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Abstract. We propose efficient and accurate algorithms for computing certain area preserving
geometric motions of curves in the plane, such as area preserving motion by curvature. These
schemes are based on a new class of diffusion generated motion algorithms using signed distance
functions. In particular, they alternate two very simple and fast operations, namely convolution with
the Gaussian kernel and construction of the distance function, to generate the desired geometric flow
in an unconditionally stable manner. We present applications of these area preserving flows to large
scale simulations of coarsening.
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1. Introduction. Computing the motion of interfaces, e.g., curves in the plane
or surfaces in space, is an essential component of many applications. For instance, in
image processing and computer vision, many popular variational models for segmen-
tation and reconstruction involve initializing a curve or surface and then evolving it
towards features (e.g., edges) that are of interest. Typically, the resulting motion is by
a normal speed that includes geometric terms such as curvature of the interface and
its derivatives. There are many numerical schemes for simulating geometric motions
of interfaces, including front tracking, phase-field and level set methods. Front track-
ing methods [4] involve an explicit discretization of the interface and approximate
its motion by moving marker particles located on the interface. These methods are
well suited for two dimensional motions of curves that do not cross, but become very
difficult to implement whenever topological changes occur, particularly in dimensions
higher than two. On the other hand, phase-field [24, 27] and level set methods [28]
represent the interface implicitly and are therefore able to naturally handle topological
changes.

Motion by mean curvature has been extensively studied in the mathematics lit-
erature [15, 17, 19] and in applications such as crystal growth and image processing
[1, 25]. Under this geometric flow each point x on a curve Γ moves with normal
velocity vN = κ(x), where κ(x) is the mean curvature of the curve at x ∈ Γ. It
is also called the Euclidean curve shortening flow since the Euclidean perimeter of
a curve shrinks as quickly as possible when evolving according to this motion. A
variant of this motion is the geometric flow that decreases the total perimeter of a
collection of curves as quickly as possible while preserving the total enclosed area: it is
referred to as area (or volume) preserving mean curvature motion. This motion finds
applications in image processing [10, 16] and arises physically as a limit of a nonlocal
model describing the phase separation of binary alloys [3, 18, 30], and as a limit of the
Lifshitz-Slyozov-Wagner (LSW) mean field model with kinetic drag when the size of
the particles are small compared to value of the kinetic drag [8]. The LSW model was
introduced by Lifshitz, Slyosov and Wagner [20, 43] to study the general phenomenon
of Ostwald ripening [26], which describes the dissolution/precipitation dynamics of
precipitate crystals in a saturated solution: small precipitate crystals dissolve and
redeposit themselves on the surface of larger crystals, thus creating a coarsening of
the system size since small particles shrink and eventually vanish while larger ones
grow. The area preserving mean curvature flow exhibits a similar coarsening behav-
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ior (see Section 4). Mathematically, the area preserving mean curvature motion is
characterized by its normal velocity vN = κ− κ̄, where κ is the mean curvature and
κ̄ denotes the average mean curvature of the collection of curves evolving under this
motion.

Several schemes based on the level set method [10, 29, 45] and diffusion generated
motion [38] have been proposed for approximating this motion. In this paper, we
describe new schemes for area preserving flows based on a new class of algorithms
that generate the desired interfacial motion by alternating two simple and efficient
steps: construction of the signed distance function, and convolution with a kernel
(usually a Gaussian kernel). The resulting schemes are unconditionally stable, and
have low, namely O(N logN), per time step cost, where N is the total number of
grid points. In addition, we present applications of these efficient area preserving
algorithms to large scale simulations of area preserving curvature motion. The paper
is organized as follows. In Section 2, we give a brief description of previous diffusion
generated motion based algorithms, and describe our new area preserving schemes in
Section 3. We present applications of our new algorithms in Sections 4 and conclude
in Section 5.

2. Diffusion generated motion. The algorithms proposed in this paper have
been motivated by the threshold dynamics idea of Merriman, Bence and Osher (MBO)
[22, 23, 24]. The MBO algorithm is obtained by time splitting the well-known Allen-
Cahn phase-field equation for motion by mean curvature. The resulting scheme al-
ternates two steps, namely convolution and thresholding. More precisely, consider a
set Σ in the domain Ω ⊂ R2, with boundary ∂Σ evolving with normal speed vN = κ,
where κ(x) is the mean curvature of the interface ∂Σ at the point x ∈ ∂Σ. Then ∂Σ
is the 1

2 level set of the characteristic function χΣ of the set Σ:

∂Σ =:

{
x : χΣ(x) =

1

2

}
.

