
Threshold Dynamics for the Piecewise Constant
Mumford-Shah Functional

Selim Esedoḡlu∗
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Abstract

We propose an efficient algorithm for minimizing the piecewise constant
Mumford-Shah functional of image segmentation. It is based on the thresh-
old dynamics of Merriman, Bence, and Osher for evolving an interface by its
mean curvature. We show that a very fast minimization can be achieved by
alternating the solution of a linear parabolic partial differential equation and
simple thresholding.

1 Introduction

Image segmentation is one of the fundamental tasks of computer vision. It forms
a crucial preliminary step for subsequent object recognition and interpretation[21].
Its goal is to partition a given image into regions that contain distinct objects. The
most common form of segmentation is based on the assumption that distinct ob-
jects in an image have different and approximately constant (or slowly varying)
colors (or brightnesses in the case of monochrome imagery). A natural approach is
therefore to try to decompose an image domain into approximately homogeneous
regions that are separated by sharp changes in image features (such as colors or
brightness). The boundaries of the homogeneous regions are called “edges”; they
correspond to places in an image where different objects meet.
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Variational models for image segmentation have had great success. In this ap-
proach, the correct segmentation for an image is exhibited as the minimizer of an
appropriately chosen energy. One of the most successful and pioneering models
that adopt this approach is the model of Mumford and Shah [22]. It poses the seg-
mentation problem as that of a best approximation: It looks for the best “cartoon-
like” (i.e. piecewise smooth) approximation of minimal complexity for a given
image. Once such an approximation is constructed, the homogeneous regions and
their boundaries become obvious.

In this paper we propose an extremely efficient PDE based algorithm for min-
imizing a version of the Mumford-Shah segmentation functional. The algorithm
stems from the work of Merriman, Bence, and Osher (MBO) on diffusion gener-
ated motion by curvature [17, 18]. Similar to the MBO algorithm, our algorithm
works by alternating the solution of a linear diffusion equation with thresholding.
Thus, unlike other PDE based methods of minimizing the Mumford-Shah func-
tional that involve complicated (sometimes degenerate) equations, all steps in our
algorithm are amenable to fast numerical solution by well-established techniques.

This paper is organized as follows: In Section 2 we describe the Mumford-
Shah model along with several of its variants, and introduce notation. Section 3
describes some recent previous work on fast solution of variational segmentation
models; in particular, the work of Gibou and Fedkiw, and Song and Chan are re-
called. Section 4 is devoted to recalling the Chan-Vese algorithm, which is a level
set based method of minimizing certain variants of the Mumford-Shah model. Sec-
tion 5 recalls the Merriman, Bence, Osher threshold dynamics for motion by mean
curvature; this forms the basis on which we build our proposed algorithm for min-
imizing Mumford-Shah functional in Section 6. Section 7 describes some variants
and extensions of the algorithms proposed in Section 6. Section 8 presents results
of numerical experiments, and Section 9 provides a discussion indicating further
improvements.

2 Mumford-Shah Model

The full Mumford-Shah model is a variational problem for approximating a given
image by a piecewise smooth image of minimal complexity. Let D ⊂ R

N be a
bounded domain with Lipschitz boundary, modeling the image domain (for exam-
ple, the computer screen). Let f(x) : D → [0, 1] represent a grayscale image;
we merely assume that f(x) is a bounded measurable function. To find the seg-
mentation of f(x), Mumford and Shah proposed in [22] carrying out the following
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minimization:

min
u:D→R
K⊆D

{

MS(u,K) :=

∫

D\K
|∇u|2 dx+ µLength(K) + λ

∫

D

(u− f)2 dx

}

(1)
Here, K is to be a closed subset of D given by the union of a finite number of
curves. It represents the set of “edges” (i.e. boundaries of homogeneous regions) in
the image f . The function u is the piecewise smooth approximation to f . Because
of the Dirichlet integral taken over the set D \ K in the energy, u is forced to be
smooth in each connected component of D\K . However, it is allowed have jumps
across the curves that make up K .

The full Mumford-Shah functional (1) poses a formidable optimization prob-
lem. A number of algorithms have been proposed for its solution. For example, the
work of Ambrosio and Tortorelli [1] shows how to approximate (1), in the sense
of Gamma convergence [7], with a class of energies that are much more tractable
numerically and that can be subsequently minimized via gradient descent; see [13]
for numerical results. This is one of the best known ways to tackle (1) in its full
generality.

In many vision applications, solving (1) in its full generality is an overkill
(However, there are also many situations in which it is not general enough). For
example, one might know that the objects in the scenes of interest are not only of
smoothly varying, but actually approximately constant color (or grayscale inten-
sity). Or, one might know in advance the maximum number of objects in the scene
(and hence the maximum number of regions in the segmentation). An example of
such an application is medical imaging, where one might for instance be interested
in segmenting brain MRI images into background, gray matter, and white matter.
Foreground – background segmentation is also a simple example in which one is
interested in segmentations that only have two regions. In such scenarios it makes
sense to work with a simplified version of (1) that is easier to minimize.

