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Abstract

We explore the effects on grain size distribution of incorporating grain rotation into the curvature

driven grain boundary migration model of Mullins. A new, extremely streamlined and efficient algorithm

allows simulations with large numbers of grains. Some of these simulations yield size distributions and

microstructures close to those from recent, atomistic simulations of microstructural evolution using the

phase field crystal method that was shown to reproduce experimental size distributions observed in fiber

textured, nanocrystalline, thin metallic films.
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1 Introduction

Polycrystalline materials, such as most metals and ceramics, are composed of many single crystal pieces of

differing orientation that are known as grains. The shapes and sizes of the grains are well-known to have

significant implications for the physical properties of a polycrystalline material, such as its yield strength

and conductivity. It is therefore of great practical interest to understand how the sizes and shapes of grains

change under common manufacturing processes such as annealing. A well known model for how the grains

evolve during annealing was given by Mullins [21]. It is a continuum description of the grain boundaries

as a network of surfaces that move via gradient flow to decrease a weighted surface energy. Different

versions of this model, often with additional simplifying assumptions, have been studied numerically using

a variety of algorithms, such as kinetic Monte Carlo, front tracking, phase field, level sets, and threshold

dynamics. Various statistics of grains, such as grain size distribution, grain boundary character distribution,

and distribution of the number of neighbors are typically reported in these numerical studies.
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In [2, 3], an important discrepancy between the grain size distribution (GSD) obtained from numerical

simulations of Mullins’ continuum model in 2D and that from experiments with fiber textured nanocrystalline

thin films is reported. In this setting, the crystallographic orientation of each grain is described by a single

parameter: the angle of rotation about the axis normal to the film. In the reported experiments, grains range

in size from 10 to 100 nanometers. The eventual GSD observed differs considerably from that of numerical

simulations in having far more very small as well as very large grains compared to the median.

Backofen et. al. [1] carried out simulations of grain growth in two dimensions using the phase field

crystal (PFC) model [6]. This is an atomistic model that appears to allow for simulations on time scales

beyond what is possible with other atomic scale strategies such as molecular dynamics. As such, it is a

promising new tool for very detailed simulations of mesoscale features such as grain boundaries. In [1], the

authors report that the resulting GSD resembles the experimentally observed one in [2, 3] far more than the

distribution obtained from Mullins’ model. They suggest a number of different mechanisms not captured

by Mullins’ continuum model that may be responsible for the more faithful reproduction of experimental

results by the PFC simulations. One of these mechanisms is grain rotation. More recently, incorporating

triple junction drag into Mullins’ model has been shown in [23] to yield GSDs resembling the experimental

results of [2, 3]. Despite being overruled in [3], it thus appears that triple junction drag may be at least

partially responsible for the discrepancy in size distribution.

A prominent feature of the results of [1] is that the shapes of the grains in the PFC simulation appear

to be quite different from the very regular, almost polygonal grains seen in essentially all two dimensional

simulations of Mullins’ model (especially with equal surface tensions), computed whether by phase field (e.g.

[18]), front tracking (e.g. [15]), or threshold dynamics (e.g. [7]) techniques. In the images and videos of

the PFC simulation provided in [1], it is abundantly clear that grain rotation and other fine scale dynamics

such as the motion of dislocations frequently lead to elimination of certain grain boundaries resulting in

coalescence events that yield many grains with very eccentric, meandering shapes. A natural question is

whether elimination of some of the very low energy grain boundaries through such processes may be at least

partially responsible in deforming the GSD towards the one reported in [1]. In particular, our goal in this

paper is to explore whether grain rotation and coalescences, when incorporated into Mullins’ continuum

model, may explain the GSDs and unusual microstructures seen in PFC simulations of [1].

