focuses on the rather familiar case of motion by mean curvature, with
the slight modification of an additional spatially varying normal speed. Although we suspect
that the first algorithm we write down for this motion may not be completely unexpected,
it is a good place to start and we do follow it up with more interesting high order in time
variants. Section 5.2 describes a monotone algorithm for generating the motion f(κ) where
f : R → R is an odd, increasing, Lipschitz continuous function, and κ is the curvature
of the interface. Section 5.3 explores an algorithm for motion of triple junctions under
curvature flow with prescribed angle conditions at the junctions, and takes significant steps
towards its justification by estimating the local truncation error at the junctions. Section
5.4 describes a tentative algorithm for motion by surface diffusion – a fourth order flow –
using the signed distance function based approach of this paper. Finally in Section 6 we
present numerical results and convergence studies with the algorithms proposed in Section
5. Although most of our derivations and algorithms are stated in two dimensions, some
of them have immediate and straightforward extensions to higher dimensions; we briefly
indicate these wherever appropriate.

3 Previous work

First and foremost, as already mention in the Introduction, the approach to interfacial
motion advocated in this paper is motivated by Merriman, Bence, and Osher’s threshold
dynamics [25]. The accuracy issue concerning this algorithm when implemented on uniform
grids is well known and constitutes one of the main thrusts behind not only the present
paper, but also that of several previous works. In [31], an adaptive refinement strategy for
the MBO scheme is proposed and efficiently implemented using a spectral method in order to
address the original scheme’s accuracy shortcomings; that method represents an alternative
strategy to the path taken here. Additionally, some of our discussions in Section 5 on
how to generate a variety of interfacial motions using the signed distance function follows
the analogous developments that use characteristic functions in [31, 30]. In particular,
our discussion of high order in time schemes for curvature flow in Section 5.1, as well as
our treatment of multiphase flow of networks (junctions) in Section 5.3 have precursors in
[31, 30]. The signed distance function representation utilized in the present paper is less
explicit a representation of an interface than a characteristic function representation. This
makes the algorithms and especially the analysis in this paper quite different from these
previous works.

4

It is interesting to make the connection, even though it is indirect, between one of the
algorithms presented in this paper, namely the most basic one (64) & (65) of the several
mean curvature motion algorithms from Section 5.1, and a recent algorithm for the same
motion proposed by Chambolle in [8, 9]. In these works, the author proposes an algorithm
for implementing Almgren, Taylor, and Wang’s discrete in time variational approximation
[1] to motion by mean curvature that entails the construction of the distance function to an
interface at every time step; this step of his algorithm is identical to step (65) of the one
presented in Section 5.1 of the present paper. However, the second step of the algorithms
presented in [8, 9] involves the solution of a computationally very non-trivial total variation
based optimization problem as in [28] per time step – this aspect is drastically different from
the algorithms proposed in the present paper.

A distance function based level set-like algorithm for the special case of motion by mean
curvature plus a constant is proposed in [22]. Although their algorithm also constructs the
signed distance function to the interface at every time step and thus may be likened to one
of the proposed algorithms, namely (64) & (65) in this paper, it is actually quite different.
Indeed, the algorithm of [22] utilizes the signed distance function only in evaluating the right
hand side of the explicit in time version of standard level set equation for mean curvature
flow. Therefore, unlike the algorithms proposed in this paper, it lacks unconditional stability.

Finally, convergence to the viscosity solution [17] of the discrete in time solutions gen-
erated by the most basic one (64) & (65) of the several mean curvature motion algorithms
presented in Section 5 has been established in [10].

4 Expansions for the distance function

In this section, we first write down a Taylor expansion of the signed distance function dΣ(x)
in the neighborhood of a point p ∈ ∂Σ on the smooth boundary ∂Σ of a set Σ. For simplicity,
we work mostly in R

2 where we write x = (x, y). This expansion then allows us to obtain a
Taylor expansion for the convolution of dΣ(x, y) with a Gaussian kernel Gt(x, y). Our goal
is to express the expansion coefficients in terms of the geometry (curvature and derivatives
of curvature) of ∂Σ.

4.1 Expansion for a smooth interface

We will eventually work in the plane for convenience; but first, let us recall a few well known
properties of the signed distance function that hold more generally in R

N ; see e.g. [18, 12].
For x ∈ ∂Σ, let n(x) denote the unit outer normal to ∂Σ at x. The first familiar property

we note is based on the fact that the normals to a smooth interface do not focus right away,
so that the signed distance function is smooth in a tubular neighborhood of ∂Σ, and is linear
with slope one along the normals:

Proposition 1 Let ∂Σ be Ck,ℓ (i.e. k-th derivative Holder continuous with exponent ℓ)
where k ≥ 2 and ℓ ≥ 0 in a neighborhood of p ∈ ∂Σ. Then, there exists a neighborhood
T ⊂ R

N of p such that dΣ(x) is Ck,ℓ in T . The closest point projection map P : R
N → ∂Σ

is well-defined on T . Furthermore, dΣ and P satisfy

dΣ(x) = (x − P (x)) · n(P (x)) (5)

5

in T . In addition, d(x) satisfies

|∇dΣ| = 1 for all x ∈ T , with the boundary condition dΣ|x∈∂Σ = 0. (6)

The second important fact we recall is that Laplacian of the signed distance function dΣ

at a point x gives us essentially the mean curvature of the isosurface of d passing through
x:

∆dΣ(x) = (N − 1)H(x) (7)

where H(x) denotes the mean curvature of the level set {ξ : f(ξ) = f(x)} at x.
Specializing to the planar (2D) setting, let γ : (−ε, ε) → R

2 be a unit speed parametriza-
tion of the curve ∂Σ around p ∈ ∂Σ, with γ(0) = p and positive orientation. Let κ(x) denote
the curvature of the curve at x:

γss(0) · n(p) = κ(p). (8)

Note that curvature κ of the boundary of convex sets is negative according to convention
(8).

We may rotate and translate the set Σ so that p = 0 ∈ R
2 and the outer unit normal

n(0) at p = 0 is given by the vector n(0) = (0,−1); see Figure 2 for the setup.

Figure 2: The setup.

Let f(x) be the smooth function whose graph (x, f(x)) describes the interface ∂Σ in a
neighborhood of the origin. Let us write simply κ(x) to denote the curvature κ(x, f(x)) of
∂Σ at (x, f(x)). We then have the following relations implied:

f(0) = 0, f ′(0) = 0, andf ′′(0) = −κ(0). (9)

For the signed distance function dΣ(x, y) to Σ, we drop the Σ in its notation and adopt the
convention that d(x, y) < 0 if y < f(x) (and hence d(x, y) > 0 if y > f(x)). In 2D, equation
(7) reads

dxx(x, f(x)) + dyy(x, f(x)) = κ(x) (10)

on the interface.
The following useful formulas follow immediately from (5) in Proposition 1:

6

Lemma 1 For sufficiently small y, we have

d(0, y) = y (11)

so that

dy(0, y) = 1, (12)

∂k

∂yk
d(0, y) = 0 for k = 2, 3, 4, . . . (13)

and
dx(0, y) = 0. (14)

Proof: That d(0, y) = y follows from (5), and the y partial derivatives follow from this
expression. Then, (14) follows from these and the Eikonal equation (6). �

Lemma 2 The following hold

∂k

∂yk
dx(0, y) = 0 for k = 1, 2, 3, . . . (15)

for all sufficiently small y.

Proof: Set A(x, y) := d2
x(x, y) + d2

y(x, y). Then, by (6) we have

A(x, y) ≡ 1 for all small enough (x, y). (16)

Differentiating (16) w.r.t. x and y, we have

1

2

∂

∂x
A(x, y) = dx(x, y)dxx(x, y) + dy(x, y)dxy(x, y) ≡ 0, and

1

2

∂

∂y
A(x, y) = dx(x, y)dxy(x, y) + dy(x, y)dyy(x, y) ≡ 0.