Given an initial set Σ0 defined through its characteristic function χ0, and a time step
size δt > 0, the MBO scheme generates a discrete sequence {Σj}j∈N at subsequent
times j(δt) in the following way: from the set Σj−1, obtain the set Σj by alternating
between the following two operations:

1. Diffusion step. From the set Σj−1 defined through its characteristic function
χj−1 at (j − 1)δt, solve the following initial value problem for a length of
time δt: {

ut = ∆u
u(x, 0) = χj−1(x),

which is equivalent to forming the function

L(x) = (Gt ∗ χj−1) (x),

where Gt is the n-dimensional Gaussian kernel given by

Gt(x) =
1

(4πt)
n
2
e
−|x|2

4t . (2.1)

2. Sharpening step.

χj(x) =

{
0 if L(x) < 1

2 ,
1 else.
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The location of the interface ∂Σj is given by the level set {x ∈ Ω : χj(x) = 1
2}.

The time discretization {∂Σj}j∈N has been proven to converge to motion by mean
curvature in the limit δt → 0+ (see [2, 13, 21]). One of the main advantages of
this algorithm is its unconditional stability. In fact, the scheme remains monotone
(preserves the order of sets) for all choices of δt, independent of the spatial resolution.
In addition, its computational complexity is low (O(N logN) due to the FFT used in
the convolution step), which makes it computationally more attractive than standard
level set techniques that involve the solution of a nonlinear and degenerate PDE [28].
Nevertheless, there exists some semi-implicit schemes for level set methods described
by Smereka in [40]. Several generalizations of the basic MBO scheme have been
proposed for generating more complicated interfacial motions including anisotropic
curvature motion, motion by curvature plus constant, and motion of multiple junctions
[12, 21, 32, 33, 34, 35, 36, 37].

Despite its computational advantages, the MBO scheme inherits a major draw-
back from its construction using characteristic functions: inaccuracy on uniform grids.
Indeed, characteristic functions cannot resolve the location of the interface better than
the spatial grid size. Consequently, unless the grid size is refined concurrently with
the time step size, the approximate motion generated by the scheme gets stuck. . It is
therefore necessary to discretize the scheme with methods that can provide subgrid
accuracy in the location of the interface. This was done by Ruuth in [33] through
the efficient use of an unequally spaced FFT. Such an adaptive strategy is especially
needed for simulating high order motions.

To address this issue, a variant of the MBO scheme has recently been proposed by
Esedoḡlu, Ruuth and Tsai in [11]. The new algorithms differ from the original by rep-
resenting the interface through its signed distance function instead of its characteristic
function, thereby replacing the thresholding step with a redistancing step. The new
schemes therefore simulate the motion of an interface by alternately diffusing and re-
distancing the signed distance function to the interface. The diffusion step consists of
convolving the distance function with an appropriate kernel, usually chosen to be the
Gaussian kernel, and the redistancing step simply consists of constructing the signed
distance function to the interface from the previously diffused distance function. In
these algorithms, the computationally very efficient thresholding step is replaced by
the construction of the signed distance function, for which there are also very efficient
(O(N logN)) algorithms (e.g., fast marching, fast sweeping, etc. [6, 31, 39, 41, 42]),
hence maintaining the complexity of the original diffusion generated motion scheme.
This new class of diffusion generated motion algorithms thus provides an efficient and
highly accurate technique for simulating a wide range of interfacial motions.

3. Proposed schemes. In this section we introduce our area preserving schemes,
and present systematic studies of their numerical convergence and accuracy.

3.1. Diffusion generated motion using signed distance functions. For a
given open set Σ ∈ R2, we denote by d the signed distance function to its boundary
∂Σ

d(x) :=

{
infy∈Σc |x− y| if x ∈ Σ,
− infy∈Σ |x− y| if x ∈ Σ̄c,

where d is positive in the interior of Σ and negative outside its closure. The signed
distance function dynamics [11] for motions with normal speed of the form

vN = κ+ S,
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where κ is the curvature and S is a given function mapping R2 to R, now reads as
follows: from an initial set Σ0 defined through its signed distance function d0(x) and
a time step size δt > 0, generate a time discrete approximation {∂Σj}j∈N at times
j (δt) by alternating between the following two operations:

1. Diffusion step. From the set Σj−1, defined through its signed distance func-
tion dj−1 at time (j − 1)δt, form the function

L(x) = (Gt ∗ dj−1) (x) + Sj−1(x) (δt) ,

where Gt is the n-dimensional Gaussian kernel given in (2.1).
2. Redistancing step. Construct dj ,the signed distance function to the zero level

set of L, defining the new set Σj (and thus its boundary ∂Σj)

dj(x) = Redist(L(x)),

where Redist denotes the construction of the signed distance function to the
zero level set of L; this operation is commonly used in level set techniques
[28], and unlike thresholding does not require making a binary decision at
each grid point about whether the point is inside or outside the zero level set,
thus allowing subgrid resolution to be maintained.