To investigate these questions, we propose a new, very simple model of grain rotation that is inspired

by [20, 26] and which turns out to be quite similar to a model considered in [12, 19]. Our model can

be seen as the natural multiphase version of the one introduced in [26], which uses an additional phase

field variable to describe the orientations of grains in the network. This variable, which is observed to be

approximately piecewise constant, is part of the gradient descent dynamics and leads to gradual variations
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in the orientations of the grains as an additional dissipation mechanism besides the geometric (curvature)

flow of the grain boundaries. The numerical treatment of this very interesting model appears to be quite

challenging. Here, for our much simpler, multiphase version, we are able to give an extremely streamlined

algorithm by leveraging some of the recent advances in numerical treatment of curvature motion in networks

[9]. In fact, the basic version of the algorithm can be implemented in literally a few lines of Matlab code;

a slightly more sophisticated version allows us to carry out large scale simulations that probe the effects of

grain rotation and coalescence on the GSD in Mullins’ model.

2 Our Model and Algorithm

Let Σj ⊂ Rd denote the space occupied by the j-th grain in the microstructure. Although the algorithms

discussed below work in any dimension and for more general energies, in this study we focus on the two

dimensional version of Mullins’ model for which the energy of the grain network is given by

∑
i<j

σ(θi, θj)Length(Γi,j) (1)

where Γi,j = ∂Σi ∩ ∂Σj denotes the boundary between the i-th and j-th grains. The surface tension factor

σ is chosen in accordance with the Read-Shockley model [22] along with a Brandon angle [4] that will be

denoted θ∗ , often taken to be between 15◦ and 30◦ :

σ(ξ, η) = min
k=1,2,3,...

f

(∣∣∣∣ξ − η +
kπ

4

∣∣∣∣) (2)

where

f(θ) =


θ
θ∗

(
1− log

(
θ
θ∗

))
if θ ∈ [0, θ∗]

1 if θ > θ∗.

(3)

According to Mullins, the dynamics associated with energy (1) is given by L2 gradient descent for the

interfaces, leading to the normal speed

vi,j = µi,jσ(θi, θj)κi,j (4)

for interface Γi,j . Here κi,j denotes the mean curvature of Γi,j , and µi,j > 0 is a mobility factor. Along

triple junctions formed by the meeting of three distinct grains Σi , Σj , and Σk , Herring angle conditions
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[13] hold:

σ(θi, θj)ni,j + σ(θj , θk)nj,k + σ(θk, θi)nk,i = 0 (5)

so that angles formed by normals ni,j , nj,k, and nk,i to the three interfaces Γi,j , Γj,k, and Γk,i along the

triple junction are determined by their associated surface tensions.

The algorithms used in this study are obtained from a non-local approximation to energy (1): These

approximate energies are given by

1√
δt

∑
i<j

σ(θi, θj)

ˆ
Σi

Gδt ∗ 1Σj dx (6)

where Gt denotes the Gaussian kernel in two dimensions

Gt(x) =
1

4πt
exp

(
−|x|

2

4t

)
(7)

and 1Σ(x) for a set Σ denotes its characteristic function:

1Σ(x) =


1 if x ∈ Σ,

0 otherwise.

The width δt of the Gaussian kernel appearing in (6) ends up playing the role of the time step size for

our scheme, described below, that approximates gradient descent of (1) in L2 sense, as prescribed by [21].

Energy (6) has been proposed in [9] and has been shown to converge in a very precise sense (namely, that of

Gamma convergence) to energy (1) in the limit δt→ 0+. Intuitively, we have

1√
δt

ˆ
Σi

Gδt ∗ 1Σj dx ≈ Length(Γi,j)

since the function 1√
δt
1Σi

Gδt∗1Σj
approximates a delta function concentrating near Γi,j as δ → 0. The reason

for our interest in this specific – perhaps unusual – approximation of Mullins’ energy is that it generates

exceptionally simple and efficient algorithms for simulating the gradient descent dynamics associated with

(1). Indeed, it has been shown in [9] to lead in a systematic way to the correct multiphase, arbitrary surface

tension analogue of a very fast algorithm known as threshold dynamics that was originally proposed in [16, 17]

for networks with all equal surface tensions (i.e. σ(θi, θj) = 1 for all i and j ). Let us recall the simplest

version of the generalization of threshold dynamics to arbitrary surface tensions given in [9]:
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Given the initial grain shapes Σ0
i and orientations θi and a time step size δt, obtain the grain

shapes Σn+1
i at the (n + 1)-th time step from the grain shapes Σni at the end of the n-th time

step as follows:

