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Abstract. We analyze a variational method for reconstructing a bar code

signal from a blurry and noisy measurement. The bar code is modeled as a

binary function with a finite number of transitions and a parameter controlling
minimal feature size. The measured signal is the convolution of this binary

function with a Gaussian kernel. In this work, we assume that the blur kernel

is known and establish conditions (involving noise level and variance of the
convolution kernel) under which the variational method considered recovers

essentially the correct bar code.

1. Introduction. In this work, we study a method for decoding bar code signals
from a laser-based scanner. This amounts to a deconvolution problem for a binary,
1D signal once the sensing process is modeled. The model and the analysis presented
here can also be applied to camera-based bar code scanners that operate by taking
a photograph of a bar code and reading the acquired image after some pattern
detection. Indeed, there are several issues associated with camera-based scanners
analogous to the laser-based scanners; chief among them are deblurring and super-
resolution. Both of these signal processing problems may also be approached from
the perspective of deconvolution for a binary image. Therefore the discussion in
this note could potentially be applied to analysis of camera-based scanners with
some modifications, including in decoding of 2D bar codes.

A typical 1D bar code consists of black bars over a white background. A scanner
sends out a narrow laser beam which moves across the bar code. The scanner is
equipped with a light detector. Therefore, when the laser beam is on the black part
of the bar, little light is reflected, and so, little light is detected. When the beam is
on the white part, more light is reflected and detected. As the beam moves across
the bar code at a constant speed, the amount of light detected, in the form of a
voltage reading, is a signal. The peaks of the signal occur when there is a lot of
reflection (white parts of the bar code) and the valleys correspond to when there is
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little reflection (black parts of the bar code). Thus the signal is an imprint of the
bar code.

One of the challenges of bar code reconstruction from the measured voltage
reading stems from the fact that the scanning laser beam is of finite width and
has an intensity profile across the beam. Thus, the reading of the bar code by the
laser is “non-local”. A simple model for the relationship between a bar code and
its signal is a convolution.

We start by describing the bar code as a binary function, taking on values of 0
or 1

z(x) ∈ {0, 1}, a.e., z ∈ BV.
The effect of the laser on the bar code is modeled by a point-spread function. For
simplicity, we will take it to be a scaled Gaussian

gα,t =
α√
4πt

e−x
2/4t. (1)

The parameter α captures how image intensity is converted to voltage, whereas the
parameter t describes the ‘width’ of the laser beam – smaller t makes the beam have
a smaller footprint while preserving the amount of energy. The signal recorded from
a bar code z(x) is

h(x) =

∫
gα,t(x− y)z(y) + r(x), (2)

where r(x) is the noise. We will assume that the noise is bounded in L2. Note that
in this signal model, we have reversed the roles of black and white bars – the signal
is large when the laser is on the black bar instead. This is just for convenience.
Such a signal may be obtained by subtracting an actual signal from a constant
background signal.

For an illustration of our signal model, we refer to Figure 1. The top figure shows
a bar code. The middle figure shows its representation as a binary function. The
bottom figure displays a simulated signal detected by the scanner.

The bar code decoding problem is to determine z(x), and the scanner parameters
α and t given a signal h(x) in (2). When α and t are known, the problem amounts
to deblurring. Without using any a priori information on the unknown z(x), the
problem is ill-conditioned.

A careful modeling and mathematically rigorous study of the bar code inverse
problem was provided in [4]. There, it was shown that under the above convolutional
model, a bar code is uniquely determined by its signal. The bar code reconstruction
problem was posed as a variational problem, and precise mathematical formulations
admitting solutions were provided. The computational approach of the paper was
based on the well-known phase-field approximation of Modica-Mortola [7]. The
numerical results contained in the paper demonstrated the effectiveness of this ap-
proach for the specific problem of bar code reconstruction.

