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Abstract

We investigate how the Perona-Malik scheme evolves piecewise smooth initial
data in one dimension. By scaling a natural parameter that appears in the scheme
in an appropriate way with respect to the grid size, we obtain a meaningful con-
tinuum limit. The resulting evolution can be seen as the gradient flow for an
energy, just as the discrete evolutions are gradient flows for discrete energies.
It involves, except at special isolated times, solving a system of heat equations
coupled to each other through nonlinear boundary conditions. At the special
times, the solutions experience gradient blowup; nevertheless, there is a natural
continuation for the solutions beyond these singular tim€s2001 John Wiley

& Sons, Inc.

1 Introduction

In [16] Perona and Malik proposed a numerical method for selectively smooth-
ing digital images, designed to keep “edges” in pictures sharp. The essence of their
method is contained in the following discretization:
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whereN, S, E, andW denote north, south, east, and west, the syrbdenotes

the nearest-neighbor difference quotient in the direction of its subscript, and the
remaining coefficients are given by

CtNi,j = gk(|vNuit,j %), Cta,j = gk(|v8uit,j|2),
e, = k(IVeu;1%),  cw, = a&(IVwui; %),
whereg is a function with certain important properties, as we shall presently ex-
plain. In applications, the computational domain is ordinarily just a rectangle, and
one imposes either periodic or homogeneous Neumann boundary conditions.
In this paper we focus on the one-dimensional version of scheme (1.1). Our

purpose is to recognize a continuum (PDE) problem that it solves in the limit as
the grid sizeAx goes to 0. As indicated, the functiga comes equipped with a
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parametek; we obtain our continuum limit by choosing a specific relation between
k and Ax. The resulting evolution is unusual: It involves solving a system of
heat equations coupled to each other through nonlinear boundary conditions that
become singular at special times, leading to gradient blowup for the solutions.
However, the scheme suggests a natural continuation beyond each one of these
singular times that involves a change in the PDE system. Our convergence proof
applies on any bounded interval of time, which might include singular times (under
some technical restrictions). And our continuum limit has some of the features
observed in applications of the numerical scheme.

It is natural to think of discretization (1.1) as a candidate for the numerical
solution of the continuum problem:

(1.2) ur = div(ge(|Vul?)Vu).

To be more precise, and as Perona and Malik note in their paper, the discretization
(1.1) is suggestive of the similar but more anisotropic equation

(1.3) U = (G (U)ux), + (S (U5)uy),, -
In fact, the authors propose their numerical scheme with this intention.

An essential feature of the method is the choice of the funaljigg). For
Perona and Malik’s choices, equation (1.2) (or (1.3)) is not parabolic: In regions
of high enough gradient (depending on the paramidtethe diffusion coefficient

becomes negative. Our approach avoids trying to make sense of equations (1.2) or
(1.3). Itinstead concentrates on the scheme (1.1) itself.

1.1 Background

Image segmentation and edge detection are two fundamental procedures of
computer vision that rely on image smoothing as an important first step. Their
goal is to decompose a given image into regions that are essentially homogeneous
(with little variation in color or brightness). These regions should be separated by
sharp boundaries (edges). Such an operation forms an early stage of interpreting
and extracting useful information from digital pictures, since it helps recognize
parts of the scene that belong to different objects [14].

An image is described mathematically by a real-valued, bounded function de-
fined on a subset of the plane; the value of the function at a point represents the
gray-scale intensity, or brightness, at that point in the image. We think of edges in
the image as places where the intensity function has high gradient or discontinuity
due to an abrupt change. Abrupt changes in an image occur, however, not only
because of a transition from one distinct region in the scene to another, but also
because of the presence of noise or fine detail within regions. Those can appear as
redundant edges. The natural approach of thresholding the gradient, therefore, is
not a satisfactory method of locating edges. As a cure, a preprocessing step is of-
ten introduced. It involves smoothing the image—for instance, by some averaging
technique—in order to remove noise and fine detail.
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A common way of “de-noising” is to convolve the original image with the
Gauss kernel, or equivalently, to solve the heat equation with the original image
as initial data [12]. In that case, the variance of the kernel (or the time variable
t of the heat equation) plays the role of a coarseness parameter. This method has
an obvious disadvantage: Edges in the image, which are the ultimate goal, get
blurred. Ideally, ag gets large, we would like edges to remain sharp, and hence
well-defined and localized, until they disappear. One therefore wishes for a more
selective smoothing procedure: one that smoothes the interior of individual regions
but not their boundaries.