1. Compute the convolutions:

φni = Gδt ∗ 1Σn
i
. (8)

2. Form the comparison functions:

ψni =
∑
j 6=i

σ(θi, θj)φ
n
j . (9)

3. Update the grain shapes:

Σn+1
i =

{
x : ψni (x) < min

j 6=i
ψnj (x)

}
. (10)

Benefits of Algorithm (8)-(10) include its unconditional stability (time step size δt can be chosen arbitrarily

large, constrained only by accuracy considerations), seamless handling of topological changes in any dimen-

sion (the algorithm is the very same three simple steps shown in both two and three dimensions), and very

low per time step cost (O(N logN) on a uniform grid of N points, using the FFT to compute the convolu-

tions in step (8)). Yet, despite its extreme simplicity, it handles automatically and correctly all the essential

features of the dynamics, including Herring angle conditions (5) along junctions, and countless types of

topological changes that may occur during the evolution. Note that algorithm (8)-(10) can be seen as a type

of level set method, where the function

−ψni (x) + min
j 6=i

ψnj (x)

plays the role of the level set function depicting the shape of the i-th grain at the (n+ 1)-th time step.

It turns out that this simplest of algorithms from [9] results in a misorientation dependent mobility µi,j

associated with the boundary Γi,j between grains i and j that is given by

µi,j(θi, θj) =
1

σ(θi, θj)
(11)

leading to the normal speed

vi,j(x) = µi,j(θi, θj)σ(θi, θj)κi,j(x) = κi,j(x)
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at any point x ∈ Γi,j . Although this is perhaps a rather unusual choice of misorientation dependence for

the mobility of a grain boundary (experimental measurements as well as molecular dynamics simulations

reported in [24] imply that grain boundary mobility in fact diminishes as surface tension does), numerical

investigations in [25] indicate that many important grain statistics do not seem to depend strongly on the

choice of mobilities. There is in fact a more general algorithm given in [9] that allows arbitrary choice of

mobilities, but that version requires an additional step (referred to as “retardation” in [9]) that adds to the

computational cost of the algorithm (although the N logN complexity remains). Here, in the interest of

keeping the algorithm as simple as possible, we stick with (11).

To explore possible effects of grain rotation on size distribution, we supplement Mullins’ evolution equa-

tions (4) & (5) – which are obtained by carrying out gradient descent on energy (1) with respect to the

grain boundaries Γi,j – by carrying out gradient descent on (1) also with respect to the grain orientations

θi, which now become time dependent. Variation of (1) with respect to θi leads to

θ′i(t) = −µ̃i
∑
j 6=i

∂σ

∂ξ
(θi(t), θj(t))Length(Γi,j) (12)

where µ̃i denotes a mobility factor associated with the rotation of the i-th grain in the network. The

summands in (12) can be interpreted as torques on the i-th grain applied by its neighbors. The overall

neighborhood configuration of a grain thus can have a dramatic impact on whether the grain can rotate

towards one of its neighbors. The rotational mobility of a grain may have a complicated dependence on its

size and its neighborhood configuration. For simplicity, here we will prescribe it to depend only on the size

of the grain:

µ̃i =
1

Api (t)
(13)

where Ai(t) denotes the area of the i-th grain at time t, and p ≥ 0 is a constant. Molecular dynamics

simulations of grain rotation for an embedded circular grain in [26] imply the exponent p = 2.1 ± 0.6, and

PFC simulations of the same setup in [27] are consistent with p = 2. As indicated in [26], other values for p

have also been reported in earlier studies, e.g. p = 0, 2, 3, . . . ;see the references therein. In this paper, we will

report simulations with p = 1 , and p = 2 using the model described above. With our choice of rotational

mobility, the rate of grain boundary migration and grain rotation for a circular embedded grain scale with

respect to its radius r as

v ∼ 1

r
and θ′ ∼ 1

r2p−1
, (14)

respectively. The exponent p = 1 is especially interesting: With this choice, the rate of grain rotation and