A very useful simplification of (1) is to restrict the minimization to functions
(i.e. segmentations) that take a finite number of values. The resulting model is
commonly referred to as the piecewise constant Mumford-Shah model. In this
paper we will be concerned especially with the case where the solution takes only
two (unknown) values, and hence is of the form u(x) = c11Σ(x) + c21D\Σ(x),
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where Σ ⊆ D. In this case, (1) reduces to the following minimization problem:

min
Σ⊆D

c1,c2∈R

{

E(Σ, c1, c2) := Per(Σ;D)

+λ

∫

Σ
(c1 − f)2 dx+ λ

∫

D\Σ
(c2 − f)2 dx

}

. (2)

Model (2) is known as the two-phase, piecewise constant Mumford-Shah model.
Our algorithm for minimizing this functional efficiently is presented in Section
6. If (1) is restricted instead to segmentations that take at most four values, an
approximate version of the resulting functional can be written as

min
Σ1,Σ2⊂D
c1,...,c4∈R

{

E(Σ1,Σ2; c1, . . . , c2) := Per(Σ1;D) + Per(Σ2, D)

+ λ

∫

Σ1∩Σ2

(c1 − f)2 dx+ λ

∫

Σ1∩Σc

2

(c2 − f)2 dx

+λ

∫

Σc

1
∩Σ2

(c3 − f)2 dx+ λ

∫

Σc

1
∩Σc

2

(c4 − f)2 dx.

}

(3)

In Section 7 we indicate how the proposed algorithm for the two-phase case (2)
given in Section 6 can be extended to approximate multi-phase versions such as
(3). The two-phase model (2) and the approximate multi-phase models such as (3)
were previously considered by Chan and Vese using a level set formulation [5, 6].
Their technique is described in greater detail in Section 4.

3 Previous Work

There has been a lot of recent research activity on devising efficient algorithms
for minimizing the Mumford-Shah and related segmentation energies. We have
already mentioned the approach of Ambrosio and Tortorelli [1] which uses Gamma
convergence to approximate the original functional with elliptic ones. It can be
regarded as a diffused interface method, in which the “edges” in the segmentation
are represented as thin transition layers. Another very successful PDE technique
is via the level set method of Osher and Sethian [23, 24] to represent the unknown
curves in the minimization of (1) or (2). This is the approach taken by Chan and
Vese [5, 6], whose algorithms are among the most reliable to date. Section 4 is
devoted to a detailed review of the Chan-Vese algorithm.
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Recently, a number of new algorithms have been proposed for fast minimiza-
tion of the piecewise constant Mumford-Shah functional. These papers are based
on the observation that the PDEs resulting from the variational approaches men-
tioned above are hard to solve numerically. In particular, common solution tech-
niques for these PDE do not scale very well with respect to the number of pixels
in the given image. Therefore, several researchers proposed algorithms that try to
avoid these difficult equations.

Gibou and Fedkiw [11] proposed an algorithm whose connections to the Mumford-
Shah model are quite obscure, but which nevertheless yields segmentations that
are similar to the ones obtained from Mumford-Shah based techniques. Their al-
gorithm consists of several pre- and post-processing steps: First, the given origi-
nal image is preprocessed by smoothing via the Perona-Malik non-linear diffusion
scheme ([25]). Then, the k-means algorithm ([16]) is run (with two means) to sep-
arate the processed image into two phases. Finally, to introduce a way for the user
to adjust the level of detail in the segmentation, the phase boundary thus found is
evolved via motion by mean curvature for a certain amount of time. This algorithm
has at least three parameters that need to be tuned in it (two for the Perona-Malik
scheme, and one for the motion by mean curvature step) , whereas the piecewise
constant Mumford-Shah model (2) has only one. A fundamental issue (among sev-
eral) that we see with this algorithm is based on a rule of thumb we learned from
Prof. J.-M. Morel: In machine vision applications, an algorithm with more than
one parameter that needs to be tuned is actually very difficult to make completely
automatic. Nevertheless, the approach of the present paper was partially motivated
by this work of Gibou and Fedkiw, especially in regard to combining diffusion and
thresholding for the purpose of segmentation.

Another recent proposal for fast segmentation came from Song and Chan [32].
Their approach, unlike that of Gibou and Fedkiw, is to stick with the piecewise
constant model (2) – or its multiphase version – but to find a non-PDE technique of
minimizing it. The algorithm they put forth commences with an initial partitioning
of the pixels into two groups (phases), and then tests each pixel to see if switching
it to the other phase decreases energy (2). If it does, the pixel is removed from
one phase and added to the other. The algorithm sweeps through the pixels in the
image with this procedure until no pixel can be updated. Numerical experiments
with simple images that are close to being two valued show that this algorithm can
find reasonable segmentations very quickly (in a matter of a few sweeps). However,
it is also possible for it to terminate prematurely and get stuck; see [3] for examples
where an improvement was also proposed.
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4 Chan-Vese Algorithm

In [5] Chan and Vese proposed a level set method for numerical realization of the
optimization problem (2). In this approach, the boundary of the unknown set Σ is
represented as the 0-level set of a Lipschitz continuous function φ(x) : D → R so
that Σ = {x ∈ D : φ(x) ≥ 0}. The idea is then to express the functional (2) in
terms of the level set function φ. One ends up with:

min
φ:D→R

c1,c2∈R

∫

D

|∇H(φ)| + λ
{

H(φ)(c1 − f)2 + (1 −H(φ))(c2 − f)2
}

dx

︸ ︷︷ ︸

:=CV (φ,c1,c2)

. (4)

where H(ξ) : R → R is the Heaviside function:

H(ξ) :=

{
0 if ξ < 0,
1 if ξ ≥ 0.