3.2. Algorithms for area preserving flows. Building on the distance func-
tion dynamics for curvature motions, we propose new and efficient algorithms for
area preserving flows in two dimensions. These algorithms generate interfacial mo-
tions with normal velocities

vN = κ− κ̄+ S, (3.1)

where κ denotes the curvature, κ̄ the average curvature and S = S(x, t) is an addi-
tional normal speed term that may depend on space and time. Such terms arise for
example in computer vision applications from data fitting terms in variational models
[10]. The core of our algorithm is the scheme for area preserving curvature motion
which evolves interfaces with normal velocity vN = κ − κ̄. Under this motion, n
disjoint curves Γi will evolve to decrease their total length while maintaining the total
enclosed area constant. In our algorithms, we use the fact that both κ and κ̄ can be
calculated very easily using the signed distance function to the interface.

Let us now recall a few well known properties of the signed distance function that
hold more generally in Rn (see e.g. [9, 14]). Consider the set Σ ⊂ Ω defined through
its signed distance function d, and let ∂Σ be its boundary. The first property of d is
based on the fact that the normals to a smooth interface do not focus immediately, so
that the signed distance function is smooth in a tubular neighborhood T of ∂Σ, and
linear with slope one along the normals:

|∇d| = 1 for all x ∈ T, with boundary condition d|x∈∂Σ = 0. (3.2)

The second property is that the Laplacian of the signed distance function d at a
point x gives, up to a multiplicative constant depending on the dimension, the mean
curvature of the isosurface of d passing through x:

∆d(x) = (n− 1)H(x), (3.3)

where H(x) denotes the curvature of the level set {ξ : d(ξ) = d(x)}, and n is
the dimension. In two dimensions, we will denote κ(x) the curvature of the curve
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∂Σ = {ξ : d(ξ) = 0}, so that equation (3.3) simplifies to

∆d(x) = κ(x). (3.4)

Before moving on to the expression of the average curvature κ̄ in terms of the signed
distance function d, we need to recall some simple definitions and properties. The
average curvature of a curve C is defined as

κ̄ =
1

|C|

ˆ
C

κds, (3.5)

where |C| denotes the length of the curve C. For a two dimensional simply connected
set Σ of genus p, the average curvature of its boundary ∂Σ can be expressed as

κ̄ =
2π (1− p)
|∂Σ|

,

where |∂Σ| is the total length of the boundary of Σ. The genus number p can be
interpreted as the number of “holes” in the set Σ. If the set Σ is made up of K
connected components Σ =

⋃K
j=1 Σj , with Σj being a set of genus pj , then the average

curvature of ∂Σ becomes

κ̄ =
2π
(
K −

∑K
j=1 pj

)
|∂Σ|

, (3.6)

From expression (3.6), we see that the only quantity left to compute is the perimeter
of the set Σ,

|∂Σ| =
ˆ
∂Σ

ds

=

ˆ
∂Σ

|∇d|2ds (since by definition of the signed distance function, |∇d| = 1)

=

ˆ
∂Σ

∇d · ν ds (where ν = |∇d| is the outward unit normal)

=

ˆ
Σ

∆d dx. (by the divergence Theorem)

Thus we have

|∂Σ| =
ˆ

Σ

∆d dx, (3.7)

which provides a simple relation between the length of the boundary of a set and its
signed distance function. In our computations, we use equations (3.6) and (3.7) to
compute the average curvature of a set. Notice that all the computations are done
using only the signed distance function to the interface. Note also that under area
preserving curvature motion, the boundaries of sets will evolve to decrease their total
length while maintaining the total area at its initial value. Consequently, the final
state of the evolution is a disk with area equal to the initial total area. In particular,
disks preserve their circular symmetry under this motion.

The complete algorithm for the general motion with normal speed vN = κ− κ̄+S
builds on the area preserving curvature motion scheme by simply shifting the location
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of the redistancing process by a constant determined by S(x, t). For clarity in the
description of the algorithms, we define

#{d > 0} := number of connected components of {x : d(x) > 0}.

Algorithm 1. Given the initial set Σ0 defined through its signed distance
function d0(x) and a time step δt > 0, generate the sets Σj via their signed
distance functions dj(x) at the subsequent discrete times t = j(δt) by alter-
nating between the following two steps:

1. Using Gt in (2.1), form

L(x) = (dj−1 ∗Gδt) (x)− 2π (#{dj−1 > 0} −#{dj−1 < 0}+ 1)´
dj−1>0

∆dj−1(x)dx
(δt)

+ Sj−1(x)(δt).