grain boundary migration scale the same (i.e. as 1
r ) with respect to grain size, and allow us to explore
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the influence of grain rotation on size statistics in a regime during which grain rotation has a sustained

significance. On the other hand, the exponent p = 2 , which is consistent with the dependence of rotation

rate on grain size reported in [26, 27], implies that grain rotation becomes significant at very small scales,

and is negligible compared to curvature motion (migration) of grain boundaries at large scales. With this

exponent, we would expect the size distribution to eventually revert back to the usual one observed in two

dimensional simulations with curvature driven grain boundary migration alone. The question then is whether

the size distribution resembles that from PFC simulations at early times. With either choice of the exponent

p, the rotational mobility (13) is becomes singular as a grain shrinks to a point, and therefore in practice

needs to be regularized at A = 0.

Our algorithm for simulating the proposed model of simultaneous grain rotation and grain boundary

migration is as follows:

Given the initial grain shapes Σ0
i and orientations θ0

i and a time step size δt, obtain the grain

shapes Σn+1
i and orientations θn+1

i at the (n + 1)-th time step from the grain shapes Σni and

orientations θni at the end of the n-th time step as follows:

1. Compute the convolutions:

φni = Gδt ∗ 1Σn
i
. (15)

2. Compute the lengths and the areas:

Ani =

ˆ
1Σn

i
dx and Lni,j =

1√
δt

ˆ
Σn

j

φni dx. (16)

3. Form the comparison functions:

ψni =
∑
j 6=i

σ(θni , θ
n
j )φnj . (17)

4. Update the grain shapes:

Σn+1
i =

{
x : ψni (x) < min

j 6=i
ψnj (x)

}
. (18)

5. Update grain orientations:

θn+1
i = θni −

δ̃t

(Ani )p

∑
j 6=i

∂σ

∂ξ
(θni , θ

n
j )Lni,j . (19)
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Due to the singular dependence of the Read-Shockley surface tension model (2) & (3) on the misori-

entation angle at 0 , the ODE system (12) and consequently step (19) of Algorithm (15)-(19) has to be

supplemented by a description of what happens when θi ≈ θj mod π
4 for some i 6= j with Length(Γi,j) 6= 0

in the right hand side of (12) and (19). Indeed, it may happen that |(θi(t)− θj(t)) mod π
4 | vanishes in finite

time, leading to a blow up in ∂σ
∂ξ . There is a natural way to continue the evolution beyond such a singularity:

Assuming that misorientation across the boundary between grain i and one of its neighbors, say grain j

, converges to 0 at any given time, we merge the two grains, removing the boundary between them that

by then has vanishing surface tension σ(θi(t), θj(t)). This seems reasonable since it would require infinite

torque to increase |(θi(t)− θj(t)) mod π
4 | once it hits zero: Once two grains coalesce, they must remain one

grain for the remainder of the evolution. This appears to be the only continuation beyond the singularity

that maintains energy dissipation. In simulations, we approximate this notion of solution by introducing

a minimum threshold for the misorientation angle between any two neighboring grains, and merge the two

grains if their misorientation gets below the threshold value. Coalescence between two grains Σi and Σj and

removal of the boundary Γi,j between them is trivial to implement in Algorithm (15)-(19) in terms of the

sets Σi and Σj as follows:

Σi −→ Σi ∪ Σj and Σj −→ ∅.

As a side note, observe that Algorithm (8)-(10) and the first four steps (15-18) of Algorithm (15)-(19) are

invariant under introduction of zero energy interfaces: Any grain can be subdivided into smaller grains;

as long as their orientations are the same as their parent, the evolution of the parent network remains

unaltered. This is because interfaces with vanishing surface tension do not contribute to the comparison

functions formed in steps (9) and (17) of the two algorithms (those terms drop out of the sum).