Analysis of conditions under which the reconstructions by models of [4] approx-
imate the true bar code signal was carried out recently in [1] and [2]. In these
works, discussed in more detail in the next section, the convolution kernel is as-
sumed known and is taken to be a very specific function with small support and/or
the noise in the observed signal is assumed to be absent. Our present work takes
the point of view that convolution with wide kernels and the presence of noise are
essential features of interest in applications. Our goal, motivated by the encour-
aging numerical evidence from [4], is to exhibit a range for the parameters in the
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Figure 1. A barcode (top), its representation as a binary function
(middle), and its corresponding simulated signal (bottom) accord-
ing to the observation model (2).

models of [4] that lead to good reconstructions even when the convolution kernel,
with known α and t, may be very wide compared to the features in the bar code and
there is substantial noise present in the measurements. We are especially interested
in the relationship between reconstruction error, the blur parameter t, and the noise
level that can be tolerated.

The paper is organized as follows. In Section 2, we recall in detail the recon-
struction method and its approximation from [4]. We also discuss at greater length
the previous analytical results of Choksi et. al. that yielded explicit error estimates
in special situations. Then, in Section 3, we present our error estimates that apply
in the presence of noise and blur.

2. The reconstruction method. The computational approach proposed in [4] is
to estimate the bar code z(x) and the parameters α and t as the minimizer of the
following energy:

Eε(u) =

∫ [
ε(u′)2 +

1

ε
W (u)

]
dx+ λ‖gt ∗ u− h‖2. (3)

Here ε > 0 is a small parameter to be chosen by the user, and λ is the fidelity
constant which can, in principle, be related to the amplitude of noise expected. The
function W (u) is the standard double-well potential:

W (u) = u2(1− u)2, (4)

which is displayed in Figure 2.
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Figure 2. The graph of the double well W (s).

In what follows, we will always assume that the Gaussian kernel is known and
simply set α to be 1, concentrating on the role of t on the reconstruction. For
simplicity of notation, we set gt = g1,t. Energy (3) is used in [4] as an approximation
of the sharp interface model

min
u(x)∈{0,1}

c0

∫
|u′| dx+ λ‖gt ∗ u− h‖2L2 . (5)

which is nothing else than Rudin, Osher, and Fatemi’s total variation model [8]
in the deblurring setting, restricted to binary functions. The constant c0 > 0 is
given by the details of the specific choice of the double well potential W in (3) and
depends on its profile between the wells; see [7].

In practice, variational method (3) works very well, and reconstructs the bar
codes from very blurry and noisy observations; extensive numerical experiments
are provided in [4], including for the case where the parameters α and t in (1)
are part of the unknown. We recall from [4] that even when α and t are known, a
regularization term that controls the number of transitions (e.g. the total variation)
in u is essential. The constraint of z(x) being binary is not enough to control
spurious oscillations (interfaces).

It follows from results in standard references [7, 3] that (3) converges in the
sense of Gamma convergence to (5) (up to a multiplicative constant in front of
the regularization term) as ε → 0+. Such convergence results do not always come
with explicit error estimates. In this note, our goal is to obtain guaranteed error
bounds: identify conditions on the blur level t and noise level ‖r‖L2 as well as
the approximation parameter ε, that ensure accurate reconstruction of the original
bar code z(x). Although this can be approached in two separate steps, namely
first studying distance of a minimizer of (5) to the true bar code and then studying
convergence rate of (3) to (5), here we directly estimate the distance of the minimizer
of (3) from z(x) since this turns out to be more succinct.

In [1], the authors provide error estimates between the true bar code z(x) and the
estimated one obtained as the minimizer of energy (5). Their analysis is restricted
to a very specific, compactly supported blurring kernel, and needs to assume that
the support of the kernel is small compared to the minimal feature size (7) so that
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no serious blurring has in fact taken place. This strict assumption is relaxed in the
more recent work [2] which also considers 2D signals; however, the specific models
studied there allow no noise and focus on an unconstrained version of model (5)
– i.e. the minimization is over all functions. However, as we show in this note,
one can in fact obtain error estimates that are valid in the presence of noise and
for a Gaussian with no restriction on its width. In particular, we show that for a
given value of the parameter t describing the width of the Gaussian, there exists a
(non-zero) noise level and corresponding choice of the parameter λ for which the
minimizer of (3) essentially captures the true, uncorrupted signal z(x) provided that
ε is small enough. Indeed, owing to the very special form of bar code signals, one
can write down a quite explicit error bound in this vein, as we now explore.