2. Construct the signed distance function dj using

dj(x) = Redist(L(x)).

A second-order in time version of Algorithm 1 can be obtained as follows

Algorithm 2. Multi-step, second-order in time version. Given the
initial set Σ0 defined through its signed distance function d0(x) and a time
step δt > 0, generate the sets Σj via their signed distance function dj(x) at
the subsequent discrete times t = j(δt) by alternating between the following
two steps:

1. Using Gt in (2.1), form

L1(x) = (dj−2 ∗G2δt) (x) + Sj−2(x)(2δt)

− 2π (#{dj−2 > 0} −#{dj−2 < 0}+ 1)´
dj−2>0

∆dj−2(x)dx
(2δt)

L2(x) = (dj−1 ∗Gδt) (x) + Sj−1(x)(δt)

− 2π (#{dj−1 > 0} −#{dj−1 < 0}+ 1)´
dj−1>0

∆dj−1(x)dx
(δt).

2. Construct the signed distance function dj using

dj(x) = Redist
(

1

3
(4L2(x)− L1(x))

)
.

The overall computational complexity of the general algorithm is O(N logN).
Indeed, counting connected components can be performed in O(N) operations where
N is the total number of grid points. The convolution is done inO(N logN) operations
using the FFT. Also there exist algorithms, such as fast marching and fast sweeping,
that construct the signed distance function in O(N logN) operations [6, 31, 39, 41, 42].
All the other terms used in the scheme, including the integral, can be done in O(N)
operations. Thus, we see that the per time step cost of the complete algorithm is
O(N logN). In addition, due to its unconditional stability, there is no restriction on
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the time step size. Note that the number of reinitialization operations involved in
Algorithm 2 can be kept at one per time step.

In the case of pure area preserving curvature motion (i.e., for S = 0), in the
interest of even better accuracy, we propose slightly modified versions of Algorithms 1
and 2 that consist in exactly matching, at each time step j (δt), the current area with
the initial area. This strategy is similar to the one used by Ruuth and Wetton [38] in
the case of threshold dynamics for area preserving curvature motion. For clarity of
the exposition, we define the area operator A : C2(R2,R) → R applied to a smooth
function φ to be

A (φ) :=

ˆ
φ(x)>0

dx = |{x : φ(x) > 0}| ,

which computes the area of the zero super level set of φ. We modify Algorithms 1
and 2 to use Newton’s method at each time step to find λ∗j the zero of the function
λj 7→ a(λj)− a0, where a0 is the initial area, and a(λj) the current area at time step
j defined as

a(λj) = A (dj−1 ∗Gδt − λj) .

Our expression for the average curvature used in Algorithms 1 and 2 is taken here to
be the initial guess for the Newton iteration:

λ0
j =

2π (#{dj−1 > 0} −#{dj−1 < 0}+ 1)´
dj−1>0

∆dj−1(x)dx
(δt),

The signed distance function dj is then constructed using

dj = Redist
(
dj−1 ∗Gδt − λ∗j

)
.

To modify Algorithm 2, we proceed in the same way, namely at each time step j (δt),
we compute λ∗j,1 and λ∗j,2 coming from the result of a Newton iteration using dj−2

with time step 2δt and dj−1 with time step δt respectively. The final update in this
case becomes

dj = Redist
(

1

3

(
4
(
dj−1 ∗Gδt − λ∗j,2

)
−
(
dj−2 ∗Gδt − λ∗j,1

)))
. (3.8)

The more accurate version of Algorithm 1 in the case of pure area preserving curva-
ture motion then reads as follows
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Algorithm 3. Area Preserving Curvature Motion. Given the initial
set Σ0 with area a0 defined through its signed distance function d0(x), a time
step δt > 0 and a tolerance η > 0, generate the sets Σj via their signed dis-
tance function dj(x) at the subsequent discrete times t = j(δt) by alternating
between the following two steps:

1. Using Newton’s method with initial guess

λ0
j =

2π (#{dj−1 > 0} −#{dj−1 < 0}+ 1)´
dj−1>0

∆dj−1(x)dx
(δt),

find λ∗j such that
∣∣A (dj−1 ∗Gδt − λ∗j

)
− a0

∣∣ < η and form

L(x) = (dj−1 ∗Gδt) (x)− λ∗j .

2. Construct the signed distance function dj using

dj(x) = Redist(L(x)).