In practice, it is necessary to use a regularized version Hε of (i.e. a smooth ap-
proximation to) H(ξ). The resulting Euler-Lagrange equation for φ leads to the
following gradient descent PDE:

φt = H ′
ε(φ)

{

∇ ·
( ∇φ
|∇φ|

)

− λ
{

(c1 − f)2 − (c2 − f)2
}}

. (5)

On the other hand, variation of (4) with respect to the two constants c1, c2 show
that the optimal choice of these for a given φ is:

c1 =

∫

D
H(φ)f dx

∫

D
H(φ)dx

and c2 =

∫

D
(1 −H(φ))f dx

∫

D
(1 −H(φ)) dx

. (6)

The term ∇ ·
(

∇φ
|∇φ|

)

that appears in the right hand side of PDE (5) has a nice
geometric interpretation: it is the curvature of the level sets of the function φ. It
is also a degenerate elliptic term; clearly there are problems when |∇φ| = 0. It
makes (5) a costly PDE to solve.

We remark that the specific manner in which the Heaviside function in (5) is
regularized plays an important role in the resulting flow. In the Chan-Vese paper
[5], the Heaviside function is regularized as Hε(ξ) := 1

π
arctan(x/ε) + 1

2 with
ε = 1 regardless of the resolution. There, the authors point out that the non-
compactly supported regularization allows their algorithm to detect interior con-
tours in segmentations. This claim is verified in [4], where it is also shown that one
could even replace the H ′

ε(φ) term by 1. Another important point is that a casual
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regularization of H ′
ε(φ) may lead to inaccuracies due to anisotropy induced by the

grid. It is possible but non-trivial to regularize H ′
ε accurately; how to do so has

been shown in detail in the recent work [8] of Engquist et. al.
Alternatively, one can replace the singular term H ′

ε(φ) that appears in (5) with
|∇φ|:

φt = |∇φ|
{

∇ ·
( ∇φ
|∇φ|

)

− λ
{

(c1 − f)2 − (c2 − f)2
}}

. (7)

This is the approach of Marquina and Osher in [14] to solving the total variation
flow – a closely related problem. It is easy to see that the evolution defined by (7)
also decreases the energy (4). Furthermore, (7) can be interpreted in terms of the
motion of the level sets of φ; each level set of φ moves with the following speed V
in the outer normal direction:

Normal velocity V = κ− λ
(

(c1 − f)2 − (c2 − f)2
)

. (8)

where κ denotes the curvature of the level set, with the convention that it is negative
when the curve is convex. However, due a maximum principle associated with
(7), no new interior contour may appear during the evolution. This makes it less
effective in certain applications.

The level set based algorithm of Chan and Vese can be extended to multi-
phase piecewise constant models, such as the four-phase model (3). This is done
in [6]. The idea is simply to introduce new level set functions to describe a greater
number of regions using intersections between interiors and exteriors of the level
sets. One can then use the Heaviside function to express characteristic functions
of the various regions that appear in the integrals of (3) in terms of these level
set functions. Subsequently, finding the Euler-Lagrange equations for the energy
thus expressed in terms of level set functions yields a coupled system of nonlinear
parabolic PDEs to be solved for gradient descent. The details can be found in [6].
The Chan and Vese algorithm was also extended to the piecewise smooth version
of (1) where the discontinuity set is restricted to be a finite union of closed contours
[6]. In this paper, we will not consider the piecewise smooth models.

5 MBO Scheme

Merriman, Bence, and Osher introduced a very interesting scheme to approximate
the motion of an interface by its mean curvature [17, 18]. Their idea is to alternate
the solution of the linear heat equation with thresholding. In this section we re-
call the original MBO algorithm by interpreting it in terms of another well known
technique for approximating motion by mean curvature, namely the Allen-Cahn
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equation (sometimes referred to as the phase field method):

ut = 2ε∆u− 1

ε
W ′(u). (9)

Here, W (ξ) : R → R is a double well potential with equidepth wells at 0 and 1;
for example a simple choice is W (ξ) = ξ2(1 − ξ)2.

It is well known that in the limit ε→ 0+ the rescaled solutions uε(x,
t
ε
) of (9)

yield motion by mean curvature of the interface that separates the 0 and 1 phases
of the solutions (A formal, matched asymptotic expansion that show this fact has
been carried out in [26]; many researchers subsequently provided rigorous justifi-
cation under various hypothesis – see [10] for example). Consider a “time splitting”
scheme for the solution of (9): Choose a δt > 0 and alternate the following two
steps to generate approximate solutions un(x) at discrete times:

1. Let v(x) = S(δt)un(x) where S(δt) is the propagator (by time δt) of the
following heat equation:

wt = 2ε∆w

with appropriate boundary conditions.

2. Set un+1(x) = T (δt)v(x), where T (δt) is the propagator (by time δt) of the
following ODE:

wt = −1

ε
W ′(w)

The second step of the procedure given above is a stiff, nonlinear ODE. It has two
stable, stationary solutions: w = 0 and w = 1 (and an unstable one at w = 1

2 ). The
essence of the original MBO scheme is the observation that for δt > 0 fixed and
ε→ 0+, solving of this ODE turns into thresholding: At every point x the value of
w(x, t) converges to one of the two stable equilibrium values (0 or 1), depending
on whose basin of attraction it initially lies in:

lim
ε→0+

T (δt)ξ =

{
0 if ξ ∈ (−∞, 1

2 ),
1 if ξ ∈ ( 1

2 ,∞).