3. Error estimate. Let us be more precise about the binary functions that rep-
resent bar code images. In one dimension, a bar code is the characteristic function
of a finite union of disjoint intervals. For convenience, we will assume that the
binary function is supported in (0, 2π) and has been extended periodically to R.
Let N denote the number of intervals present in the support of the bar code. Let
Ij = (bj − dj , bj + dj), with bj + dj < bj+1 − dj+1 for j = 1, 2, . . . , N − 1, denote
the j-th interval. The width of the interval |Ij | = 2dj . A bar code z(x) will then
be represented as

z(x) =

N∑
j=1

1Ij (x). (6)

The places where z(x) is equal to 1 correspond to the black bars. A bar code
starts and ends with a white bar, therefore, interlaced between the black bars are
N + 1 white bars. Let us denote the intervals where z(x) = 0 by Lj , with j =
1, 2, . . . , N + 1. Figure 3 illustrates the situation of the disjoint intervals Ij and Lj .

0 2π

L1 I1 L2 I2 IN LN+1

Figure 3. The arrangement of the subintervals Ij and Lj on the
interval [0, 2π].

An important parameter is the minimal feature size ω > 0, which we define as

ω = min

{
min

j=1,2,...,N
|Ij |, min

j=1,2,...,N+1
|Lj |

}
. (7)

In words, ω represents the minimum size of the maximal intervals on which the
binary function is constant. Let B(N,ω) denote the set of all bar codes with at
most N intervals and minimal feature size at least ω.

The main result we prove is the following.

Theorem 3.1. Fix N ≥ 1, ω > 0, and t > 0. Let uε be a minimizer of (3). Also,
assume that ε ∈ (0, 1) and r 6= 0 in (2). Then, there exist constants C1 and C2

depending only on N and ω such that for

λ =
1

‖r‖2L2

(8)
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we have the error estimate

‖uε − z‖L2 ≤ C1e
N2t‖r‖

1
4

L2 (9)

whenever z ∈ B(N,ω) and ε ≤ ‖r‖2L2 . Moreover,

‖uε‖BV ≤ C2N. (10)

The theorem is an error estimate on the reconstructions found by the variational
model (3). It says that for the typical values of the parameter λ, the model gives
minimizers whose number of transitions is comparable to that of the exact bar code,
and the L2 error of which can be estimated in terms of the noise level.

The proof of the theorem is given towards the end of this section. We start by
establishing a number of results needed for the proof.

We first construct a sequence {pε(x)} of prototype minimizers for energy (3),
which is analogous to the recovery sequence in Gamma convergence arguments.
Define the function

ψ(x) =

 0 for x ≤ −1
(x+ 1)/2 for − 1 < x < 1
1 for x ≥ 1

.

A prototypical minimizer pε(x) can then be defined as

pε(x) =

N∑
j=1

{
ψ

(
x− bj + dj

ε

)
− ψ

(
x− bj − dj

ε

)}
.

One can view pε(x) as a “smoothed” version of the bar code z(x). It is important
to keep the bars in the smoothed bar code well separated so we set ω > 2ε. Define

σ(x) =


0 for x ≤ −1
(x+ 1)/2 for − 1 < x < 0
(−x+ 1)/2 for 0 ≤ x < 1
0 for x ≥ 1

,

that is, σ(x) is a hat function centered at 0 with height 1/2 and width 2. Then

z(x)− pε(x) =

N∑
j=1

{
σ

(
x− bj + dj

ε

)
− σ

(
x− bj − dj

ε

)}
.

We can show by direct calculation that

‖pε − zε‖2L2 =
N

3
ε. (11)

Consider the energy in (3) corresponding to pε(x)

Eε(pε) =

∫ [
ε(p′ε)

2 +
1

ε
W (pε)

]
dx+ λ‖gt ∗ pε − h‖2L2 .