The multi-step version of Algorithm 3 can be obtained by following the same
pattern as Algorithm 2 and using the update described in equation (3.8).

Algorithm 4. Area Preserving Curvature Motion: second-order in
time version. Given Σ0 with area a0 having distance function d0(x), δt > 0
and η > 0, generate Σj at times t = j(δt) by alternating between the following
two steps:

1. Using Newton’s method with initial guesses

λ0
j,1 =

2π (#{dj−2 > 0} −#{dj−2 < 0}+ 1)´
dj−2>0

∆dj−2(x)dx
(δt)

and

λ0
j,2 =

2π (#{dj−1 > 0} −#{dj−1 < 0}+ 1)´
dj−1>0

∆dj−1(x)dx
(δt),

find λ∗j,1 and λ∗j,2 s.t.
∣∣A (dj−2 ∗Gδt − λ∗j,1

)
− a0

∣∣ < η and∣∣A (dj−1 ∗Gδt − λ∗j,2
)
− a0

∣∣ < η, and form

L1(x) = (dj−2 ∗Gδt) (x)− λ∗j,1
L2(x) = (dj−2 ∗Gδt) (x)− λ∗j,2.

2. Construct the signed distance function dj using

dj(x) = Redist
(

1

3
(4L2(x)− L1(x))

)
.

Note that although Algorithms 3 and 4 preserve the area more accurately than
Algorithms 1 and 2, they will be inapplicable in situations where the total area may
change due to the presence of a non-zero forcing term S.
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3.3. Numerical convergence study. In this section we describe some con-
vergence studies done with the algorithms for area preserving curvature motion in-
troduced in the previous section. In the computations presented below, we used a
second order accurate procedure to construct the signed distance function in a tubu-
lar neighborhood of the interface. For details on more sophisticated algorithms for
constructing signed distance functions, we refer the reader to [5, 6, 31, 39, 41, 44].

We start by investigating the convergence of Algorithms 1 and 2 in the case
S = 0, namely for pure area preserving curvature motion. The results are displayed
in Tables 3.1 and 3.2. The initial condition for these tests is an ellipse E with major
axis a = 0.45 and minor axis b = 0.2, and the computational domain is [0, 1]2. The
evolution is computed over the time interval [0, 0.01]. The major and minor axes of
the final curve (which is no longer an ellipse) are 0.4 and 0.22 respectively. At the final
time T = 0.01 we measure the quantity

´
Σ(T )

(x2 + y2)dΩ, where Σ(t) ∈ R2 evolves
under area preserving curvature motion with initial condition Σ(0) = E . We compare
this quantity with the exact quantity

´
Σe(T )

(x2 + y2)dΩ, where the exact evolution
Σe(t) is computed using a front tracking technique with a very fine discretization of the
parameterized curve. We also display the error in area and its associated convergence
rate.

Resolution # of Relative error in Order Error in area Order
Time Steps

´
Σ(T )

(
x2 + y2

)
dΩ (in %)

33× 33 20 0.0167 – 0.000921 –
65× 65 40 0.3218 −4.27 0.000561 0.72

129× 129 80 0.2046 0.65 0.000271 1.05
257× 257 160 0.1002 1.03 0.00012 1.18
513× 513 320 0.0487 1.04 0.000055 1.12

1025× 1025 640 0.0240 1.02 0.0000263 1.06
2049× 2049 1280 0.0119 1.01 0.0000128 1.03

Table 3.1
Convergence of Algorithm 1 for S = 0. The initial condition is an ellipse with major axis

a = 0.45 and minor axis b = 0.2 on [0, 1]2. The evolution was computed for t ∈ [0, 0.01].

Resolution # of Relative error in Order Error in area Order
Time Steps

´
Σ(T )

(
x2 + y2

)
dΩ (in %)

33× 33 20 0.8098 – 0.00164 –
65× 65 40 0.4919 0.72 0.000710 1.20

129× 129 80 0.0951 2.37 0.000150 2.24
257× 257 160 0.00738 3.69 0.0000210 2.84
513× 513 320 0.000928 2.99 0.00000434 2.27

1025× 1025 640 0.000196 2.25 0.00000109 1.99
2049× 2049 1280 0.00000915 4.42 0.000000265 2.04

Table 3.2
Convergence of Algorithm 2 for S = 0. The initial condition is an ellipse with major axis

a = 0.45 and minor axis b = 0.2 on [0, 1]2. The evolution was computed for t ∈ [0, 0.01].

As can be seen in Table 3.1, Algorithm 1 settles into a clearly first order con-
vergence rate. Table 3.2 shows the convergence rate for Algorithm 2, which on this
example turns out to be significantly higher than second order, perhaps due to some
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cancellation of errors. In any case, Algorithm 2 achieves very high accuracy even on
very modest sized grids.