3 Simulation Results

We carried out large scale simulations using Algorithm (15)-(19) in two dimensions. The initial condition,

containing well over 100,000 grains for each one of the runs, was obtained from the Voronoi cells associated

with uniformly distributed random points in a periodic box, at a resolution of 4096× 4096 grid points. The

initial orientations of the grains were also assigned at random, from a uniform distribution on [0, 2π). Thus,

in our simulations, initially there are approximately 105 choose 2 ≈ 1010 distinct surface tensions possible

in principle. During simulations with Algorithm (8)-(10), which does not incorporate grain rotation, no

pair of (neighboring or otherwise) grains coalesce during the dynamics: all grains have distinct identities

(differing orientations) initially and remain so until they possibly shrink and disappear. During simulations
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with Algorithm (15)-(19), two neighboring grains may merge if explicitly required to do so by the coalescence

criterion of our grain rotation model in Algorithm (15)-(19). The threshold misorientation value for grain

coalescence used in all simulations with this model was ≈ 1.5◦. It was verified that the precise value of this

threshold did not make an appreciable difference (as long as it’s small) in the grain statistics, since once the

misorientation between two neighboring grains is small enough, it is driven down to zero very rapidly by

(12) due to the singularity in (3) at θ = 0. In all simulations that use Read-Shockley surface tensions (2)

& (3), the Brandon angle θ∗ was chosen to be ≈ 21.5◦. The initial GSD for each one of our simulations is

shown in the left panel of Figure 2.

In investigating the possible effects of grain rotation on GSD, a natural preliminary question is whether

Read-Shockley (i.e. unequal) surface tensions in the absence of any additional effect such as grain rotation

and resulting coalescences may already explain the GSD seen in [2, 3]. Our simulations of the basic grain

boundary motion model (4) & (5) of Mullins using Algorithm (8)-(10) with Read-Shockley surface tensions

(2) & (3) yield a GSD that is very close to the one seen in the equal surface tension case (i.e. σ(θi, θj) = 1 for

all i, j ). Despite the unusual mobilities (11) induced by our algorithms, this is in agreement with the phase

field and Monte Carlo simulations of [25] where Mullins’ model is simulated in two dimensions using Read-

Shockley surface tensions and mobilities given by µi,j = 1 as well as with mobilities given by experimentally

obtained values according to which µi,j → 0 as σi,j → 0. In other words, unequal surface tension version of

Mullins’ purely geometric flow model does not appear to explain the different GSD seen in [2, 3], at least

over a very wide spectrum of mobilities. This is shown in the second and third (center and right) panels of

Figure 2: Although there is a very slight deformation in the GSD compared to equal surface tensions, it is

still very far from the experimental distribution of [2, 3].

Figure 3 shows the time evolution of the GSD resulting from our model that incorporates grain rotation

and coalescence together with grain boundary migration, computed using Algorithm (15)-(19), with the

choice p = 1 in the dependence of rotational mobility (13) on grain size. The GSD appears for the most part

to be stationary in time, and closely resembles the experimental measurements reported in [2, 3]. Figure 4

shows the corresponding distributions of effective radii, again in comparison with the measurements of [2, 3],

and further corroborates the close agreement. Figures 5 and 6 explore the dependence of the aforementioned

results on the choice of the exponent p in (13): Figure 5 shows the evolution of the GSD with p = 2 ,

and Figure 6 shows the corresponding distributions of effective radii. These distributions behave similar to

the p = 1 case at intermediate times, but appear to drift back towards the standard distributions seen in

Mullins’ model at later times as the average grain size increases and consequently grain rotation becomes

progressively negligible compared to boundary migration. See Figure 1 for a plot of the two mobilities used

as a function of grain area.
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Figure 1: Plot of the two rotational mobilities used (blue & solid: p = 1; red & dashed: p = 2, with
regularization) in the numerical simulations, as a function of grain area (measured in grid points).

Figure 7 shows details from the microstructures obtained from simulations with the different models

considered in this paper. The first (left) panel shows zoomed view of the microstructure from Mullins’

model with equal surface tensions, computed using Algorithm (8)-(10) with σ(θi, θj) = 1 for all i and j.

As in most simulations of this familiar model, the grains are mostly convex and almost polygonal. The

second (center) panel shows part of the microstructure from Mullins’ model with Read-Shockley surface

tensions, computed once again using Algorithm (8)-(10), but with surface tensions σ(θi, θj) given by (2)-(3).