(17)

Evaluating the first equality in (17) at x = 0 and using (12), (14) we get

dxy(0, y) ≡ 0 for all small enough y. (18)

Further differentiating (18) with respect to y, we get (15). �

Lemma 3 The following hold:

dxx(0, 0) = κ(0), (19a)

dxxy(0, 0) = −κ2(0), (19b)

dxxx(0, 0) = κx(0). (19c)

7

Proof: Equation (19a) follows from evaluating (10) at x = 0 and (12).
To obtain (19b), we first differentiate (17) with respect to x once again:

1

2
Axx(x, y) = d2

xx + dxdxxx + d2
xy + dydxxy ≡ 0. (20)

Evaluating (20) at (x, y) = (0, 0) and using (19a), (14), (12), and (15) we get (19b).
To obtain (19c), we differentiate (10) with respect to x:

dxxx(x, f(x)) + dxxy(x, f(x))f ′(x) + dyyx(x, f(x)) + dyyy(x, f(x))f ′(x) ≡ κx(x). (21)

Evaluating (21) at x = 0 and using (9) and (15), we get (19c). �

Lemma 4 The following hold:

dxxxy(0, 0) = −3κ(0)κx(0), (22a)

dxxyy(0, 0) = 2κ3(0), (22b)

dxxxx(0, 0) = κxx(0) − 3κ3(0). (22c)

Proof: Differentiating (20) with respect to x once again, we obtain

1

2
Axxx(x, y) = 3dxxdxxx + dxdxxxx + 3dxydxxy + dydxxxy ≡ 0. (23)

Evaluating at x = 0 and using (19a), (19c), (14), (15), and (12) we get (22a).
Differentiating (20) this time with respect to y, we get

1

2
Axxy(x, y) = 2dxxdxxy + dxydxxx + dxdxxxy + 2dxydxyy + dyydxxy + dydxxyy ≡ 0. (24)

Evaluating at x = 0 and using (19a), (19b), (15), (14), and (12) yields (22b).
Differentiating (21) once more with respect to x, we find

dxxxx(x, f) + 2dxxxy(x, f)f ′ + dxxyy(x, f)(f ′)2

+ dxxy(x, f)f ′′ + dxxyy(x, f) + 2dxyyy(x, y)f
′

+ dxyyyy(x, f)(f ′)2 + dyyy(x, f)f ′′ = κxx. (25)

Evaluating at x = 0 and using (9), (19b), (22b), and (12) we get (22c). �

Collecting terms from Lemmas 1 through 4, we arrive at the desired Taylor expansion:

Proposition 2 The signed distance function d(x, f(x)) has the following Taylor expansion
at x = 0:

d(x, y) = y

+
1

2
κ(0)x2

+
1

6
κx(0)x3 − 1

2
κ2(0)x2y

+
1

24

(

κxx(0) − 3κ3(0)
)

x4 − 1

2
κ(0)κx(0)x3y +

1

2
κ3(0)x2y2

+O
(

|x|5
)

. �

(26)

8

We can now substitute the expansion (26) into the convolution integral

∫

R2

Gt(ξ, η)d(x − ξ, y − η) dξdη (27)

to get a Taylor expansion for the convolution (Gt ∗ d)(x, y) at (x, y) = (0, 0). The terms we
need are:

(

x2 ∗Gt

)

(0, y) = 2t
(

x2y ∗Gt

)

(0, y) = 2ty (28)
(

x4 ∗Gt

)

(0, y) = 12t2
(

x2y2Gt

)

(0, y) = 2ty2 + 4t2 (29)

Using these, we arrive at the following expansion:

Proposition 3 Convolution of the signed distance function d with the Gaussian kernel Gt

has the following expansion

(

d ∗Gt

)

(0, y) = y + κ(0)t− κ2(0)yt+
1

2

(

κxx(0) + κ3(0)
)

t2 +O(t3) (30)

provided that y = O(t).

Remark: Because f ′(0) = 0, we in fact have

κxx(0) = κss(0)

where κss denotes second derivative of curvature with respect to arc-length. Thus coefficients
in the expansion of Proposition 3 can be easily expressed in completely geometric quantities,
if desired.

4.2 Expansion at a junction

For convenience, let us introduce the following notation for the 1D Gaussian:

gt(x) =
1√
4πt

e−
x2

4t so that Gt(x, y) = gt(x)gt(y). (31)

Let us record the formulas

∫ ∞

0

ξgt(ξ) dξ =

√
t√
π

,

∫ ∞

0

ξ2gt(ξ) dξ = t, and

∫ x

−∞
ξgt(ξ) dξ = −

√
t√
π
e−

x2

4t . (32)

We now consider the set up where three C2 curves meet in a triple point located at the
origin, such that their tangents have the angles 2θ1, 2θ2, 2θ3 ∈ (0, π) between them; see
Figure 4 for an illustration. If we zoom in to the origin, the set up would look like three
sectors, as indicated in the right hand side plot of Figure 4. Hence, we start by writing
down explicit formulas for the distance function to a sector.

Let a sector S of opening angle 2θ be given as follows:

S =
{

(x, y) : y < tan
(3π

2
− θ

)

x and y < tan
(3π

2
+ θ

)

x
}

. (33)

9

See Figure 5 for an illustration. We will say that the ridge of S is the set on the complement
of which the signed distance function to S is smooth; it consists of the following three lines:

ℓ1 :={(x, y) : x ≥ 0 and y = (tan θ)x},
ℓ2 :={(x, y) : x ≤ 0 and y = −(tan θ)x},
ℓ3 :={(x, y) : x = 0 and y ≤ 0}.

(34)

Then, we distinguish the three regions defined by the ridge (as shown in Figure 5), in each
of which the signed distance function is smooth, as follows:

• Region 1: R1 := {(x, y) : y ≤ (tan θ)x and x ≥ 0},

• Region 2: R2 := {(x, y) : y ≤ −(tan θ)x and x ≤ 0}, and

• Region 3: R3 := {(x, y) : y ≥ (tan θ)|x|}.

It is then easy to see that the signed distance function is given as follows in these regions:

• Region 1: d(x, y) = −x cos θ − y sin θ for (x, y) ∈ R1,

• Region 2: d(x, y) = x cos θ − y sin θ for (x, y) ∈ R2, and

• Region 3: d(x, y) = −
√

x2 + y2 for (x, y) ∈ R3.

See Figure 5 for illustration of the regions and level curves of the signed distance function.
We will compute the Taylor expansion at the origin of the convolution of the signed distance
function d to the sector S with the Gaussian kernel.

We start with the constant term in the expansion. To that end, we first note:

∫

R1

xGt(x, y) dx dy =

∫ 0

−∞

∫ ∞

0

xGt(x, y) dx dy +

∫ ∞

0

∫ ∞

y
tan θ

xGt(x, y) dx dy

=

√
t

2
√
π

+

√
t

2
√
π

tan θ√
1 + tan2 θ

(35)

∫

R1

yGt(x, y) dx dy =

∫ ∞

0

∫ (tan θ)x

−∞
yGt(x, y) dy dx

= −
√
t

2
√
π

1√
1 + tan2 θ

(36)

Observing that

∫

R1∪R2

d(x′, y′)Gt(x− x′, y − y′) dx′ dy′
∣

∣

∣

∣

x=0, y=0

= 2

∫

R1

d(x′, y′)Gt(x
′, y′) dx′ dy′

= −2 cosθ

∫

R1

x′Gt(x
′, y′) dx′ dy′ − 2 sin θ

∫

R1

y′Gt(x
′, y′) dx′ dy′

(37)

10

and using (35) and (36), we get:

∫

R1∪R2

d(x′, y′)Gt(x− x′, y − y′) dx′ dy′
∣

∣

∣

∣

x=0, y=0

= −
√
t√
π

cos θ. (38)

Next, we calculate

∫

R3

d(x′, y′)Gt(x− x′, y − y′) dx′ dy′
∣

∣

∣

∣

x=0, y=0

= −
∫ π−2θ

0

∫ ∞

0

r2
1

4πt
e−

r2

4t dr dθ

= (2θ − π)

√
t

2
√
π

(39)

We can now put together (38) and (39) to get the 0-th order term in the desired expansion:

∫

R2

d(x′, y′)Gt(x− x′, y − y′) dx′ dy′
∣

∣

∣

∣

x=0, y=0

=

√
t√
π

(

θ − π

2
− cos θ

)

. (40)

Moving on to the calculation of higher order terms, we first note:

∫

R1

xyGt(x, y) dx dy =

∫ ∞

0

∫ (tan θ)x

−∞
xyGt(x, y) dx dy

=

∫ ∞

0

xgt(x)

∫ (tan θ)x

−∞
ygt(y) dy dx

= − t

π(1 + tan2 θ)
.

(41)

Also useful is:

∫

R1

y2Gt(x, y) dx dy =

∫ ∞

0

gt(x)

∫ (tan θ)x

−∞
y2gt(y) dy dx

= − t

π

(tan θ)

(1 + tan2 θ)
+

(π + 2θ)

2π
t.

(42)

Using (41) and (42) we get

∫

R1∪R2

d(x′, y′)
∂

∂y
Gt(x− x′, y − y′) dx′ dy′

∣

∣

∣

∣

x=0, y=0

=
1

t

∫

R1

d(x, y)yGt(x, y) dx dy

= −1

t

∫

R1

(x cos θ + y sin θ) y Gt(x, y) dx dy

= −cos θ

t

∫

R1

xyGt(x, y) dx dy −
sin θ

t

∫

R1

y2Gt(x, y) dx dy

= − 1

π

(

(π

2
+ θ

)

sin θ − cos θ
)

.

(43)

11

We now also calculate
∫

R3

d(x′, y′)
∂

∂y
Gt(x− x′, y − y′) dx′ dy′

∣

∣

∣

∣

x=0, y=0

=
1

2t

∫

R3

d(x, y) y Gt(x, y) dx dy

= − 1

2t

∫ π−θ

θ

∫ ∞

0

r3 sin θ
e−

r2

4t

4πt
dr dθ

= −2 cos θ

π
.