We now present the convergence of Algorithms 3 and 4 with the same initial
condition (same ellipse). The results are displayed in Tables 3.3 and 3.4 respectively.
We repeat that these algorithms can only be used to simulate pure area preserving
motion by curvature. In both convergence tests, the area was preserved up to an error
of 10−14 or less. Table 3.3 displays the convergence of Algorithm 3 and Table 3.4 the
convergence of Algorithm 4.

Resolution # of Time Steps Relative error Order
in
´

Σ(T )

(
x2 + y2

)
dΩ (in %)

33× 33 20 0.6256 –
65× 65 40 0.0588 3.41

129× 129 80 0.0213 1.47
257× 257 160 0.0194 0.13
513× 513 320 0.0117 0.73

1025× 1025 640 0.00631 0.89
2049× 2049 1280 0.00327 0.95

Table 3.3
Convergence of Algorithm 3. The initial condition is an ellipse with major axis a = 0.45 and

minor axis b = 0.2 on [0, 1]2. The evolution was computed for t ∈ [0, 0.01].

Resolution # of Time Steps Relative error Order
in
´

Σ(T )

(
x2 + y2

)
dΩ (in %)

33× 33 20 0.3040 –
65× 65 40 0.0112 4.76

129× 129 80 0.00735 0.61
257× 257 160 0.00689 0.09
513× 513 320 0.00197 1.81

1025× 1025 640 0.000488 2.01
2049× 2049 1280 0.000117 2.06

Table 3.4
Convergence of Algorithm 4. The initial condition is an ellipse with major axis a = 0.45 and

minor axis b = 0.2 on [0, 1]2. The evolution was computed for t ∈ [0, 0.01].

In addition to the convergence studies described above, we tested our area pre-
serving curvature motion algorithm on an initial configuration containing three circles
with radii 0.15, 0.2 and 0.22 on [0, 1]2. Since circles remain circles under this motion,
we monitored the evolution of each of the three radii for t ∈ [0, 0.1], and compared
it with the exact evolution obtained by numerical integration of the coupled ODEs
for the radii. The circles were placed far apart initially so that no collision occurred
during the evolution. The result is shown in Figure 3.2. Figure 3.1 shows the three
circles in the initial condition (thick line) and the final curves at time t = 0.1 (fine
line). Note that area preserving curvature motion is global and hence couples the
evolving circles to each other.
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Figure 3.1. Evolution of three circles under area preserving curvature motion for t ∈ [0, 0.1].
The initial condition is shown by the thick curves, and the final curves at t = 0.1 are displayed by
the thin curves. In this configuration, the largest circle grew while the other two shrunk (the smallest
one actually disappeared).
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Figure 3.2. Comparison between the evolutions of the exact and computed radii obtained
from three initial circles taken as initial condition and evolved under area preserving curvature
motion. The initial three circles have the following radii: 0.15, 0.2 and 0.22. In each of the plot,
we superimpose the exact evolution (in bold) and the evolution of the radii computed on a 322, 1282
and 5122 grid. The top row shows the entire evolution, while the bottom row shows an enlarged view
of the plots where the graph is not differentiable (corresponding to the disappearance of the smallest
circle). This computation was performed with Algorithm 4.
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4. Application: large scale simulations of area preserving curvature
motion. In this section, we demonstrate the capacity of our proposed algorithms to
handle large scale simulations with very good accuracy.

4.1. Curve shortening at various area fractions. Geometrically in two di-
mensions, the area preserving curvature flow describes the shortening of a curve (or
interface) separating two phases, while maintaining the area of each phase equal to
their respective initial area. A natural question therefore arises: at what rate does
the total length of the curve decrease? Scaling arguments [7] suggest that the total
length L decreases as a power law in time according to

L(t) ∼ t− 1
2 .

In a recent paper, Dai [7] obtained a rigorous result for the rate of decrease of L
in the case of a dilute mixture. Specifically, he showed that for a collection of non-
intersecting and convex plane curves, the total length L(t) cannot decrease faster
than t−

1
2 in a time average sense. In this simplified case, there is no coalescence

and the only singularity is the disappearance of curves. In the general case however,
collisions of curves will occur causing singularities in the curvature to appear at the
times of first intersections. In fact, at the points of intersections, the curvature will be
infinite, leading to an immediate smoothing and a fast decay of the sum of the lengths
pertaining to the merging curves. Figure 4.1 illustrates this point on a simple example
of two curves intersecting each other during their evolution under area preserving
curvature motion.
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Figure 4.1. Coalescence of two curves during their evolution under area preserving curvature
motion. Figure 4.1(a) shows the initial condition and Figure 4.1(b) displays the new curve just
as the two previous ones collided. The curvature of the new curve is very large at the point of
intersection. Figure 4.1(c) shows the new curve shortly after the collision occurred superimposed
with the curve shown in Figure 4.1(b).