Here, some differences are apparent: Read-Shockley surface tensions generate somewhat less regular (more

eccentric) grains (most of which are nevertheless quite polygonal and close to being convex), and there are

meandering, snake-like patterns of neighboring grains with low angle grain boundaries between them. These

are in agreement with observations from previous simulations, e.g. [8], that use more natural mobilities. The

considerable differences in shapes of grains apparently do not, however, translate into a difference in the size

distribution. The third (right) panel shows part of the microstructure obtained from the new model presented

in this paper that incorporates grain rotation and coalescence together with grain boundary migration, with

p = 1 in (13). Now the grains are very eccentric, many of them with meandering and highly non-convex

shapes. They resemble the shapes of grains seen in the PFC simulations of [1], suggesting that grain rotation

and coalescences may be playing a significant role at the scales captured by that PFC simulation, and may

be at least partially responsible for the observed GSD.

Finally, Figure 8 shows the effect of pure grain rotation and coalescence dynamics, in the absence of

any grain boundary migration, on the GSD. The initial condition is microstructure obtained from standard

Mullins’ model starting with Voronoi data, which has the same GSD as shown in the rightmost plot of 2.

We see that grain coalescence itself, caused by grain rotation, and not some complicated interaction between

rotation and boundary migration, tends to deform the GSD towards closer agreement with the experimental

distribution. In light of this and previous figures, we may conclude that grain rotation component of si-
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Figure 2: GSD in the initial Voronoi data, with equal surface tension Mullins’ model (4) & (5), and with
unequal surface tension Mullins’ model and mobilities given by (11), in that order from left to right. There
is very little difference between the distributions from equal and unequal surface tension versions of (4) &
(5). The red curve is experimental data from [2, 3], and the bar graphs are from numerical simulations.
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Figure 3: GSD with p = 1 in the expression (13) for rotational mobility. From left to right: After 25 , 50,
and 75 time steps. The red curve is experimental data from [2, 3], and the bar graphs are from numerical
simulations.

multaneous dynamics favors a GSD much closer to the experimental distribution, while the grain migration

component favors the standard GSD seen in Mullins’ model and is eventually strong enough to win over

grain rotation to revert to that GSD with p = 2 but not with p = 1 in (13).

4 Conclusions

We have presented a model for simultaneous grain boundary migration and grain rotation that is obtained

in a natural manner from Mullins’ well known model for grain boundary motion. We also presented a novel,

very efficient and extremely streamlined algorithm for its numerical simulation. We used the algorithm to

carry out large scale simulations of the evolution of GSD in fiber textured thin films, both in the presence

and absence of grain rotation.

The GSD in simulations with Mullins’ model (no rotation) with Read-Shockley surface tensions (with

two dimensional crystallography) closely resembles the one with equal surface tensions. This is in agreement
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Figure 4: Normalized radii corresponding to the plots in Figure 3. The red curve is experimental data from
[2, 3], and the bar graphs are from numerical simulations.
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Figure 5: GSD with p = 2 in the expression (13) for rotational mobility. From left to right: After 25, 100,
and 200 time steps. It appears that as the average grain size increases, the GSD moves back towards that
of standard Mullins’ model. The red curve is experimental data from [2, 3], and the bar graphs are from
numerical simulations.
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Figure 6: Normalized radii corresponding to the plots in Figure 5. The red curve is experimental data from
[2, 3], and the bar graphs are from numerical simulations.
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Figure 7: Details (zoomed view) of microstructure from simulations with: the equal surface tension grain
boundary motion model, the unequal (Read-Shockley) surface tension grain boundary motion model, and
simultaneous unequal surface tension grain boundary motion and grain rotation model, in that order. The
grains shapes are very regular and almost polygonal in the equal surface tension case. With Read-Shockley
surface tensions, but in the absence of grain rotation, the grains are somewhat less regular, with several in
view that are fairly eccentric. Additionally, the meandering, snake-like patterns formed by neighboring grains
with low angle grain boundaries between them are apparent, as was noted in previous simulations of fiber
textured thin films using Mullins’ model with Read-Shockley surface tensions e.g. [8]. The microstructure
from the simultaneous Mullins’ model with Read-Shockley surface tensions and grain rotation (with p = 1
in mobility 13) and resulting coalescences, on the other hand, is dramatically less regular: There are many
meandering grains with high eccentricity, some with significantly larger areas. These resemble some of the
unusual grain shapes seen in the PFC simulations reported in [1].
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Figure 8: Effect on GSD of pure grain rotation and coalescence, in the absence of grain boundary migration.
Left: Initial GSD, obtained from the pure grain boundary migration model of Mullins, as in Figure 2, starting
from Voronoi data. Middle: Resulting GSD after only grain rotation dynamics and coalescences it leads to,
in the absence of any grain boundary migration. Right: The distribution of normalized radii corresponding
to the GSD in the middle plot.