The MBO scheme replaces the second step (the solution of the ODE) with this
thresholding:

The MBO Scheme:

1. Let v(x) = S(δt)un(x) where S(δt) is the propagator (by time δt) of the
standard heat equation:

wt = ∆w

with appropriate boundary conditions.
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2. Set

un+1(x) =

{
0 if v(x) ∈ (−∞, 1

2 ],
1 if v(x) ∈ ( 1

2 ,∞).

The original MBO algorithm described above has been rigorously shown to
approximate motion by mean curvature in [9] and [2]. Several generalizations of
the basic algorithm have been given in [15, 29, 30, 31]. These works show how
the original algorithm can be modified to approximate more general interfacial
motions, such as motion by anisotropic curvature, motion by a constant plus curva-
ture, and motion of multiple junctions. Moreover, an efficient numerical algorithm
is proposed in [28] that is based on the fast Fourier transform on grids adapted to
the evolving interface.

6 Proposed Dynamics for Mumford-Shah

Inspired by the MBO scheme that approximates motion by curvature via threshold-
ing, we propose a similar thresholding scheme that approximates gradient descent
for the two-phase piecewise constant Mumford-Shah functional. This constitutes
the essential contribution of the present paper.

To discover a threshold dynamics for the gradient flow of (2), we first consider a
phase-field approximation. The idea is to find a diffuse interface approximation of
(2) and use it to motivate our proposed dynamics much as the Allen-Cahn equation
(9) was used to motivate the original MBO scheme in Section 5.

A diffuse interface approximation for (2) is given by the following sequence of
energies:

MSε(u, c1, c2) :=

∫

D

ε|∇u|2+
1

ε
W (u)+λ

{

u2(c1−f)2+(1−u)2(c2−f)2
}

dx.

(10)
where ε > 0 and the potential W (ξ) = ξ2(1− ξ)2 is exactly the same as in Section
5. It is possible to establish rigorously that MSε → MS as ε → 0+ in the sense
of Gamma convergence based on the work [19, 20]. Variation of energy (10) with
respect to u yields the following gradient descent equation:

ut = 2ε∆u− 1

ε
W ′(u) − 2λ

{

u(c1 − f)2 + (u− 1)(c2 − f)2
}

. (11)

We can find a candidate for the threshold dynamics of (2) by splitting equation
(11). There are several ways in which (11) can be split. One possibility, which we
shall pursue here, is to split it so that the thresholding step is the same as the one in
the original MBO scheme. That leaves the solution of a linear heat equation with a
forcing term as the first step of the new algorithm:
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1. Let v(x) = S(δt)un(x) where S(δt) is the propagator (by time δt) of the
linear parabolic equation:

wt = ∆w − 2λ̃
(

w
(
c1 − f

)2
+ (w − 1)

(
c2 − f

)2
)

. (12)

with appropriate boundary conditions.

2. Set

un+1(x) =

{
0 if v(x) ∈ (−∞, 1

2),
1 if v(x) ∈ ( 1

2 ,∞).

Notice that the proposed candidate dynamics above differs from the original MBO
scheme only in the linear parabolic PDE involved. By using the maximum prin-
ciple, it can be easily seen that just like the heat equation in the original MBO
scheme, the PDE of the proposed scheme above preserves the condition 0 ≤
w(x, t) ≤ 1 for all time. In fact, just like the original MBO algorithm, the dynam-
ics proposed above preserves the order of solutions (i.e. it satisfies a comparison
principle). Also notice that we have replaced the parameter λ that appears in the
variational model (2) and in the diffuse interface flow (11) by λ̃ to indicate that the
relation of λ̃ to the original scale parameter λ is yet to be determined.

To understand how λ̃ in the proposed dynamics should be related to the scale
parameter λ in the model (2), we will consider the way a characteristic function
evolves under the proposed PDE (12). Let f(x) be a given continuous image, and
let u(x, 0) = 1Σ(x) be the initial condition for (12). Assume that Σ has smooth
boundary ∂Σ, and let p ∈ ∂Σ. We will be looking at the solution of (12) in a
neighborhood of the point p for a very short time; so we replace the term f(x)
in (12) by the constant f(p), and for convenience define A := (c1 − f(p))2 and
B := (c2 − f(p))2.
We first consider the one dimensional version of (12) on all R:

ψt = ψxx − 2λ̃(A+B)ψ + 2λ̃B on (x, t) ∈ R ×R
+,

ψ(x, 0) = 1R−(x).
(13)

The solution of (13) is simply:

ψ(x, t) = e−2λ̃(A+B)t(Gt ∗ 1R−)(x) + 2λ̃B

∫ t

0
e−2λ̃(A+B)(t−s) ds

= e−2λ̃(A+B)t

{

(Gt ∗ 1R−)(x) +
B

A+B

(

e2λ̃(A+B)t − 1
)}

.