The contribution from the first term on the right-hand side is easy to calculate and
is equal to N . The second term can also be evaluated explicitly, giving 2N/15.
Thus we have

Eε(pε) ≤
17

15
N + λ‖gt ∗ pε − h‖2L2 . (12)

Now we use the observation model (2) to get

gt ∗ pε − h = gt ∗ (pε − z)− r.
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Since gt is a Gaussian kernel, the convolution operator associated with it is bounded.
Hence

‖gt ∗ (pε − z)− r‖2L2 ≤ C‖pε − z‖2L2 + ‖r‖2L2

≤ CNε

3
+ ‖r‖2L2 ,

upon using (11). Thus from (12) we arrive at the estimate

Eε(pε) ≤ 2C1N + λ
(
C2Nε+ ‖r‖2L2

)
, (13)

where C1 and C2 are constants independent of ε.
Let uε(x) denote a global minimizer of energy (3):

uε = arg min
u∈H1

∫ [
ε(u′)2 +

1

ε
W (u)

]
dx+ λ‖gt ∗ u− h‖2L2 (14)

Also, denote the minimum energy by

mε = Eε(uε). (15)

We will be using well-known ideas from [7] for the next result. Indeed the theory
of Modica-Mortola approximation is well developed. However, none of the known
results in the literature are in the form that we can directly use. So, instead of
starting with known results and modifying them to suit our purpose, we choose to
derive the results we need to make the exposition self-contained.

Lemma 3.2. Let uε be a minimizer of (3). Then, there exists a γ ∈ (0, 1) such
that the binary image

bε(x) = 1{x :uε>γ}(x)

satisfies
‖bε − uε‖2L2 ≤ C1ε, (16)

and
‖bε‖BV ≤ C2mε, (17)

where C1 and C2 are independent of ε.

Proof. We note that uε(x) may take on values below 0 and above 1, and possibly
have oscillations, as shown in the cartoon in Figure 4. Let δ > 0. We partition the
domain for uε into

Sε = {x : |uε(x)| < δ or |uε(x)− 1| < δ},
and its complement

Scε = {x : |uε(x)| ≥ δ and |uε(x)− 1| ≥ δ}.
The set Sε is the “good set” where uε is either near 0 or near 1. Its complement
is where uε makes rapid transitions or where it undershoots or overshoots. Again,
refer to Figure 4.

We first establish that Scε is bounded. Consider the double well function W (u)
in (4) which is displayed in Figure 2. If x ∈ Scε , then W (uε(x)) ≥ α > 0. Since

mε := Eε(uε) ≥
∫

1

ε
W (uε(x))dx

≥
∫
Sc
ε

1

ε
W (uε(x))dx

≥ α

ε
|Scε | .
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Figure 4. A cartoon of a typical section of the minimizer uε(x).

Therefore, we have

|Scε | ≤
ε

α
mε. (18)

Let bε(x) as in Lemma 3.2 with some γ ∈ (δ, 1− δ). We split Sε into two parts:

S(1)
ε = {x : |uε| < δ}, and S(2)

ε = {x : |uε − 1| < δ}.

On S
(1)
ε , because γ > δ, bε(x) = 0. Similarly, on S

(2)
ε , we have bε(x) = 1. Therefore∫

S
(1)
ε

(uε − bε)2dx =

∫
S

(1)
ε

u2
εdx, (19)

and ∫
S

(2)
ε

(uε − bε)2dx =

∫
S

(1)
ε

(uε − 1)2dx. (20)

Because of the specific form of W (s), we have

W (s) ≥ w0s
2 for − δ ≤ s ≤ δ,

W (s) ≥ w0(s− 1)2 for 1− δ ≤ s ≤ 1 + δ,

for some w0 ≥ 0. Using the above in (19), we get∫
S

(1)
ε

(uε − bε)2dx ≤ 1

w0

∫
S

(1)
ε

W (uε)dx ≤
1

w0

∫
W (uε)dx ≤

1

w0
εmε.

Similarly, from(20), we have∫
S

(2)
ε

(uε − bε)2dx ≤ 1

w0
εmε.

Therefore, we can conclude that∫
Sε

(uε − bε)2dx ≤ 2

w0
εmε. (21)

Next we deal with contributions to the norm of the difference between uε and bε
from the set Scε . We split this set into three parts:

Sc(1)
ε = {x : uε(x) ≤ −δ}, Sc(3)

ε = {x : uε(x) ≥ 1 + δ},

and S
c(2)
ε , which is the remainder of the set. For x ∈ Sc(1)

ε , bε(x) = 0, and so, we
can use the previous argument to get∫

S
c(1)
ε

(uε − bε)2dx ≤ 1

wo
εmε.
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For x ∈ Sc(3)
ε , bε = 1, and we get∫

S
c(3)
ε

(uε − bε)2dx ≤ 1

wo
εmε.