(44)

Putting together (43) and (44) we find

∫

R2

d(x′, y′)
∂

∂y
Gt(x− x′, y − y′) dx′ dy′

∣

∣

∣

∣

x=0, y=0

= − 1

π

(

(π

2
+ θ

)

sin θ + cos θ
)

. (45)

which is the coefficient of y in the expansion we seek. Noting that the coefficient of x must
be zero on symmetry grounds, we next consider quadratic terms. To that end, first compute:

∫

R1∪R2

d(x′, y′)
∂2

∂x2
Gt(x− x′, y − y′) dx′ dy′

∣

∣

∣

∣

x=0,y=0

= 2

∫

R1

d(x′, y′)
∂2

∂x2
Gt(x

′, y′) dx′ dy′

= −2

∫ ∞

0

∫ x tan θ

−∞

(

x′ cos θ + y′ sin θ
) ∂2

∂x2
Gt(x

′, y′) dy′ dx′

= − 1

2
√
πt

(

1 + 2 sin θ
)

cos θ.

(46)

Then,

∫

R3

d(x′, y′)
∂2

∂x2
Gt(x− x′, y − y′) dx′ dy′

∣

∣

∣

∣

x=0,y=0

= −
∫

R3

√

(x′)2 + (y′)2
∂2

∂x2
Gt(x

′, y′) dx dy

=

∫ ∞

0

∫ π−θ

θ

r2

16πt3
(

2t− r2 cos2 θ′
)

e−
r2

4t dθ′ dr

=
1

8
√
πt

(

3 sin(2θ) + 2θ − π
)

.

(47)

Putting (46) and (47) together, we find

∫

R2

d(x′, y′)
∂2

∂x2
Gt(x− x′, y − y′) dx′ dy′

∣

∣

∣

∣

x=0,y=0

=
1

8
√
πt

(

2θ− 4 cos θ− sin(2θ)− π
)

. (48)

12

which would be the coefficient of x2 in the expansion. Noting once again on symmetry
grounds that the coefficient of xy must be zero, it remains only to compute the coefficient
of y2, as follows:

∫

R1∪R2

d(x′, y′)
∂2

∂y2
Gt(x− x′, y − y′) dx′ dy′

∣

∣

∣

∣

x=0,y=0

= −2

∫

R1

(x′ cos θ + y′ sin θ)
∂2

∂y2
Gt(x

′, y′) dx′ dy′

=
1

2
√
πt

sin(2θ)

(49)

and
∫

R3

d(x′, y′)
∂2

∂y2
Gt(x− x′, y − y′) dx′ dy′

∣

∣

∣

∣

x=0,y=0

=
1

8
√
πt

(

2θ − 3 sin(2θ) − π
)

. (50)

Putting together (49) and (50) we obtain
∫

R2

d(x′, y′)
∂2

∂y2
Gt(x− x′, y − y′) dx′ dy′

∣

∣

∣

∣

x=0,y=0

=
1

8
√
πt

(

sin(2θ) + 2θ − π
)

(51)

which is the coefficient of y2. Additionally, note that since the signed distance function d

to any set is Lipschitz, we have
∣

∣

∣

∣

∂k

∂xj1 · · · ∂xjk

(

Gt ∗ d
)

(x)

∣

∣

∣

∣

≤ Ckt
1−k
2 (52)

for k = 1, 2, 3, . . ., where the constants Ck are universal.
Finally, putting the formulas (40), (45), (48), (51) and the bound (52) together with the

following Taylor expansion at the origin
(

Gt ∗ d
)

(x) = c00(t) + c10(t)x+ c01(t) y + c20(t)x
2 + c11(t)xy + c02(t)y

2 + . . . (53)

we arrive at the following:

Proposition 4 Convolution of the signed distance function d for the sector (33) with a
Gaussian kernel satisfies the following Taylor expansion:

∫

R2

d(x′, y′)Gt(x− x′, y − y′) dx′ dy′

=

√
t√
π

(

θ − π

2
− cos θ

)

− 1

π

(

(π

2
+ θ

)

sin θ + cos θ
)

y

+
1√
t

1

16
√
π

(

2θ − 4 cos θ − sin 2θ − π
)

x2

+
1√
t

1

16
√
π

(

sin 2θ + 2θ − π
)

y2

+O

(|x|3
t

)

.

(54)

13

We now turn to obtaining the analogous expansion at a corner point of an open set Σ
whose boundary at the corner point consists of the meeting of two C2 arcs, namely Γ1 and
Γ2. Let 2θ denote the (interior) angle formed by these curves at the junction. Assume that
θ < π

2 . Also, assume that Σ has been rotated and translated if necessary so that the corner
point is at the origin, and Σ ∩ Br(0) is contained in the lower half plane for small enough
r > 0, and its boundary curves Γ1 and Γ2 make angles of θ with the axis {y ≤ 0} as shown
in Figure 6.

Consider the approximating sector S to the set Σ at the origin. More precisely, S is
the sector the boundary curves of which are tangent to those of Σ at the origin, so that in
particular we have

lim sup
r→0+

H
(

∂S ∩Br(0) , ∂Σ ∩Br(0)
)

r2
<∞ (55)

whereH(·, ·) denotes the Hausdorff distance. See Figure 6 for an illustration. A consequence
of (55) is

lim sup
r→0+

|Br(0) ∩
(

Σ ∩ S
)

|
r3

<∞. (56)

Let d denote the signed distance function to Σ, and let d̃ denote the signed distance function
to the sector S. By (55), we have

|d(x) − d̃(x)| = O(|x|2) as x → 0. (57)

Therefore,

|d ∗Gt(0) − d̃ ∗Gt(0)| ≤
∫

R2

|(d− d̃)(−x)|Gt(x) dx

≤
∫

R2

O(|x|2)Gt(x) dx

= O(t) as t→ 0.

(58)

Moreover,
∣

∣

∣

∣

∂

∂xj
(d ∗Gt)(0) − ∂

∂xj
(d̃ ∗Gt)(0)

∣

∣

∣

∣

=
∣

∣

∣

(

d ∗ ∂xj
Gt

)

(0) −
(

d̃ ∗ ∂xj
Gt

)

(0)
∣

∣

∣

≤
∫

R2

O(|x|2)
∣

∣∂xj
Gt

∣

∣ dx

= O(
√
t) as t→ 0.

(59)

We also need to estimate second derivatives of d(x). To that end, we first note the
following easy lemma:

Lemma 5 The ridge of the signed distance function to Σ in a neighborhood of the origin
consists of three simple C2 arcs γ1, γ2 and γ3 that touch each other only at the origin.
The arcs γ1 and γ2 coincide with the lines ℓ1, ℓ2 that constitute part of the ridge of the
approximating sector (see (34)). The third arc, γ3, is tangent to ℓ3 at the origin so that in
particular

H
(

γ3 ∩Br(0) , ℓ3 ∩Br(0)
)

= o(r) as r → 0 (60)

where H(·, ·) denotes the Hausdorff distance. See Figure 6.

14

Proof: The lemma is easy to establish by use of Proposition 1 and the implicit function
theorem. �

Lemma 5 shows that near the origin, ∇d and ∇d̃ disagree at O(1) level on only a thin
set. Based on this observation, it is easy to establish the following estimate:

∣

∣

∣

∣

∂2

∂xi∂xj
(d ∗Gt)(0, 0) − ∂2

∂xi∂xj
(d̃ ∗Gt)(0, 0)

∣

∣

∣

∣

≤
∫

R2

∣

∣

∣

∣

∂

∂xi
(d− d̃)(x′, y′)

∂

∂xj
Gt(x

′, y′)

∣

∣

∣

∣

dx′ dy′

= O(1)

(61)

that holds for any i, j ∈ {1, 2}.
Since Gt ∗ d is a C∞ function for any t > 0, it has a Taylor expansion of the form (53).

Indeed, expansion (54) that applies to d̃, together with the bounds (52), (56), and (61) give
the following expansion for d:

Proposition 5 Convolution with a Gaussian kernel of the signed distance function d of the
domain Σ at its corner located at the origin formed by the meeting of two C2 arcs Γ1 and
Γ2 as in Figure 6 satisfies the following Taylor expansion:

∫

R2

d(x′, y′)Gt(x − x′, y − y′) dx′ dy′

=

√
t√
π

(

θ − π

2
− cos θ + C1(t)

)

+ C2(t)x

− 1

π

(

(π

2
+ θ

)

sin θ + cos θ + C3(t)
)

y

+
1√
t

1

16
√
π

(

2θ − 4 cos θ − sin 2θ − π + C3(t)
)

x2

+
1√
t

1

16
√
π

(

sin 2θ + 2θ − π + C4(t)
)

y2

+
1√
t
C5(t)xy + H.O.T.

(62)

The coefficients Cj(t) satisfy Cj(t) = O(
√
t) as t→ 0+.