(14)

where Gt(x) is the Gaussian kernel in one dimension:

Gt(x) =
1√
4πt

e−
x
2

4t .
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At x = 0 and t = δt, (14) gives

ψ(0, δt) = e−2λ̃(A+B)δt

{
1

2
+

B

A+B

(

e2λ̃(A+B)δt − 1
)}

≈ 1

2
+ λ̃δt(B −A).

(15)

Differentiating (14) we get

∂xψ(0, δt) = −e−2λ̃(A+B)δt 1√
4πδt

≈ − 1√
4πδt

. (16)

Let p(t) be such that ψ(p(t), t) = 1
2 . Strict monotonicity of ψ for positive time

implies that this defines p(t) uniquely for t > 0. Formulas (15) and (16) allow us
to estimate p(t) as:

p(t) ≈ −u(0, δt) −
1
2

∂xu(0, δt)
≈ 2

√
πλ̃(δt)

3

2 (B −A). (17)

We now move on to the 2-D problem

wt = ∆w − 2λ̃(A+B)w + 2λ̃B for (x, t) ∈ R
2 ×R

+,

w(x, 0) = 1Σ(x).
(18)

Again we consider the solution of (18) for a short interval of time and in a neigh-
borhood of the point p ∈ ∂Σ. For t ≥ 0, let Σ(t) ⊂ R

2 be a bounded domain
with smooth boundary ∂Σ(t),and with Σ(0) = Σ. We assume that ∂Σ(t) evolves
smoothly in time. Let dΣ(t)(x) be the signed distance function to ∂Σ(t).

Motivated by a change of variables used in [26], we consider the following
ansatz as a candidate for the solution of (18) in a neighborhood of p:

w(x, t) = ψ(dΣ(t)(x), t).

We have:

wt(x, t) =ψx

(
dΣ(t)(x), t

)
(
∂

∂t
dΣ(t)(x)

)

+ ψt

(
dΣ(t)(x), t

)

=ψx

(
dΣ(t)(x), t

)
(
∂

∂t
dΣ(t)(x)

)

+ ψxx

(
dΣ(t)(x), t

)

− 2λ̃(A+B)ψ + 2λ̃B.

(19)

And,

∆w(x, t) = ψx

(
dΣ(t)(x), t

)
∆dΣ(t)(x) + ψxx

(
dΣ(t)(x), t

)
|∇dΣ(t)(x)|2. (20)
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Combining formulas (19) and (20) and noting that |∇dΣ(t)(x)|2 = 1 we get

wt(x, t) = ∆w(x, t) − 2λ̃(A+B)w + 2λ̃B

+ ψ
(
dΣ(t)(x), t

)
{
∂

∂t
dΣ(t)(x) − ∆dΣ(t)(x)

}

.

We see that if the curve ∂Σ(t) evolves in such a way that the following holds

∂

∂t
dΣ(t)(x) = ∆dΣ(t)(x) (21)

then the ansatz given by u(x, t) satisfies equation (18). Along the curve given
by ∂Σ(t), we have that ∆dΣ(t)(x) is the curvature, and ∂tdΣ(t)(x) is the normal
velocity. Thus, if γ(·, t) is a parametrization of ∂Σ(t), then equation (21) will be
satisfied close to the curve provided that γ(t) evolves via motion by curvature:

∂

∂t
γ(·, t) = κ

(
γ(·, t)

)
N

(
γ(·, t)

)
. (22)

where κ denotes the curvature and N denotes the outward unit normal of the curve.
Now let Γ(·, t) be a parametrized curve that evolves according to the motion law:

∂

∂t
Γ(·, t) =

(

κ
(
Γ(·, t)

)
+ 2λ̃

√
πδt(B −A)

)

N
(
Γ(·, t)

)

Γ(·, 0) = γ(·, 0).
(23)

Then, formulas (22), and (17) imply that

Γ(·, δt) ≈
{

x ∈ R
2 : w(x, δt) =

1

2

}

.

Proposed dynamics: We can now relate the parameter λ̃ in the candidate dynamics
given above to the scale parameter λ that appears in the model (2). We simply
choose λ̃ so that the normal velocity of the curve in (23) matches (8):

λ̃ =
λ

2
√
πδt

.

With that, our threshold dynamics for the two-phase piecewise constant Mumford-
Shah functional finally becomes:
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1. Let v(x) = S(δt)un(x) where S(δt) is the propagator (by
time δt) of the linear parabolic equation:

wt = ∆w − λ√
πδt

(

w
(
c1 − f

)2
+ (w − 1)

(
c2 − f

)2
)

with appropriate boundary conditions.

2. Set

un+1(x) =

{
0 if v(x) ∈ (−∞, 1

2 ],
1 if v(x) ∈ ( 1

2 ,∞).

The constants c1, c2 can be updated after each thresholding step according to the
formulas:

c1 =

∫

D
uf dx

∫

D
u dx

and c2 =

∫

D
(1 − u)f dx

∫

D
(1 − u) dx

.

However, our numerical experience suggests that it is also sufficient to update c1, c2
less frequently, for instance once every few iterations of the above algorithm.