On S
c(2)
ε , uε(x) is going through rapid transitions while bε is either 0 or 1. Since

uε(x) remains bounded between δ and 1− δ, we see that

(uε − bε)2 ≤ 1,

and therefore we can conclude that∫
S

c(2)
ε

(uε − bε)2dx ≤ |Sc(2)
ε | ≤ |Scε | ≤

ε

α
mε,

by (18). The bounds on the difference over these three parts imply that∫
Sc
ε

(uε − bε)2dx ≤
(

2

w0
+

1

α

)
ε,

which together with (21) proves the estimate (16).
To prove the next part of the lemma, we note that [7]

|u′ε|
∣∣∣W (uε)

1/2
∣∣∣ ≤ ε(u′ε)2 +

1

ε
W (uε),

so that ∫
|u′ε|

∣∣∣W (uε)
1/2
∣∣∣ dx ≤ mε.

Now, letting

Ψ(s) =

∫ 2

0

W (ξ)1/2dξ,

we see that ∣∣(Ψ(uε))
′∣∣ = |u′ε|W (uε)

1/2.

Therefore, we can conclude that∫ ∣∣(Ψ(uε))
′∣∣ dx ≤ mε.

From the co-area formula [5] we have∫ ∞
−∞

Per (Ψ(uε) > µ) dµ =

∫ ∣∣(Ψ(uε))
′∣∣ dx ≤ mε, (22)

where Per() refers to the perimeter of the set (). In one dimension

Per(Ψ(uε) > µ) = {x : Ψ(uε(x)) = µ}.
Noting that Per(Ψ(uε) > µ) = Per(uε > Ψ−1(µ)), let

I =

∫ ∞
−∞

Per(uε > Ψ−1(µ))dµ.

Then,

I ≥
∫
{µ : Per(uε>Ψ−1(µ)>M}

Per(uε > Ψ−1(µ))}dµ

≥M
∫
{µ : Per(uε>Ψ−1(µ)>M}

dµ

≥M
∣∣{µ : Per(uε > Ψ−1(µ)) > M}

∣∣ .
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Therefore, we can conclude from (22) that∣∣{µ : Per(uε > Ψ−1(µ)) > M}
∣∣ ≤ mε

M
Now choose

M =
2mε

Ψ(3/4)−Ψ(1/4)
,

so that we have∣∣{µ : Per(uε > Ψ−1(µ)) > M}
∣∣ ≤ Ψ(3/4)−Ψ(1/4)

2
.

Then, it is clear that over the interval µ ∈ [Ψ(1/4),Ψ(3/4)], there exists µ∗ such
that

Per(uε > Ψ−1(µ)) < M.

Thus, letting γ = Ψ−1(µ∗), we can conclude that

Per(uε > γ) < M =
2mε

Ψ(3/4)−Ψ(1/4)
.

Recalling now that ‖bε‖BV = Per(uε > γ), we have demonstrated (17) and the
proof of Lemma 3.2 is complete.

Remark 1. We provide a little intuition into the results of Lemma 3.2. It states
that one can create a binary function bε(x) from the minimizer uε(x) satisfying
(16). Moreover, the number of jumps in the binary function bε(x) is proportional
to the minimum energy mε.

The following lemma gives a lower bound on binary functions that are smoothed
by a Gaussian kernel and can be interpreted as how much information is lost from
a bar code function z(x) when it is convolved with the kernel gt in (1):

Lemma 3.3. For each N ≥ 1 and ω > 0 there exists a constant C > 0 depending
only on N and ω such that

‖gt ∗ (z − y)‖L2 ≥ C exp
(
− N2t

2

)
‖z − y‖4L2 (23)

for any z ∈ B(N,ω) and any other binary function y.

Proof. Fix N ≥ 1 and ω > 0 and take any z ∈ B(N,ω). Recall that z then
has the form in (6); it has 2N discontinuities (transitions), located at bj ± dj for
j = 1, 2, . . . , N .