13



with previous simulations despite our choice of very different mobilities. Thus, it appears that across a very

wide spectrum of mobilities, GSD in Mullins’ model is independent of the choice of mobility, and behaves

very similarly whether using equal or Read-Shockley surface tensions.

On the other hand: The GSD in some of our simulations of simultaneous grain boundary migration

and grain rotation closely matches the one observed in PFC simulations of [1], which in turn is close to

the experimental GSD reported in [2, 3]. In the new model presented, grain rotation naturally leads to

occasional coalescences between neighboring grains with low angle grain boundaries between them, whenever

the misorientation across the boundary vanishes due to rotation and alignment. This leads to the formation

of grains with eccentric shapes as seen in the PFC simulations, and appears to be responsible for the

differing GSD. The resulting microstructure resembles the one that arises in PFC simulations presented in

[1] in which grain rotation and coalescences are also quite apparent and frequent. Neither microstructures,

however, resemble the experimental microstructure shown in [3].

This similarity of microstructures and GSD between our simulations and PFC simulations of [1] suggests

that grain rotation and coalescences may be at least partially responsible for the success PFC has had in

reproducing the experimental GSD of [2, 3]. On the other hand, the unusual microstructure seen in these

simulations suggests that the parameter regime used in the simulations (e.g. the size of the grains in the

PFC simulation, or the rotational mobilities used in our continuum model) may allow or encourage grain

rotation and coalescence more readily and frequently than what is relevant for the experimental set up of

[2, 3]. If so, it may be interesting to carry out atomistic simulations in a regime (e.g. with larger grains)

that limits coalescences in order to assess whether other effects it might be capturing, such as triple junction

drag as was recently considered in [23] in the context of a continuum model, would also allow it to reproduce

a similar GSD.

The model of grain rotation and coalescence presented here incorporates these effects into Mullins’ contin-

uum model of grain boundary migration in a very simple, phenomenological manner, by liberating additional

pathways in the energy landscape for the dissipation of Mullins’ energy via perturbations to the grain ori-

entations. It therefore cannot be expected to faithfully reproduce detailed atomistic underpinnings of these

processes. Indeed, in the model presented, an embedded circular grain with small misorientation would

always rotate to monotonically decrease its misorientation as it shrinks, whereas the analysis in [5] indicates

that grain rotation with embedded grains can take place in a direction that increases the misorientation

angle as well as the energy density (energy per unit length), while maintaining total energy dissipation (due

to shortening of the grain boundary). PFC simulations in [27] corroborate this analysis. In addition, unlike

in the experiments of [2, 3], grain growth will never stagnate in the model presented here. Finally, it is

worth repeating that the mobilities associated with grain boundary migration that result from the simple
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algorithms used in this paper are quite unusual. Indeed, molecular dynamics simulations using Monte Carlo

and phase field methods reported in [24] indicate that mobility of grain boundaries diminish with misorien-

tation. In our defense on this point, numerical experiments using both Monte Carlo and phase field methods

reported in [25] suggest that certain statistics of the microstructure, such as the GSD, appear for the most

part to be independent of the choice of mobilities.

In summary, despite their limitations, our simple model and simulations suggest at the very least that

grain rotation induced coalescence and the resulting elimination of very low angle grain boundaries seen in

PFC simulations appear to be relevant for the different GSD obtained in those simulations from the usual

one seen in the standard version of Mullins’ continuum model.
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