5 Algorithms

In this section, we utilize the expansions obtained in the previous sections to describe a
number of new algorithms for interfacial motion.

5.1 Warm up: Curvature motion

In this section, we describe several algorithms for simulating the motion of an interface with
normal speeds of the form

vn = κ+ S(x) (63)

15

where S : R
2 → R is a given function.

We start with the following algorithm for the slightly generalized curvature motion (63),
which is very easily obtained from expansion (30).

Algorithm: Given the initial set Σ0 through its signed distance
function d0(x) and a time step size δt > 0, generate the sets Σj via
their signed distance functions dj(x) at subsequent discrete times
t = j(δt) by alternating the following steps:

1. Form the function

A(x) := Gδt ∗ dj + (δt)S(x). (64)

2. Construct the signed distance function dj+1 by

dj+1(x) = Redist(A). (65)

It is easy to see that the algorithm is monotone, since each of its steps preserves order.
Consistency of one step of the algorithm with the desired motion (63) is immediate from
(30), which shows that the zero level set of the convolution d ∗Gδt crosses the y-axis at

y = −κ(δt) − S(0, 0)(δt) + H.O.T. (66)

leading to the advertised motion. Furthermore, we can read off the form of the leading order
truncation error at every time step by substituting (66) into expansion (30) to find:

Error =

(

1

2
κss +

3

2
κ3 + κ2S

)

(δt)2 +O
(

(δt)3
)

. (67)

We now turn our attention to designing more accurate versions of algorithms such as
the one above. For instance, we can utilize once again the expansion in (30) to get more
accurate evaluation of curvature κ at every time step using a Richardson extrapolation-
like procedure. This incurs no additional computational cost whatsoever, since the only
modification to algorithm (64) & (65) is to replace the convolution kernel in step (64) by a
linear combination of two Gaussians.

16

Algorithm: Given the initial set Σ0 through its signed distance
function d0(x) and a time step size δt > 0, generate the sets Σj via
their signed distance functions dj(x) at subsequent discrete times
t = j(δt) by alternating the following steps:

1. Form the function

A(x) := Kδt ∗ dj + (δt)S(x) (68)

where Kt is the kernel:

Kt =
1

3

(

4G 3
2
t −G3t

)

. (69)

2. Construct the signed distance function dj+1 by

dj+1 = Redist(A). (70)

Indeed, from expansion (30) we see that

Kδt ∗ d(0, y) = y + (κ+ S)(δt) − κ2y(δt) +O
(

(δt)3
)

(71)

leading to

Error =
(

κ3 + κ2S
)

(δt)2 +O
(

(δt)3
)

(72)

which suggests better controlled accuracy in (implicit) evaluation of curvature at every
time step by eliminating the dependence of the leading order error term on derivatives of
curvature (and improving the constant of the remaining term). Numerical experiments with
algorithm (68), (69) & (70) indeed lead to more accurate results in practice than algorithm
(64) & (65); evidence to this effect is presented in Section 6.1. However, we should note
that although the original algorithm (64) & (65) is obviously monotone due to the positivity
of its convolution kernel, we cannot say the same for algorithm (68), (69) & (70) since its
convolution kernelKt is no longer positive; see Figure 3. Monotonicity cannot be guaranteed
for the high order in time schemes discussed below, either.

We now turn to designing higher order in time versions of (64) & (65), or (68), (69)
& (70), at the expense of increasing slightly the number of convolution or redistancing
operations involved at each time step (which are, although fast, still the most computa-
tionally intensive tasks of our algorithms). For example, the following algorithm requires
three convolution and two redistancing operations per time step, but formally has quadratic
convergence rate in t:

17

Algorithm: Given the initial set Σ0 through its signed distance
function d0(x) and a time step size δt > 0, generate the sets Σj via
their signed distance functions dj(x) at subsequent discrete times
t = j(δt) by alternating the following steps:

1. Form the functions

A1(x) := K δt
2
∗ dj +

(δt)

2
S(x)

dj+ 1
2
(x) := Redist(A1)

A2(x) := K δt
2
∗ dj+ 1

2
+

(δt)

2
S(x)

A3(x) := Kδt ∗ dj + (δt)S(x).

(73)

where Kt is one of the two kernels:

Kt = Gt or Kt =
1

3

(

4G 3
2

t −G3t

)

. (74)

2. Construct the signed distance function dj+1 by

dj+1 = Redist
(

2A2 −A3

)

. (75)

By using a multi-step strategy, we can reduce the per time step cost of the high order
in time algorithm (73), (74) & (75) above to just two convolution and one redistancing
operations. Indeed, the variant below still has formally quadratic convergence rate in time:

Algorithm: Multistep version of (73), (74) & (75):

1. Form the functions

A1(x) := K2δt ∗ dj−1 + 2(δt)S(x)

A2(x) := Kδt ∗ dj + (δt)S(x)
(76)

2. Construct the signed distance function dj+1 by

dj+1 = Redist
1

3

(

4A2 −A1

)

. (77)

The algorithms in this section have been discussed in R
2 for curves, but they generalize

verbatim to hypersurfaces in R
N . In this case, they approximate the flow of hypersurfaces

under normal speeds of the form

vn = (N − 1)H + S(x) (78)

where H denotes the mean curvature of the interface, and S : R
N → R is a given function.

18

5.2 Motion by f(κ)

In this section we present unconditionally monotone schemes for propagating interfaces with
normal speeds given by

vn = f(κ) (79)

where f : R → R is an odd, increasing, Lipschitz function with constant Lf .
For any constant M > 0, we consider the following algorithm:

Algorithm: Given the initial set Σ0 through its signed distance
function d0(x) and a time step size δt > 0, generate the sets Σj via
their signed distance functions dj(x) at subsequent discrete times
t = j(δt) by alternating the following steps:

1. Form the function

A(x) := dj + (δt)f

(

1

M(δt)

{

GM(δt) ∗ dj − dj

}

)

(80)

2. Construct distance function dj+1 by

dj+1(x) = Redist(A). (81)

At the j-th step of the algorithm, the set Σj can be recovered if desired through the relation

Σj = {x : dj(x) > 0}.

Consistency of this algorithm is easy to verify on a C2 curve using the expansion (30)
in Proposition 3. Indeed, using (30) together with (11), we have

1

M(δt)

{

GM(δt) ∗ d− d
}

= κ+O(δt). (82)

Since f is Lipschitz, we therefore also have

f(κ) = f

(

1

M(δt)

{

GM(δt) ∗ d− d
}

)

+O(δt). (83)

Once again using (11) in conjunction with (80), we see that the 0-level set of

d+ (δt)f

(

1

M(δt)

{

GM(δt) ∗ d− d
}

)

(84)

has moved with the desired speed in the normal direction; we also see that the scheme is first
order accurate in time (though higher order in time versions may be possible as in Section
5.1), and the constant in the error term depends on M as well as the Lipschitz constant of
f . In addition to this consistency result, we have the following monotonicity property:

Proposition 6 If M ≥ Lf , then algorithm (80) & (81) is monotone for any choice of time
step size δt > 0.

19

Proof: Let Σ1 and Σ2 be two sets satisfying Σ1 ⊂ Σ2. Let d1(x) and d2(x) be the signed
distance functions to Σ1 and Σ2, respectively. Then, first of all,

d1(x) ≤ d2(x) for all x. (85)

Using the same notation as in the description of the algorithm, let

A1(x) = d1(x) + (δt)f

(

1

M(δt)

{

GM(δt) ∗ d1 − d1

}

)

A2(x) = d2(x) + (δt)f

(

1

M(δt)

{

GM(δt) ∗ d2 − d2

}

)

.

(86)

Then, just calculate:

A2 −A1 =(d2 − d1) + (δt)

{

f

(

1

M(δt)

{

GM(δt) ∗ d2 − d2

}

)

−f
(

1

M(δt)

{

GM(δt) ∗ d1 − d1

}

)}

≥(d2 − d1) + (δt)

{

f

(

1

M(δt)

{

GM(δt) ∗ d2 − d2

}

)

−f
(

1

M(δt)

{

GM(δt) ∗ d2 − d1

}

)}

(where we used d2 ≥ d1 and that f is increasing)

≥(d2 − d1) − (δt)
1

M(δt)
Lf (d2 − d1)

(where we used the hypothesis that f is Lipschitz)

≥0.

(87)

(where we used the hypothesis on M).

This verifies monotonicity of the first step of the algorithm; that of the second is obvious as
already noted. �

As in Section 5.1, the algorithm of this section generalizes almost verbatim to the flow
of hypersurfaces in R

N , where it can generate motions with normal speed

vn = f(H) (88)

where H denotes the mean curvature of the interface. We note that other generalizations,
for example explicit spatial and time dependence in f , i.e. f = f(·,x, t), are also easily
possible.