The PDE that constitutes the first step of the iterative algorithm proposed above
is a linear diffusion equation. As such, there are many efficient numerical tech-
niques for its solution. One possibility is to discretize it implicitly and solve the
resulting elliptic equation via a fast method such as plain vanilla multigrid. PDEs
that result from many other approaches are much more troublesome. For exam-
ple, the level set approach leads to PDEs that are singular and degenerate. For
such equations, standard fast solution techniques such as multigrid do not always
attain their “textbook” convergence rates. Also note that for small δt the PDE in
the proposed algorithm actually becomes easier to solve, since it becomes, loosely
speaking, more “diagonally dominant”.

An important distinction of the threshold dynamics proposed above from the
standard MBO algorithm is that the diffusion step involves the parameter δt explic-
itly in the linear parabolic equation that needs to be solved.

7 Extensions and Variants

In this section we consider several extensions of and variations on the thresholding
algorithm proposed in the previous section.
Multi-phase segmentation: We start by indicating how the proposed threshold
dynamics of Section 6, which minimizes the two-phase segmentation model (2),
can be extended to multi-phase segmentation. This is easy to accomplish, and
will be illustrated on the four-phase model (3): Once again we first write down a
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phase-field approximation to (3), and then split the terms appropriately. The diffuse
interface version (10) of (2) can be extended to four-phase segmentation as follows:

MSε(u1, u2, c1, . . . , c4) :=

∫

D

ε
(

|∇u1|2 + |∇u2|2
)

+
1

ε

(
W (u1) +W (u2)

)

+ λ
{

u2
1u

2
2(c1 − f)2 + u2

1(1 − u2)
2(c2 − f)2

+ (1 − u1)
2u2

2(c3 − f)2 + (1 − u1)
2(1 − u2)

2(c4 − f)2
}

dx. (24)

Variations with respect to the functions u1, u2 yield the following gradient descent
equations:

∂tu1 = 2ε∆u1 −
1

ε
W ′(u1) − 2λ

{

u1

[
u2

2(c1 − f)2 + (1 − u2)
2(c2 − f)2

]

+ (u1 − 1)
[
u2

2(c3)
2 + (1 − u2)

2(c4 − f)2
]}

. (25)

and

∂tu2 = 2ε∆u2 −
1

ε
W ′(u2) − 2λ

{

u2

[
u2

1(c1 − f)2 + (1 − u1)
2(c3 − f)2

]

+ (u2 − 1)
[
u2

1(c2 − f)2 + (1 − u1)
2(c4 − f)2

]}

. (26)

Splitting equations (25) and (26), in the same manner that (11) was split in Section
6, yields the following threshold dynamics:

1. Let (v1(x), v2(x)) = S(δt)(u1,n(x), u2,n(x)) where S(δt) is the propa-
gator (by time δt) of the following system of parabolic equations:

∂tw1 = ∆w1 −
λ√
πδt

{

w1

[
w2

2(c1 − f)2 + (1 − w2)
2(c2 − f)2

]

+ (w1 − 1)
[
w2

2(c3)
2 + (1 − w2)

2(c4 − f)2
]}

.

and

∂tw2 = ∆w2 −
λ√
πδt

{

w2

[
w2

1(c1 − f)2 + (1 − w1)
2(c3 − f)2

]

+ (w2 − 1)
[
w2

1(c2 − f)2 + (1 − w1)
2(c4 − f)2

]}

.

2. For j = 1, 2, set

uj,n+1(x) =

{
0 if vj(x) ∈ (−∞, 1

2 ],
1 if vj(x) ∈ (1

2 ,∞).
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As in the two-phase model, the constants of the segmentation can be updated af-
ter each thresholding step in the iteration. In the case of the four phase model,
variations of the energy (24) with respect to c1, . . . , c4 yield the following optimal
choices:

c1 =

∫

D
u1u2f dx

∫

D
u1u2 dx

c2 =

∫

D
u1(1 − u2)f dx

∫

D
u1(1 − u2) dx

c3 =

∫

D
(1 − u1)u2f dx

∫

D
(1 − u1)u2 dx

c4 =

∫

D
(1 − u1)(1 − u2)f dx

∫

D
(1 − u1)(1 − u2) dx

.

Unlike the two-phase dynamics of Section 6, multi-phase dynamics in general
involves a non-linear system of PDEs as one of its iterative steps, as can be seen
above in the case of the four-phase model. However, the nonlinearity is only in
the lowest order term, and we notice that the j-th equation in the system is in fact
linear in wj . Therefore, a natural solution approach would be a semi-implicit dis-
cretization where in the right hand side of the j-th equation wj is treated implicitly,
and wi for i 6= j are treated explicitly.

Alternatives to proposed dynamics: As mentioned before, the phase-field ap-
proximation (11) can be split in more than one way; the threshold dynamics we
described in Section 6 is only one of them. Another way to split (11) is to group
together all terms in the right hand side except the Laplacian; that leads to a thresh-
olding scheme whose PDE step involves, just like the MBO scheme, the standard
heat equation:

1. Let v(x) = S(δt)un(x) where S(δt) is the propagator (by time δt) of the
standard heat equation:

wt = ∆w

with appropriate boundary conditions.

2. For every x, set
un+1(x) = lim

t→∞
y(t)

where y(t) is the solution of the initial value problem:






y′ = −W ′(y) − λ̃
(

y(c1 − f)2 + (y − 1)(c2 − f)2
)

,

y(0) = v(x).