Let p(x) denote the unique (up to sign) 2π-periodic real trigonometric polynomial
of degree 2N that has its roots at the transition points bj ± dj and that has unit
L2 norm. Fix the sign of p(x) by demanding that p(b1) > 0. Recall (e.g. [6]) that
the trigonometric interpolant p(x) is by definition a function of the form

p(x) = a0 +

N∑
j=1

aj cos(jx) +

N∑
j=1

aN+j sin(jx) (24)

satisfying the 2N+1 interpolation conditions listed above for an appropriate choice
of the constants a0, a1, . . . , a2N . It can be expressed alternatively in the following
Lagrange form

p(x) = θ

N∏
j=1

[
sin

1

2
(x− bj − dj) sin

1

2
(x− bj + dj)

]
(25)
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for some constant θ 6= 0. Using (25) and the requirement ‖p‖L2 = 1, the constant
θ can be estimated as

0 < c1 ≤ θ ≤ c2
where c1 and c2 depend only on N and ω. Also as a consequence of ‖p‖L2 = 1, we
have the simple bound |aj | ≤ 1 for all j = 0, 1, . . . , 2N , on the coefficients appearing
in the standard from (24) of p(x).

From representation (25), it also follows easily that there exist constants c3 > 0
and c4 depending only on N and ω such that

|p′(bj ± rj)| > c3 for all j, (26)

and

‖p′′‖L∞ ≤ c4. (27)

Additionally, it can be seen, e.g. from (25), that p′(x) also has exactly 2N simple
roots that must therefore interlace those of p(x). Combined with the bounds (26)
and (27), this means that on the intervals Ij , for j = 1, 2, . . . , N , and Lj , for
j = 2, 3, . . . , N

|p(x)| ≥ c5 min{|x− (bj − dj)|, |x− (bj + dj)|}, (28)

where c5 > 0 depends only on N and ω. The inequality extends to cover the L1

and LN+1 where we use periodicity to say that on these intervals

|p(x)| ≥ c5 min{|x− bN − dN + 2π|, |x− b1 + d1|},

for bN + dN − 2π < x < b1 − d1.
It is now crucial to observe that for any binary function y(x)

z(x)− y(x) ≥ 0 for x ∈
N⋃
j=1

Ij , (29)

and

z(x)− y(x) ≤ 0 for x ∈
N+1⋃
j=1

Lj . (30)

Let us write

‖z − y‖2 =

n∑
j=1

∫
Ij

|z − y|2 dx+

N+1∑
j=1

∫
Lj

|z − y|2 dx.

The average contribution from the individual terms on the right-hand side is ‖z −
y‖2/(2N+1). Therefore, there must be an interval I∗ from the subintervals {Ij}Nj=1

and {Lj}N+1
j=1 such that∫

I∗

(z − y)2 dx = |{x ∈ I∗ : |z − y| = 1}| ≥ 1

N
‖z − y‖2L2 . (31)

Let

δ := |{x ∈ I∗ : |z − y| = 1}|. (32)

so that δ > 1
N ‖z − y‖

2
L2 by (31).

Equations (29) and (30), together with our construction of p(x) with the property
that p(b1) > 0 implies that ∫

(z(x)− y(x))p(x) ≥ 0.
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Moreover, we have ∫
(z − y)p dx ≥

∫
I∗

(z − y)p dx

=

∫
{x∈I∗ : |z−y|=1}

|p(x)| dx.

Consider p(x) on the interval I∗. Denote the interval by its end points as I∗ =
(a∗, a

∗). Then by (28) In this interval

p(x) ≥ c5 min{|x− a∗|, |x− a∗|}.
Then it is easy to see that∫

{x∈I∗ : |z−y|=1}
|p(x)| dx ≥ 2

∫ δ/2

0

c5x dx

=
1

4
c5δ

2

≥ 1

4
c6‖z − y‖4L2 . (33)

where c6 > 0 depends only on N and ω.
Inequality (33) implies that at least for one k ∈ {1, 2, . . . , N} we have∫
(z−y) cos(kx) dx ≥ C

2N + 1
‖z−y‖4L2 or

∫
(z−y) sin(kx) dx ≥ C

2N + 1
‖z−y‖4L2 .