20

5.3 Multiple Junctions

In this section, we describe an algorithm based on the signed distance function for simulating
the motion of multiple junctions under curvature motion and subject to the symmetric (i.e.
120◦) Herring conditions [21]. This is an important application that comes up in materials
science, e.g. in simulating the grain boundary motion in polycrystals [26]. We will use the
expansions in Section 4.2 to justify the algorithm and estimate the local truncation error.
Our algorithm has the following form:

Algorithm: Given the initial sets Σ1
0, . . . ,Σ

m
0 through their signed

distance functions d1
0(x), . . . , dm

0 (x) as well as a time step size
δt > 0, generate the sets Σ1

j , . . . ,Σ
m
j via their signed distance func-

tions d1
j (x), . . . , dm

j (x) at subsequent discrete times t = j(δt) by
alternating the following steps:

1. Form the convolutions

Lk
j := Kδt ∗ dk

j (89)

for k = 1, . . . ,m where Kt is one of the kernels:

Kt = Gt or Kt =
1

3

(

4G 3
2

t −G3t

)

.

2. Construct the signed distance functions dk
j+1 for k = 1, . . . ,m

according to

dk
j+1 = Redist

(

Lk
j − max{Lℓ

j : ℓ 6= k}
)

. (90)

The reassignment step (90) of the algorithm stems from the t→ ∞ limit of gradient descent
on the multiwell potential that constitutes the nonlinear, pointwise term in vectorial phase-
field energies such as the ones in [3, 6]. It is identical to the reassignment step in [25].

This algorithm differs from the one proposed in [25] in important ways. First of all, the
authors in [25] utilize redistancing (construction of the signed distance function) optionally,
only as a means to prevent the level set function from becoming too steep or too flat – this
is the standard role of redistancing in level set computations, as used even in two-phase
flows, and is typically employed only occasionally during the flow (once per a large number
of time steps). Indeed, the authors state explicitly that as long as the level set does not
become too steep or too flat, any level set representation can be used. However, in order
to get the desired Herring angle (i.e. boundary) conditions at junctions, it is absolutely
essential to make sure that the profile of level sets representing the various phases be the
same near the junctions. In other words, using arbitrary (even if not too flat, not too
steep) level sets to represent the phases as is suggested in [25] will lead to O(1) errors in
the angles at the junctions; this simple fact can be easily understood by considering what
happens to an arrangement of three phases where one of the phases is represented by a
level set function half as steep as the other two; Figure 7 shows a numerical experiment
verifying this effect. (To be fair, authors of [25] eventually propose an “Algorithm B” that

21

redistances at every time step, but claim this is only to keep the level set from becoming
too steep or too flat. In reality, level sets do not degenerate during the multiphase motion
as rapidly as is suggested by the authors – this is not the correct reason for redistancing).
Furthermore, the algorithms for multiple junctions proposed in [25] and utilized in the more
recent application paper [42], or in the related work [37], all evolve the level set functions
representing the phases via the standard level set formulation of curvature motion. The
algorithm proposed here uses convolution (with a Gaussian or more accurate kernel) at
every step to evolve the different phases, and therefore maintains the unconditional stability
of the two-phase case. It should be pointed out that various other numerical algorithms have
been proposed for computing the motion of networks of junctions, including front tracking,
level set, and phase field based methods; see e.g. [5, 7, 6, 3, 19, 44, 38, 23, 16] and their
references. We repeat that, in this context of networks as in others, front tracking based
methods do not allow painless treatment of topological changes and are therefore hard to
extend to three dimensions; phase field based methods require the spatial resolution of a
rapid transition layer and involve the small parameter describing the thickness of this layer
as a stiffness parameter; and standard level set based methods require the solution of highly
nonlinear, degenerate PDE.

We now provide some justification for algorithm (89) & (90), focusing on the case Kt =
Gt for simplicity. First, note that the algorithm moves interfaces with motion by curvature
away from the triple junction; this is immediate based on expansion (30) and the definition
of the algorithm. The more interesting point is its behavior at a triple junction, which we
now focus on. Our goal is to establish that the scheme not only preserves but in fact imposes
symmetric (120◦) Herring angle conditions at the junction. An analogous calculation for the
thresholding based precursor of our algorithm has been carried out in [30]. The argument
presented below is a bit more abstract and less explicit, as the representation of the interface
we deal with, namely the signed distance function, is not as explicitly given in terms of the
interface as a characteristic function is.

Consider a triple junction at the origin formed by the meeting of three C2 curves Γ12,
Γ23, and Γ31. Let the three curves Γj constitute the boundaries of three phases Σ1, Σ2, and
Σ3 as shown in Figure 4. Let the angle subtended at the triple junction by phase Σj be 2θj ,
with j = 1, 2, 3. We will assume that θj are in a small enough neighborhood of π

3 . Let us
also assume that the configuration has been rotated if necessary so that Σ1 is contained in
the lower half plane, and its boundary curves make angles of θ1 with the axis {y ≤ 0} as
shown in Figure 4. Let d1, d2, and d3 denote the signed distance functions of Σ1, Σ2, and
Σ3, respectively. For convenience, let us define the following functions:

A(θ) =
1√
π

(

θ − π

2
− cos θ

)

B(θ) = − 1

π

(

(π

2
+ θ

)

sin θ + cos θ
)

Q1(θ) =
1

16
√
π

(

2θ − 4 cos θ − sin 2θ − π
)

Q2(θ) =
1

16
√
π

(

sin 2θ + 2θ − π
)

.

(91)

22

Using (62) in Proposition 5, we then have the following Taylor expansions for the functions
dj ∗Gt at the origin:

d1 ∗Gt =A(θ1)
√
t+B(θ1)y +

1√
t
Q1(θ1)x

2 +
1√
t
Q2(θ1)y

2

+ C1
1 (t)

√
t+ C1

2 (t)x+ C1
3 (t)y + H.O.T.

d2 ∗Gt =A(θ2)
√
t+B(θ2)

(

sin(θ1 + θ2)x+ cos(θ1 + θ2)y
)

+
1√
t
Q1(θ2)

(

cos(θ1 + θ2)x− sin(θ1 + θ2)y
)2

+
1√
t
Q2(θ2)

(

sin(θ1 + θ2)x+ cos(θ1 + θ2)y
)2

+ C2
1 (t)

√
t+ C2

2 (t)x+ C2
3 (t)y + H.O.T.

d3 ∗Gt =A(θ3)
√
t+B(θ3)

(

− sin(θ1 + θ3)x+ cos(θ1 + θ3)y
)

+
1√
t
Q1(θ3)

(

cos(θ1 + θ3)x+ sin(θ1 + θ3)y
)2

+
1√
t
Q2(θ3)

(

− sin(θ1 + θ3)x + cos(θ1 + θ3)y
)2

+ C3
1 (t)

√
t+ C3

2 (t)x+ C3
3 (t)y + H.O.T..

(92)

where Ci
j(t) = O(

√
t) as t → 0+. Expansions for d2 ∗ Gt and d3 ∗ Gt were obtained from

that of d1 ∗Gt simply by the appropriate rotations.
From (92) we can immediately read off the following:

1. If θ1 = θ2 = θ3 = π
3 , then the triple junction moves with speed at most O(1) in a time

step of size δt.

2. If θj differs from π
3 by O(1) for any j ∈ {1, 2, 3}, then the triple junction moves with

speed at least O(δt−
1
2) in a time step of size δt.

These properties suggest that the motion of the junction has the expected behavior under
algorithm (89) & (90). Indeed, the second point suggests that if the Herring angle conditions
are not satisfied initially, then the numerical solution will “adjust” the location of the triple
junction at a fast time scale (infinitely fast as δt → 0+). We will now see if this fast
adjustment takes the angles towards or away from the Herring condition. To that end,
assume that the angles θ1 and θ2 at the beginning of a time step with the algorithm are not
too far from π

3 . We can solve for the new coordinates (x∗, y∗) of the triple junction after
the time step using (92). Indeed, the three surfaces in (92) intersect in three curves, which
in return intersect in a point in the (x, y)-plane, whose coordinates can be found by solving

(d1 ∗Gt)(x∗, y∗) = (d2 ∗Gt)(x∗, y∗) = (d3 ∗Gt)(x∗, y∗) (93)

23

for x∗ and y∗. From (92) we see that (x∗, y∗) are given by

x∗ = −
√

3

3

A′(π
3)

B(π
3)

√
t
(

2θ2 + θ1 − π
)

+ H.O.T.

=
2
√

3π(2 +
√

3)

6 + 5π
√

3

√
t
(

2θ2 + θ1 − π
)

+ H.O.T.

y∗ = − A′(π
3)

B(π
3)

√
t
(

θ1 −
π

3

)

+ H.O.T.

=
6
√
π(2 +

√
3)

6 + 5π
√

3

√
t
(

θ1 −
π

3

)

+ H.O.T..