The second step of the dynamics above can be interpreted as a form of threshold-
ing. This would be done by finding the basins of attraction of stable equilibrium
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solutions of the ODE. Then, the second step of the algorithm is equivalent to set-
ting the value of un+1(x) equal to the equilibrium solution of the ODE whose
basin of attraction w(x) happens to lie in. Note that unlike the one in the original
MBO scheme, this thresholding would be space dependent: this is how the image
information gets incorporated into the dynamics. Thus, unlike the original MBO
scheme, the threshold value would be different from 1

2 and depend on x. In this
sense, the algorithm suggested above is akin to the extensions of MBO considered
in [15, 30]

Another possibility is to split the dynamics into three steps. A convenient way
of doing this is to do operator splitting in the linear parabolic equation that consti-
tutes the first step of the algorithm proposed in Section 6. In other words, one can
solve the PDE

wt = ∆w − λ√
πδt

(

w
(
c1 − f

)2
+ (w − 1)

(
c2 − f

)2
)

up to time δt starting from the initial condition w(x, 0) = w0(x) by repeating the
following steps n times:

1.1 Solve the standard heat equation:

wt = ∆w with initial condition w(x, 0) = w0(x).

1.2 Solve the pointwise (in x) ODE:

zt = − λ√
πδt

(

z
(
c1 − f

)2
+ (z − 1)

(
c2 − f

)2
)

with initial condition z(x, 0) = w(x, δt
n

).
1.3 Set w0(x) = z(x, δt

n
).

An advantage of the two alternatives presented above to the dynamics of Sec-
tion 6 is that the PDE involved in these variants is the standard heat equation. The
PDE of the algorithm of Section 6, although linear, has non-constant coefficients
in its lowest order terms.

8 Numerical Examples

In this section we illustrate the algorithm of Section 6 and the multi-phase algo-
rithm of Section 7 on a few test images.

As we mentioned before, the PDEs that appear in the proposed algorithms of
Sections 6 and 7 can be solved efficiently in a number of different ways. For exam-
ple, the PDE that appears in the proposed algorithm for two-phase segmentation
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given in Section 6 has the form:

ut = ∆u−A(x)u+B(x)

To generate the numerical results shown in this section, we used the following
discretization in time:

un+1 − un

δτ
= ∆un+1 − Cun+1 + (C −A(x))un +B(x) (27)

where δτ is the time step size and C is a constant to be chosen large enough com-
pared to A(x). Once discretized also in space in some standard manner (using for
instance the five point stencil for the Laplacian), the resulting linear system was
solved for un+1 using the fast Fourier transform.

The scheme given above is unconditionally stable and certainly fast; however,
it must be pointed out that it is not necessarily the best way to solve the linear
parabolic PDE in question; the scheme given above is intended merely as an ex-
ample of what can be done. The more important point is the following: The PDE
in question is simple enough that there are a variety of powerful and completely
standard numerical techniques available for its solution. For instance, if desired
one can easily apply the standard multigrid algorithm to solve the linear system in
order to achieve faster results than what is attainable by the specific method quoted
above. We leave the decision of the best choice to experts in fast algorithms for
linear equations.

Figure 1: Test with a synthetic image of resolution 256 × 256. Left hand side figure has the initial
contour superimposed on the image to be segmented. Right hand side figure shows the final contour
found using the algorithm of Section 6. Only 3 iterations were necessary to reach an essentially
steady state. Each iteration involved taking 3 steps with scheme (27), bringing the total number of
steps taken for curve evolution to 9.

Calculations of Section 6 justify the proposed algorithms by considering their
δt → 0+ limit. However, from a practical standpoint convergence in this limit is
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not necessarily the most important aspect of the algorithms. Indeed, for applica-
tions the greatest strength of the proposed algorithms is that they converge very
quickly to a fixed point especially when δt is chosen large.

Figure 1 shows results of an experiment with a synthetic image at 256 × 256
resolution. The image consists of objects with blurred boundaries corrupted with
the addition of a significant amount of Gaussian noise. Nevertheless, the image is
close to being piecewise constant; this makes it relatively easy to segment using
piecewise constant models such as the ones considered in this paper. The proposed
algorithm of Section 6 for two-phase segmentation required only 3 iterations to
reach the steady state shown. Each one of these iterations requires the solution of
the linear parabolic PDE for a short time interval of length δt; we accomplished
this by taking three steps of size δt

3 with scheme (27). Using a larger number of
(shorter) steps to solve the PDE at each iteration made no appreciable difference in
the result.

Figure 2 shows the result of an experiment with the two-phase algorithm of
Section 6 on a real test image at 256 × 256 resolution. This image is slightly more
challenging than that of Figure 1, in that it is not very well approximated by just
two constants. The algorithm required 15 iterations to reach an essentially steady
state. Once again, at each iteration 3 steps of scheme (27) were used.

Figure 3 shows the result of an experiment with the four-phase algorithm pre-
sented in Section 7. The algorithm found only three regions with the initial con-
ditions shown. We observed that multiphase segmentation algorithms, including
the Chan-Vese algorithm and the one proposed in this paper, have more sensitive
dependence on initial conditions than their two-phase versions. This is an aspect of
multiphase segmentation algorithms that we did not intend to address in this work,
our emphasis being instead on improving computational complexity.