In this context, we refer to the phase enclosed by the curves as Phase 1. Phase 2
denotes its complement. As a demonstration of the proposed algorithms, we present
some simulations of area preserving curvature motion on very large collections of
closed curves (or droplets). We also measure certain statistics related to the config-
urations of droplets during their evolution. Our algorithms achieve good accuracy
with droplets as small as 15 pixels in diameter, allowing us to carry out simulations
with very large number of initial droplets. Indeed, we present simulations with initial
conditions containing up to 25000 droplets on a 40972 grid. Our computations con-
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sidered various area fractions of Phase 1 ranging from 10% to 50%, which equivalently
considered area fractions of Phase 2 ranging from 50% to 90%.

4.2. Numerical results. In this section, we present the results of our simu-
lations. We construct the initial data by generating random sets of points from a
uniform distribution, and placing a disk centered at each of the points with radius rd
chosen from a uniform distribution. The droplets are obtained by taking the union
of the disks (some of which may be overlapping). From such initial configurations
(i.e., randomly generated droplet configurations), it would be reasonable to expect
a certain collision rate during the evolution under area preserving curvature motion.
Figure 4.2 illustrates the area preserving motion by curvature evolution on initial data
with 10% and 40% area fraction. To avoid boundary effects, the computations are
done on a slightly larger domain than [0, 1]2. Additionally, as an extra precaution
to prevent premature mergings of nearby droplets, at each time step we divide the
droplets into subsets containing only droplets that are far enough apart, and update
the signed distance function of each subset separately. This allows individual grains
to evolve independently all the way up to the time of overlap with another evolving
droplet that may be as close as a single grid point. Finally, since the average size of
the droplets increases during the evolution (slowing down the dynamics), we perform
our computations using an adaptive time step regulated by the average size of the
droplets. This adaptivity is made possible by the unconditional stability of our algo-
rithms. In Figure 4.3, we demonstrate that taking larger time steps once the average
grain size is large enough does not significantly change the configurations of droplets.

t is 0 (enlarged view): 10% area fraction
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Figure 4.2. Evolution of two configurations of droplets under area preserving curvature mo-
tion. The top row displays the evolution of a configuration of droplets with 10% area fraction. The
bottom row shows the evolution for a configuration with 40% area fraction. Because of the very large
number of droplets in the early configurations, we only show a subset of these configurations in the
two plots of the first column. These subsets have been enlarged for a better view.

Figure 4.4 compares the rate of decrease of the total length L (which is also
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Figure 4.3. Comparison of the effect of two different time step sizes on the computed solution:
fixed time step size of δt, and the adaptive time step size that reaches 4δt at the initial condition
shown on the left Figure 4.3(a). In this example, δt = 4.7710−7. Figure 4.3(a) shows the initial
configuration and Figure 4.3(b) displays the configurations obtained from computations using δt
and 4δt. Except for minor differences, both computations are able to resolve the dynamics, thus
exonerating the use of larger time steps as the coarsening proceeds.

the energy dissipated by the evolution) with the theoretical bound t−
1
2 for various

area fractions. Note that this bound has been rigorously established [7] for convex
curves that never collide. Moreover, it is known [8] that it is possible to construct
configurations of droplets that coarsen arbitrarily fast under this geometric motion.
Nevertheless, for randomly generated initial conditions, the rate of decrease of L,
obtained from our computations, closely follows the theoretical bound despite frequent
collisions between droplets.

Another quantity that we study is the number of connected components K in
the configurations of droplets. Based on the rate of decay of L, and using a simple
heuristic argument on a uniform configuration of disks, we can show that the number
of connected components should essentially decay as 1

t . In Figure 4.5 we compare the
numerically observed rate of decrease of K for various area fractions with the bound
1
t . For the randomly generated initial conditions chosen in our simulations, the plots
show very good agreement between the computed rate and the bound 1

t . Intuition
also suggests that at any given time, a certain population of droplets will be just
about to collide, generating configurations at which the energy decrease rate must
be elevated (the proportion of droplets just about to collide to all droplets would
of course depend on the area fraction). However, it appears that even if collisions
between droplets cause a deviation in the coarsening rate of randomly generated initial
configurations, our numerical experiments, despite their large size, are still not large
enough to discern such a difference – perhaps the effect is very small. Nevertheless,
as one would expect, we observe that at any time during the evolution (outside of the
transient initial period and the final stage where only a few droplets remain), there
is a constant proportion of eccentric droplets (i.e., droplets that are the result of a
recent collision). This observation agrees with the expectation that collisions occur
at a definite rate in proportion to the number of droplets. To exhibit this behavior,
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Figure 4.4. Loglog plot of the total length L of the boundary of all droplets (also the energy
being decreased by the evolution) versus time for various area fractions. The thick line corresponds
to the theoretical bound t−