(94)

Differentiating (92) and evaluating the result at the new junction location (x∗, y∗), we
see that the normals to the three curves at the junction are given by

N12 :=∇
(

Gt ∗ (d1 − d2)
)

(x∗, y∗),

N23 :=∇
(

Gt ∗ (d2 − d3)
)

(x∗, y∗),

N31 :=∇
(

Gt ∗ (d3 − d1)
)

(x∗, y∗).

(95)

up to high order terms; see Figure 8. The two angles (θ1, θ2) between the curves at the
beginning of the time step get sent to a new pair of angles (θ̃1, θ̃2) at the end of the time
step. These new angles can be expressed using (95) as

θ̃1 =
1

2
cos−1

(

N31 ·N12

‖N31‖ ‖N12‖

)

+ H.O.T., and

θ̃2 =
1

2
cos−1

(

N12 ·N23

‖N12‖ ‖N23‖

)

+ H.O.T.

(96)

Noting again that θ3 is determined in terms of θ1 and θ2, the task at hand is to study the
map

(θ1, θ2) −→ (θ̃1, θ̃2). (97)

in terms of its fixed points and their stability. To that end, first define the map φ : R
2 → R

2

as

φ(θ1, θ2) :=
1

2

(

cos−1

(

N31 ·N12

‖N31‖ ‖N12‖

)

, cos−1

(

N12 ·N23

‖N12‖ ‖N23‖

))

. (98)

Then, consider the related map ψ : R
2 → R

2 given by

ψ(θ1, θ2) :=

(

N31 ·N12

‖N31‖ ‖N12‖
,

N12 ·N23

‖N12‖ ‖N23‖

)

. (99)

Note that

ψ
(π

3
,
π

3

)

= −
(

1

2
,
1

2

)

. (100)

We also compute, using MAPLE, that

(Dψ)
(π

3
,
π

3

)

=

(

γ 0
0 γ

)

(101)

24

with

γ = − 3

4

12
√

3 + 27π + 50π2
√

3 − 36π
√

3

(6 + 5π
√

3)2

≈− 0.52.

(102)

Write the components of ψ as ψ = (ψ1, ψ2) so that we have

φ(θ1, θ2) =
1

2

(

cos−1
(

ψ1(θ1, θ2)
)

, cos−1
(

ψ2(θ1, θ2)
)

)

. (103)

Now, expand φ in a Taylor series near (π
3 ,

π
3). We have

φ
(π

3
,
π

3

)

=
(π

3
,
π

3

)

+O(
√
t) (104)

and

(Dφ)
(π

3
,
π

3

)

=
1

2

d

dξ
cos−1(ξ)

∣

∣

∣

ξ=− 1
2

(

Dψ
)

∣

∣

∣

(θ1,θ2)=(π
3

, π
3
)
+ H.O.T.

= −
√

3

3

(

γ 0
0 γ

)

+ H.O.T.

(105)

Putting (105) together with (101) and (102), we see that
(

θ̃1 − π
3

θ̃2 − π
3

)

= M

(

θ1 − π
3

θ2 − π
3

)

+O(
√
t) + H.O.T. (106)

where M is a 2 × 2 constant matrix whose largest singular value σ satisfies

σ ≈ 0.3 (107)

for all small enough t > 0 according to (105) along with continuous dependence of the
eigenvalues of a matrix on its entries. We thus see that algorithm (89) & (90) stably
imposes the Herring angle conditions with an error of the form O(

√
t).

5.4 High order motions

In this very experimental and rather speculative section, we briefly note how distance function
based algorithms for high order motions, such as Willmore flow or surface diffusion flow,
might be designed via the expansions of Section 4. This is in analogy with the threshold
dynamics based algorithms for Willmore and surface diffusion flows in [20] and [15].

Here, we focus just on surface diffusion. For this flow, the normal speed of the interface
is given by

vn = −κss = −κxx = −f (iv)(0) + 3
(

f ′′(0)
)3
.

There are several alternatives for achieving this speed. For example, as in [20, 15], one can
first take convolution of the signed distance function to the interface using two different
kernels, then take the correct linear combination of the two convolutions so that the lower
order, curvature related terms in expansion (30) drop out, leaving behind derivatives of
curvature exposed in the dominant terms. Interestingly, the exact form of the algorithm (in
particular, the weights used) turn out to be different than in the threshold dynamics case:

25

Algorithm: Given the initial set Σ0 through its signed distance
function d0(x) and a time step size δt > 0, generate the sets Σj via
their signed distance functions dj(x) at subsequent discrete times
t = j(δt) by alternating the following steps:

1. Form the functions

A :=
(

2G√
δt −G2

√
δt

)

∗ dj ,

B :=
(

G√
δt ∗ dj − dj

)3

.

(108)

2. Construct the signed distance function dj+1 by

dj+1(x) = Redist
(
√
δtA+B

)

. (109)

6 Numerical results

In this section we present several numerical results and convergence studies with the algo-
rithms proposed in the previous sections. Since construction of the signed distance function
to a set constitutes a major common step of all the algorithms, it is worth a brief discussion.
Fast and accurate solution of Hamilton-Jacobi equations such as the Eikonal equation is
an extensive field in its own right. Here, we are only interested in constructing standard
Euclidean distance functions, which makes the corresponding Eikonal equation particularly
simple and a great variety of existing algorithms applicable. In the computations presented
below, a very simple procedure for second order accurate computation of the Euclidean
distance function in a tubular neighborhood of the interface was utilized. Specifically, it is
based on starting with a first order reconstruction (for which there are indeed many fast
algorithms) and then improving it to second (or higher) order by a few steps of a line search
strategy at every grid point. Of course, high order versions of more sophisticated algorithms
such as [40, 35, 29, 39, 43, 11] can also be used, perhaps with better results.

Some comments on the computational complexity of the proposed algorithms are also
in order. For the sake of simplicity, let us leave possible gains from local versions of the
algorithms (such as redistancing only in a tubular neighborhood of the interfaces) out of
this brief discussion; although these enhancements are entirely feasible (e.g. in practice one
needs to construct the signed distance function only in a tubular neighborhood of thickness
≈

√
δt for second order flows), they are in any case not always as worthwhile as might be

suspected – indeed, in applications such as large scale grain boundary motion simulations
[13], the evolving network of curves or surfaces is, at least initially, so dense that even
a relatively thin tubular neighborhood of them covers almost the entire grid. When the
proposed algorithms are thus implemented globally on an N × N , uniform computational
grid discretizing e.g. the unit square [0, 1]2, the convolution operations can be completed
at O(N2 logN) complexity using the fast Fourier transform. As mentioned above, the
redistancing steps of the proposed algorithms can be accomplished using e.g. fast marching,
whose complexity is also O(N2 logN) on the whole computational grid provided that first
order accurate in space solutions are acceptable. If high order accurate distance functions

26

are required, the first order accurate solutions from e.g. fast marching can be improved
to higher order using the strategy mentioned above (and used in numerical results of this
paper) at O(N2) cost. Hence, overall, the complexity of each time step of the proposed
algorithms is essentially linear in the number of grid points.

6.1 Curvature motion

We first consider the convergence of algorithm (64) & (65) computed over the time interval
[0, 3

256]. The initial condition is a circle of radius 1
4 .

Resolution # Time Steps Relative Error Order
32 × 32 10 0.98% –
64 × 64 20 0.41% 1.25

128 × 128 40 0.19% 1.11
256 × 256 80 0.093% 1.03
512 × 512 160 0.045% 1.05

The errors cited are the errors in the radius of the shrinking circle, the exact value R(t) of
which is given by

dR

dt
= − 1

R
⇒ R(t) =

√

1

16
− 2t (110)

which gives R =
√

5
128 at t = 3

256 .

Convergence of algorithm (68), (69) & (70) on the same test with an initial circle:

Resolution # of Time Steps Relative Error Order
32 × 32 10 0.39% –
64 × 64 20 0.16% 1.29

128 × 128 40 0.088% 0.86
256 × 256 80 0.044% 1.00
512 × 512 160 0.022% 1.00

The order of convergence of the time integration is of course still linear, but the results are
more accurate by a factor of two with no difference in computational cost: Only a different
kernel is used in the convolution step.

We now present results of the higher order method (73), (74) &(75) on the same shrinking
circle example:

Resolution # of Time Steps Relative Error Order
32 × 32 10 0.17% –
64 × 64 20 0.047% 1.85

128 × 128 40 0.013% 1.85
256 × 256 80 0.0033% 1.98
512 × 512 160 0.00086% 1.94

Here, the standard Gaussian kernel Gt was used in the convolutions.
On the same problem, the multistep version (76) & (77) of the high order in t algorithm

gives the following results:

27

Resolution # of Time Steps Relative Error Order
32 × 32 10 0.092% –
64 × 64 20 0.027% 1.77

128 × 128 40 0.0078% 1.79
256 × 256 80 0.0020% 1.96
512 × 512 160 0.00052% 1.94

The next set of results concern the motion by curvature of the more interesting curve
shown in Figure 9. Since an explicit solution is not available in this case, we monitor the
error in the von Neumann law of area loss [41]:

d

dt
A(t) = −2π (111)

in this (i.e. two-phase) case. The table below shows the relative error in this rate of area
loss of the shape as it evolves, using the 2nd order in time scheme (73), (74) & (75).