Figure 4 shows the result of applying the proposed two-phase segmentation
algorithm of Section 6 using different values of δt. From left to right, top to bot-
tom, the algorithm was run on the test image shown in Figure 2 using δt = δt0,
δt = 2δt0, δt = 4δt0, and δt = 8δt0, respectively. As can be seen, the solutions
obtained are quite close; however with very large choices of δt there is noticeable
oversmoothing.

Figure 5 shows the result of applying the proposed algorithm of Section 6 to the
test image of Figure 2 at different resolutions. The resolutions range from 128×128
to 1024 × 1024. In each case the same parameters were used in the algorithm. In
particular, in each case only 15 iterations of the algorithm were necessary, and only
3 steps of scheme (27) were taken per iteration. In contrast, the number of iterations
in standard implementations of the two dimensional Chan-Vese algorithm grows at
least linearly with respect to the number of pixels in the image.
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Figure 2: Test with a real image of resolution 256 × 256. Left hand side figure has the initial
contour superimposed on the image to be segmented. Right hand side figure shows the final contour
found using the algorithm of Section 6. Only 15 iterations were necessary to reach an essentially
steady state. Each iteration involved taking 3 steps with scheme (27), bringing the total number of
steps taken for curve evolution to 45.

9 Discussion

We mentioned in Section 8 that a major advantage of the algorithms proposed in
this paper is that they can be applied with very large choices of the parameter δt,
in which case they reach a fixed point very rapidly. However, when δt is too large,
there is naturally a loss of accuracy in the recovered boundaries. More specifi-
cally, we observed that if δt is too large compared to the scale parameter λ−1, then
boundaries of the segmentation turn out to be slightly oversmoothed. It is possible
to compensate for this lack of accuracy without giving up on the use of a very large
δt. One can start the computation with a very large δt, and after a few step (once
the segmentation is within a small neighborhood of the solution) switch to a more
moderate choice. To keep things simple, in obtaining the numerical examples of
the previous section we simply used a single moderate to small choice of δt; the
convergence was still very fast.

Numerical solution of model (2), and also of the multi-phase versions such
as (3), tend to be easier when the scale parameter λ is large, corresponding to a
fine segmentation (i.e. a segmentation that allows high curvatures in the region
boundaries). For then the segmentation models reduce to the well known k-means
problem of data clustering (where data is one dimensional in the case of grayscale
images); this fact was observed in [11]. Furthermore, when the geometric terms
are dropped from the piecewise constant models, the algorithms of Chan and Vese
become equivalent to the k-means algorithm, and converge rapidly. Another way
of saying this is: When λ is large the PDE of the Chan-Vese algorithm becomes di-
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Figure 3: Segmenting the synthetic test image of Figure 1 using the multi-phase version of the
algorithm in Section 6, which is explained in Section 7. Only 15 iterations were necessary to reach
an essentially steady state. Each iteration involved taking 3 steps with scheme (27), bringing the total
number of steps taken for curve evolution to 45.

agonally dominant (i.e. more and more local) so that even slow solution techniques
converge rather quickly.

Most of the existing PDE based algorithms for minimizing segmentation func-
tionals such as (2) and (3) suffer from a serious degradation in speed when the scale
parameter λ is moderate or small, corresponding to a coarse segmentation in which
the geometric penalty term plays a significant role. In this regime, our proposed
algorithm exhibits dramatically improved efficiency.

It is possible to come up with a number of ad hoc tricks to further speed up the
proposed segmentation process. A simple one of such involves starting the compu-
tation from a good initial guess: One can use k-means clustering (i.e. segmentation
with no geometric regularization) to produce an initial segmentation to feed into the
threshold dynamics, especially when a detailed final segmentation is desired (cor-
responding to a large λ value). This is equivalent to running the proposed algorithm
first with a very large choice of λ, and then using the result found as initial guess
for another run in which the user specified value of λ is used. A further option is to
gradually decrease the parameter λ. Of course, these well-known “tricks” are not
specific to the algorithm of this paper but can be used in combination with others
as well.

Finally, it is worth discussing certain numerical difficulties of threshold dynam-
ics due to finite discretization size. For the MBO algorithm, it is well-known that
if δt is too small compared to the spatial resolution (i.e. the number of grid points),
then the interface can get stuck and not move. This issue has been addressed by
Ruuth in [28], where an adaptive version of the MBO algorithm is developed and
solved using the fast Fourier transform. The same improvement can certainly be
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Figure 4: Solutions (region boundaries) obtained by the algorithm of Section 6 on the test image
of Figure 2 using different values of δt. Going left to right, top to bottom, the value of δt was double
in each case. As implied by our calculations, there is little difference between the results, although
for very large values of δt oversmoothing becomes noticeable.

developed for the proposed dynamics of this paper. Moreover, in our applications,
accurate simulation of the dynamics is not important as long as we reach the correct
steady state quickly; in practice, one therefore uses values of δt that are nowhere
as small, in which case getting stuck becomes a non-issue.
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Figure 5: Solutions (region boundaries) obtained by the algorithm of Section 6 using the test image
of Figure 2 at different resolutions. Going left to right, top to bottom, the resolutions were 128

2,
256

2 , 512
2, and 1024

2 , respectively. The same parameters were used throughout. In particular, the
same number of iterations (namely 15) of the algorithm were taken in each case, regardless of the
resolution. Also, the same number of steps of scheme (27) (namely 3) were used for each iteration,
at every resolution.
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