Assuming with no loss of generality the former, we get

‖gt ∗ (z − y)‖2L2 ≥ C‖z − y‖8L2 ‖gt ∗ cos(kx)‖2L2 ≤ C‖z − y‖8L2 exp
(
−N2t

)
where the constant C > 0 depends only on N and ω, completing the proof.

We can now proceed to prove Theorem 3.1.

Proof. We have

Eε(pε) ≥ Eε(uε)
≥ λ‖gt ∗ uε − h‖2L2

= λ‖gt ∗ (uε − bε) + (gt ∗ bε − h)‖2L2 , (34)

where bε is as in Lemma 1. Note the inequality

‖a+ b‖2L2 ≥
1

2
‖a‖2L2 − 3‖b‖2L2 . (35)

Using (35) in (34), we have

Eε(pε) ≥
λ

2
‖gt ∗ bε − h‖2L2 − 3λ‖gt ∗ (uε − bε)‖2L2 (36)

To obtain a bound on the second term in the right-hand side of (36), we use the
fact that the convolution with gt is bounded independent of t > 0, so that

‖gt ∗ (uε − bε)‖2L2 ≤ C‖uε − bε‖2L2 .

Now we use Lemma 3.2 to obtain

‖gt ∗ (uε − bε)‖2L2 ≤ Cε. (37)

For the first term in (36), we have

‖gt ∗ bε − h‖2L2 = ‖gt ∗ bε − gt ∗ z − r‖2L2 ,
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using our measurement model. Using (35), we get

‖gt ∗ bε − h‖2L2 ≤
1

2
‖gt ∗ (bε − z)‖2L2 − 3‖r‖2L2 . (38)

Now using (37) and (38) in (36), we arrive at

Eε(pε) ≥
λ

4
‖gt ∗ (bε − z)‖2L2 −

3λ

2
‖r‖2L2 − 3Cλε. (39)

Putting (13) and (39) together, we find

λ

4
‖gt ∗ (bε − z)‖2L2 −

3

2
λ‖r‖2L2 − 3λC0ε ≤ 2C1N + λ

(
C2Nε+ ‖r‖2L2

)
,

which simplifies to

λ

4
‖gt ∗ (bε − z)‖2L2 ≤ 2C1N + λ(3C0 + C2N)ε+

5λ

2
‖r‖2L2 , (40)

In practice, λ in (3) is chosen low enough so that the number of transitions in
(i.e. the total variation of) the minimizer uε is limited (comparable to the expected
total variation of the exact solution). It is easy to estimate how large λ can be
chosen while still keeping total variation of uε comparable to N . We have:

mε := Eε(uε) ≤ Eε(pε) ≤ 2N + λ
(
CNε+ 2‖r‖2L2

)
according to (13). We see that, for example, as long as

λ <
2

‖r‖2L2

and ε < ‖r‖2L2 (41)

we have
‖uε‖BV ≤ mε ≤ CN.

Hence, choosing for example λ = 1
‖r‖2

L2
, bound (40) has the form

‖gt ∗ (bε − z)‖2L2 ≤ C‖r‖2L2 (42)

where the constant C depends only on N and ω. Using now Lemma 3.3 in (42), we
get

‖bε − z‖2L2 ≤ CeN
2t‖r‖

1
8

L2 . (43)

Combining (43) with (16) from Lemma 3.2, we end up with

‖uε − z‖L2 ≤ CeN
2t‖r‖

1
4

L2

which establishes the claim.

Remark 2. We can provide an intuitive interpretation of the statement in Theorem
3.1. It states that the reconstruction error scales like ‖r‖1/4 where recall that r(x)
is the noise in the signal. The constant multiplying the noise term is exponential
in the product of N and t, where recall that N is the number of bars, and t is the
width of the Gaussian blur kernel. Since the number of bars in a typical bar code
is bounded, the theorem provides some insight to how much blur the method in [4]
can tolerate.

Remark 3. A reviewer of this paper pointed out that the error estimate in Theorem
3.1 involves a strong (L2) norm, and suggests that estimates involving a weaker
norm, such as H−1, may be even more useful. We agree with this assessment but
we do not see a clear way to obtain error estimates involving a weaker norm using
the techniques employed in this work.
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