Resolution # of Time Steps Relative Error Order
32 × 32 10 1.12% –
64 × 64 20 0.81% 0.47

128 × 128 40 0.21% 1.95
256 × 256 80 0.036% 2.54
512 × 512 160 0.0028% 3.68

6.2 Motion by f(κ)

From an applications point of view, one of the most important geometric motions with
normal speed of the form

vn = f(κ)

is the affine invariant motion by curvature [2, 33, 34], which has the precise form

vn = κ
1
3 . (112)

It arises in computer vision applications where algorithms for such fundamental operations
on images as denoising and segmentation are expected to be invariant under small changes
of the viewpoint. Of course, in this case, f(ξ) = ξ

1
3 is not Lipschitz, so that our proposed

algorithm in Section 5.2 for this type of motion is not monotone in this case. However, we
can of course regularize f , for example as

fε(ξ) = sign(ξ)
{

(

ξ2 + ε
)

1
6 − ε

1
6

}

. (113)

With ε > 0, fε is Lipschitz with Lipschitz constant

Lε =
160

1
6

√
6

30ε
1
3

. (114)

We can then choose the constant M in the description of algorithm (80) & (81) large
enough (and dependent on ε) to ensure monotonicity via Proposition 6. On the other hand,

28

in numerical experiments we find that just fixing M e.g. at M = 2 and taking ε = 0 (i.e.
no regularization) does not seem to lead to any instabilities. The results presented in this
section were therefore obtained with no regularization and the said value of M .

Figure 10 shows the important example of an ellipse, which should remain an ellipse of
fixed eccentricity as it evolves due to the affine invariance of the flow, unlike under standard
motion by mean curvature that takes the curve asymptotically to a circle. Large time steps
were taken to demonstrate stability.

As important as the example of an ellipse is, it is not a particularly challenging test case
for affine invariant motion since its curvature remains bounded away from 0 and hence the
algorithm never has to deal with the (regularized) singularity at inflection (κ = 0) points.
Figure 11 shows the result of the algorithm on the more interesting example of an initially
flower shaped curve.

6.3 Junctions

This section presents a couple of simple examples of computing the motion of a triple
junction under curvature motion in the plane using the algorithm (89) & (90) in Section 5.3.
Algorithm (89) & (90) can in fact be generalized to allow accurate and efficient computation
of very large scale grain networks in both two and three space dimensions, which is of high
interest in materials science applications. Extensive demonstration of a generalized version
of the algorithm in this capacity has been carried and will be reported separately in an
upcoming paper [13] by one of the authors. Here, we confine ourselves to the simple cases
of only three or four phases.

Figure 12 shows a computation with three phases. The initial data consists of two
partially overlapping disks with a straight interface in between, as shown in Figure 12. The
two partial disks constitute two of the phases; the background (complement of the disks)
constitutes the third. Hence, all three phases have n = 2 triple junctions on their boundary
throughout the evolution. If we let A(t) denote area of one of the partial disks, the von
Neumann area loss law [41] this time implies

d

dt
A(t) =

π

3
(n− 6) = −4π

3
(115)

To assess the accuracy of the simulation, we measure the rate of area loss in one of the
partial disks. The table below shows the percentage relative error in this quantity over the
time interval [0, 1

64]. Gaussian kernel was used in the convolution step (89).

Resolution # of Time Steps Relative Error Order
32 × 32 30 3.91% –
64 × 64 60 2.07% 0.918

128 × 128 120 1.28% 0.693
256 × 256 240 0.84% 0.608
512 × 512 480 0.53% 0.664

The errors reported in the table were obtained as an average over 10 runs with the initial
condition rotated and translated randomly to preempt possible interference from grid effects.
The truncation error analysis carried out in Section (4.2) implies O(

√
t) error at junctions,

29

some evidence of which can be seen in the table. Figure 12 shows the computed solution at
32 × 32 and 512 × 512 resolution superimposed.

Figure 13 shows a computation with four phases: Three partial disks and the background.
This time, von Neumann law gives:

d

dt
A(t) =

π

3
(n− 6) = −π. (116)

The relative error in (116) is tabulated in the table below at various resolutions:

Resolution # of Time Steps Relative Error Order
32 × 32 30 3.82% –
64 × 64 60 2.10% 0.863

128 × 128 120 1.26% 0.737
256 × 256 240 0.71% 0.828
512 × 512 480 0.44% 0.690

The plot on the right in Figure 13 compares as in the previous example the solution obtained
at high and low (spatial and temporal) resolutions.

Figure 14 shows the 512 × 512 computation at later times. At some point, one of the
phases that started out as a partial disk disappears. The algorithm handles that transition
seamlessly, and carries on as a three phase flow from that point onwards – one of the well-
known advantages of implicit interface representations is thus maintained in our algorithms,
as expected.

Finally, we expect that the rate of convergence of the algorithm can be improved, if
needed, by the Richardson extrapolation type ideas used in Section 5.1, as was done in [31]
for multiphase motion in the context of threshold dynamics.

6.4 High order motions

Here we present a couple of simple numerical tests of the tentative algorithm for surface
diffusion suggested in Section 5.4. The examples are intended merely as a qualitative check.
The first plot of Figure 15 shows the evolution of an ellipse under this algorithm towards a
circle at times 1.25× 10−6 (reached with 2000 time steps) and 2.5× 10−6 (4000 time steps),
computed on the modest grid size of 128 × 128. Surface diffusion flow preserves area; the
change in area in the computed solution at final time is ≈ 4.25%. The second plot of Figure
15 shows the evolution of a slightly more interesting, initially flower shaped curve.

The scheme appears to be stable under much larger time steps, too, but then the error
becomes large rather quickly. Perhaps the Richardson extrapolation idea used in Section
5.1 can be applied also here to improve the accuracy.

Acknowledgments: Selim Esedoḡlu was supported by NSF DMS-0748333, NSF DMS-
0713767, an Alfred P. Sloan Foundation fellowship, and a University of Michigan Rackham
faculty grant. Steve Ruuth was supported by an NSERC Discovery Grant. Richard Tsai
was supported by NSF DMS-0714612 and an Alfred P. Sloan Foundation fellowship. The
authors thank Matt Elsey, who provided important corrections to a previous version of
the paper. They also thank the Banff International Research Station (BIRS) for hosting
the Research in Teams Event 06rit314 where some of the early work on this project was
completed.

30

References

[1] F. Almgren, J. E. Taylor, and L.-H. Wang. Curvature-driven flows: a variational
approach. SIAM Journal on Control and Optimization, 31(2):387–438, 1993.

[2] S. Angenent, G. Sapiro, and A. Tannenbaum. On the affine invariant heat equation for
nonconvex curves. Journal of the American Mathematical Society, 11:601–634, 1998.

[3] S. Baldo. Minimal interface criterion for phase transitions in mixtures of Cahn-Hilliard
fluids. Ann. I. H. P. Analyse Nonlineaire, 7:37–65, 1990.

[4] G. Barles and C. Georgelin. A simple proof of convergence for an approximation scheme
for computing motions by mean curvature. SIAM J. Numer. Anal., 32:484–500, 1995.

[5] K. Brakke. The surface evolver. Experimental Mathematics, 1(2):141–165, 1992.

[6] L. Bronsard and F. Reitich. On three-phase boundary motion and the singular limit of
vector-valued ginzburg-landau equation. Archive for Rational Mechanics and Analysis,
124:355–379, 1993.

[7] L. Bronsard and B. Wetton. A numerical method for tracking curve networks moving
with curvature motion. Journal of Computational Physics, 120(1):66–87, 1995.

[8] A. Chambolle. An algorithm for mean curvature motion. Interfaces and Free Bound-
aries, 6(2):195–218, 2004.

[9] A. Chambolle. An algorithm for total variation minimization and applications. Journal
of Mathematical Imaging and Vision, 20:89–97, 2004.

[10] A. Chambolle and M. Novaga. Approximation of the anisotropic mean curvature flow.
Mathematical Models and Methods in Applied Sciences, 17(6):833–844, 2007.

[11] L.-T. Cheng and Y.-H. Tsai. Redistancing by flow of time dependent eikonal equation.
Journal of Computational Physics, 227(8):4002–4017, 2008.

[12] M. C. Delfour and J.-P. Zolesio. Shapes and Geometries. Analysis, Differential Calculus,
and Optimization. Advances in Design and Control. SIAM, 2001.

[13] M. Elsey, S. Esedoḡlu, and P. Smereka. Diffusion generated motion for grain growth in
two and three dimensions. Preprint, 2009.

[14] S. Esedoḡlu, S. Ruuth, and Y.-H. Tsai. Threshold dynamics for shape reconstruction
and disocclusion. Proceedings of the ICIP, 2005.