1
2 . From top to bottom, and left to right, the plots correspond to area

fractions ranging from 10% to 50%. The plots acknowledge good agreement between the theoretical
bound t−

1
2 and the numerically observed rates (fine line).
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Figure 4.5. Loglog plot of the number of connected components K versus time for various
area fractions. From top to bottom, and left to right, the plots correspond to area fractions ranging
from 10% to 50%. The plots acknowledge good agreement between the bound 1

t
(thick line) and the

numerically observed rates (fine line).

we measure the isoperimetric ratio

I(C) :=
P 2

A
(4.1)

of each grain in order to characterize their shape. In (4.1), C is a closed curve, P is
its perimeter and A its area. Since the isoperimetric ratio is minimized by a circle,
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we have that for any closed curve

I ≥ 4π ∼ 12.57,

where I = 4π when C is a circle. For an ellipse with minor axis b and major axis a =
3b, the isoperimetric ratio is approximately I ∼ 18.95. For a more elongated ellipse
with minor axis b and major axis a = 4b the isoperimetric ratio is approximately I ∼
23.42. From these references, we look at the proportion of droplets with isoperimetric
ratio I > 20. Figure 4.6 shows the distribution of isoperimetric ratios at different
times throughout the evolution for a configuration of droplets with 50% area fraction.
Table 4.1 displays the proportion of eccentric droplets for the various area fractions
studied in our computations. Figure 4.7 shows the proportion of eccentric droplets
and the total number of droplets for configurations with area fractions 30%, 40% and
50%. In each case, the proportion of eccentric droplets decreases very quickly during
the transient initial phase (as is the total number of droplets) and then stabilizes itself
around a constant value. The proportion of eccentric droplets remain constant until
the total number of droplets becomes too small.
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Figure 4.6. Time evolution of the distribution of isoperimetric ratios computed from the evo-
lution of an initial configuration of droplets with 50% area fraction under area preserving curvature
motion. During the evolution, the distribution of isoperimetric ratios remains quite wide. This
width underlines the existence, at all times, of a certain proportion of droplets that resulted from
collisions.
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Area fraction Proportion of # of droplets at onset # of droplets at the end
eccentric droplets of constant proportion of constant proportion

10% 0.12% 5054 193
20% 0.46% 2623 78
30% 1.18% 2932 91
40% 2.49% 2766 34
50% 3.81% 3885 49

Table 4.1
Proportion of eccentric droplets (the isoperimetric ratio of which satisfies I > 20) for various

area fractions. The proportion of eccentric droplets increases with the area fraction, as one would
expect.
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Figure 4.7. Proportions of eccentric droplets (i.e. with isoperimetric ratio I > 20) in the
case of 30%, 40% and 50% area fraction. Figures 4.7(d), 4.7(e) and 4.7(f) clearly show that after
a transient initial time, the proportion of eccentric droplets seems to stabilize around a constant
value. Figures 4.7(a), 4.7(b) and 4.7(c) corroborate the fact the proportion of eccentric droplets
remain constant from the time when the total number of droplets is on average 3000 until the time
when it is around 50.

5. Conclusion. We described efficient and highly accurate algorithms for sim-
ulating certain area preserving curvature flows in the plane, with normal speeds of
the form vN = κ − κ̄ + S. Our schemes are based on a diffusion generated motion
approach using signed distance functions, thus making them more accurate than the
standard MBO (threshold dynamics) schemes on uniform grids. We proposed first-
order and second-order in time versions of our algorithms and carried out numerical
studies to verify their convergence and accuracy. These schemes are also relevant for
image processing applications where the additional term S in the velocity κ− κ̄+ S
comes from data fitting terms in variational models.

In addition, we presented an application of these new schemes to large scale
17



simulations of coarsening. This application demonstrated the ability of our algorithms
to handle large scale computations due to their high accuracy and computational
efficiency. In particular, we were able to simulate the coarsening of large numbers
of droplets under area preserving curvature motion. The large number of droplets
allowed us to obtain reliable statistical measurements, which are reported.
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