[15] S. Esedoḡlu, S. Ruuth, and Y.-H. Tsai. Threshold dynamics for high order geometric
motions. Interfaces and Free Boundaries, 10(3):263–282, 2008.

[16] S. Esedoḡlu and P. Smereka. A variational formulation for a level set representation of
multiphase flow and area preserving curvature flow. Communications in Mathematical
Sciences, 6(1):125–148.

31

[17] L. C. Evans. Convergence of an algorithm for mean curvature motion. Indiana Uni-
versity Mathematics Journal, 42:553–557, 1993.

[18] H. Federer. Curvature measures. Transactions of the American Mathematical Society,
93:418–491, 1959.

[19] H. Garcke, B. Nestler, and B. Stoth. A multiphase filed concept: Numerical simulation-
sof moving phase boundaries and multiple junctions. SIAM J. Appl. Math., 60:295–315,
1999.

[20] R. Grzhibovskis and A. Heintz. A convolution thresholding scheme for the Willmore
flow. Interfaces and Free Boundaries, 10(2):139–153, 2008.

[21] C. Herring. Surface tension as a motivation for sintering, pages 143–179. McGraw Hill,
1951.

[22] M. Kimura and H. Notsu. A level set method using the signed distance function. Japan
J. Indust. Appl. Math., 19:415–226, 2002.

[23] D. Kinderlehrer, I. Livshitz, and S. Taasan. A variational approach to modeling and
simulation of grain growth. SIAM Journal on Scientific Computing, 28(5):1694–1715,
2006.

[24] P. Mascarenhas. Diffusion generated motion by mean curvature. CAM Report 92-33,
UCLA, July 1992. (URL = http://www.math.ucla.edu/applied/cam/index.html).

[25] B. Merriman, J. K. Bence, and S. Osher. Motion of multiple junctions: a level set
approach. Journal of Computational Physics, 112(2):334–363, 1994.

[26] W. W. Mullins. Two dimensional motion of idealized grain boundaries. J. Appl. Phys.,
27:900–904, 1956.

[27] S. Osher and J. Sethian. Fronts propagating with curvature-dependent speed: Al-
gorithms based on Hamilton-Jacobi formulation. Journal of Computational Physics,
79:12–49, 1988.

[28] L. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based noise removal
algorithms. Physica D, 60:259 – 268, 1992.

[29] G. Russo and P. Smereka. A remark on computing distance functions. J. Comput.
Phys., 163:51–67, 2000.

[30] S. J. Ruuth. A diffusion generated approach to multiphase motion. Journal of Com-
putational Physics, 145:166–192, 1998.

[31] S. J. Ruuth. Efficient algorithms for diffusion-generated motion by mean curvature.
Journal of Computational Physics, 144:603–625, 1998.

[32] S. J. Ruuth and B. Merriman. Convolution generated motion and generalized Huygens’
principles for interface motion. SIAM Journal on Applied Mathematics, 60:868–890,
2000.

32

[33] G. Sapiro and A. Tannenbaum. Affine invariant scale-space. International Journal of
Computer Vision, 11:25–44, 1993.

[34] G. Sapiro and A. Tannenbaum. On affine plane curve evolution. Journal of Functional
Analysis, 119:79–120, 1994.

[35] J. Sethian. A fast marching level set method for monotonically advancing fronts. Pro-
ceedings of the National Academy of Sciences, 93(4):1591–1595, 1996.

[36] P. Smereka. Semi-imlpicit level set methods for curvature flow and motion by surface
diffusion. Journal of Scientific Computing, 19:439–456, 2003.

[37] K. A. Smith, F. J. Solis, and D. L. Chopp. A projection method for motion of triple
junctions by level sets. Interfaces and Free Boundaries, 4(3):263–276, 2002.

[38] J. E. Taylor. A variational approach to crystalline triple-junction motion. Journal of
Statistical Physics, 95:1221–1244, 1999.

[39] Y.-H. Tsai, L. T. Cheng, S. Osher, and H.-K. Zhao. Fast sweeping methods for a class
of Hamilton-Jacobi equations. SIAM Journal on Numerical Analysis, 41(2):673–694,
2003.

[40] J. Tsitsiklis. Efficient algorithms for globally optimal trajectories. IEEE Transactions
on Automatic Control, 40:1528–1538, 1995.

[41] J. von Neumann. Metal interfaces. pages 108–110, Cleveland, OH, 1952. American
Society for Metals.

[42] X. Zhang, J.-S. Chen, and S. Osher. A multiple level set method for modeling grain
boundary evolution of polycrystalline materials. CAM Report 06-69, UCLA, December
2006. (URL = http://www.math.ucla.edu/applied/cam/index.html).

[43] H. Zhao. A fast sweeping method for eikonal equations. Mathematics of Computation,
74(250):603–627, 2005.

[44] H. K. Zhao, T. F. Chan, B. Merriman, and S. Osher. A variational level set approach
to multiphase motion. Journal of Computational Physics, pages 179–195, 1996.

33

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−10

0

10

20

30

40

50

60

70

80

Gδ t
(x,0) vs. x

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−10

0

10

20

30

40

50

60

70

80

(4G
3δ t/2

(x,0)−G
3δ t

(x,0))/3 vs. x

Figure 3: The convolution kernel involved in the more accurate algorithm for mean curvature motion is
not positive; the resulting algorithm therefore may not be monotone.

34

Figure 4: Let: A triple junction where three C2 curves meet. Right: When we zoom in on the junction,
the three sets (phases) meeting at the triple point can be approximated by an arrangement of sectors. The
discussion in Sections 4.2 and 5.3 perturbs from this configuration.

Figure 5: Distance function to a sector of opening angle 2θ. The boundary of the sector is shown in solid
black; the other contours are isocontours of the signed distance function. The ridge is the union of the three
dashed black lines (denoted ℓ1, ℓ2, and ℓ3) that separate the plane into three regions in each of which the
signed distance function is smooth.

35

Figure 6: A set Σ with a corner on its boundary, and the approximating sector S at the corner. The ridge

for the sector is shown in red by the dashed lines; that of the set Σ is shown in black dashed curves that are
tangent to the red dashed lines at the corner.

36

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 7: The black curve shows the initial phase configuration. The red curve is the inconsistent ap-
proximation resulting from unequal level set representation of the three phases around the junction, as in
“Algorithm A” of [25], after a few iterations; the inconsistency arises even though the level sets have not
become too steep or too flat during the short evolution. The blue curve is the algorithm proposed in this
paper, which stably preserves the correct angle condition at the junction.

Figure 8: The three convolved distance functions, Gt ∗ dj with j = 1, 2, 3, intersect in three curves whose
projections onto the xy-plane intersect in a point: the new location of the triple junction at the end of the
time step.

37

Figure 9: A more interesting curve under curvature motion. The initial curve is shown on the left. The
image on the right shows superimposed on each other the solution at time t = 3

256
computed at two different

resolutions: The black curve at 32×32 spatial resolution using 10 time steps, and the red curve at 1024×1024
resolution using 320 time steps.

Affine Invariant Motion by Curvature

10 20 30 40 50 60

10

20

30

40

50

60

Motion by Curvature

10 20 30 40 50 60

10

20

30

40

50

60

Figure 10: Comparison between regular (left) and affine invariant curvature motion (right). The initial
curve, an ellipse, is shown in red. Under affine invariant curvature motion, in remains an ellipse of fixed
eccentricity. Computation was carried out on a 64 × 64 domain with coarse time steps; blue curves show
the evolving curve at consecutive time steps.

38

Figure 11: Motion of a flower shaped curve under affine invariant curvature motion computed using
algorithm (80) & (81). The upper left plot shows the initial curve. The upper right and lower left plots
show the evolution of the curve at subsequent times. These computations were carried out on a 256 × 256
grid using 80 and 160 time steps, respectively. The lower right plot shows the result from the 256 × 256
computation at 160 time steps (black curve) superimposed with the same solution computed on a 32 × 32
grid using only 20 (eight times larger) time steps (red curve).

39

Figure 12: The first plot shows the initial condition for algorithm (89) & (90). The second plot shows
the solution at t = 1

64
computed using 30 time steps at 32× 32 spatial resolution (red curve), superimposed

with the computed result using 480 time steps at 512× 512 resolution (black curve). The error in the latter
is about one thirteenth of the former.

40

Figure 13: Sample computation with four phases. Plot on the left is the initial condition. The one on the
right is at time t = 1

64
. The black contour is the solution computed at 512 × 512 spatial resolution using

480 time steps; the red contour is the solution computed at 32 × 32 spatial resolution using 30 time steps.

Figure 14: Further evolution of four phase initial condition from Figure 13 at a 512× 512 resolution. One
of the phases disappears at an intermediate time; the evolution then seamlessly proceeds as a three phase
flow.

41

Figure 15: Evolution of two curves under the tentative algorithm for surface diffusion of Section 5.4. The
red curve is the initial condition in each case.

42