Various methods have been suggested to avoid the disadvantages of Gauss-
ian smoothing; a recurring theme is to replace the heat equation by a nonlinear
diffusion equation. One such approach is directional diffusion, a typical example of
which is the equation; = |Vu| div(Vu/|Vu]|) that models “motion by curvature”
and also appears in other contexts [11]; it is degenerate along the gradient direction,
and so has the effect of smoothing the image along but not across the edges. Perona
and Malik proposed another procedure in [16]. Their idea is to coarsen the image
using a nonlinear heat equation whose constitutive function decreases rapidly for
large values of the gradient and thus suppresses diffusion near edges. There are also
methods based on modifications of Perona and Malik’s idea [2] and methods that
combine their idea with the degeneracy in the motion by curvature equation [1].

1.2 The Perona-Malik Method
In [16] Perona and Malik report numerical experiments with their scheme using

1
G§) = —— and gk<s>=exp(—i).

14§ 2k
Other choices used in practice include
£\ D .
(&) = <l+ E) whereg € (0, 3).

These choices have the following common characteristics, as noted in [10]:

(1) ok(¢) > Oforallé > 0.

(2) The parametek defines a positive critical valugk) such thad; (£gx(£2))
> 0 for |£] < z(k) andds (Egk(£2)) < O for €] > z(K).

(3) Bothg(¢) andog (£gk(£?)) tend to 0 ag goes to infinity.

Figure 1.1 illustrate§gy(£2) for such a choice ofi(£).

In light of these properties, the parameketonstitutes a threshold for the in-
tensity gradient: In regions where the gradient is small comparédttee equa-
tion is parabolic. On the other hand, if the gradient is large comparéd ot
only does the diffusion coefficient vanish, but it actually becomes negative. This
is an alarming situation since backwards heat equations are notoriously ill-posed.
Nevertheless, experiments with the scheme yield visually impressive segmenta-
tions [15, 16].
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Re(§) vs.&

z(k)

FIGURE 1.1. Graph ofR(¢) := &gk(£2) for a typical choice of the
functiongk(¢) in the Perona-Malik scheme. In this cage(s) = 1/(1+

£/K).

Many previous authors have reported numerical experiments with the Perona-
Malik scheme. Some of the important features observed are as follows: Large-scale
oscillations that one expects to see (as an indication of ill-posedness) are promi-
nently absent. Instead, unstable behavior seems to be confined to regions that are
thick with high gradient. Such regions are uncommon in real pictures, but do arise
in very blurred ones. In one dimension, the intensity function in these regions goes
through a transition period during which it develops terraces separated by sudden
jumps; this is the effect referred to as “staircasing” in [8, 10, 15]. We understand by
a terrace any maximal subinterval of the domain in which the discrete derivatives
(difference quotients) are small enough, compared to the parakjeterthat the
scheme is parabolic. The sharp transition from one terrace to the next occurs over
a single grid cell, and the gradient across this transition exceeds the parabolicity
threshold. The configuration of steps that emerge from regions of high gradient
is very sensitive to perturbations and has global influence on the evolution of the
image [19]. Our own experiments agree with these observations.

The formation and subsequent interaction of steps (or terraces) mentioned in
the previous paragraph is a major characteristic of the scheme and seems to be
related to coarsening. Indeed, in one dimension we observed that the transitions
between terraces do not move. Furthermore, the scheme does not introduce new
transitions: Neighboring terraces can merge, but a terrace never breaks into smaller
ones. Remarkably, this property holds even at the level of a few grid cells (one can
think of a single grid cell as a very small terrace). As a result, terraces quickly
merge to form larger ones, and the image evolves into one that looks piecewise
smooth (see Figure 1.2). From the point of view of image segmentation, these
properties are very desirable.

The success of the Perona-Malik scheme at its intended purpose and its better-
than-expected stability have led to some recent work on obtaining a continuum
theory that might explain the major characteristics observed in numerical experi-
ments.
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FIGURE 1.2. Evolution of a ramp with noise superposed under the
Perona-Malik scheme witlg(§) = 1/(1 + £/k). The grid size is

h = 1/500 and the threshold value of slopezif) = +/80. The ramp
has slope 10. The noisy original image turns very quicklyt(by0.002)

into one that looks piecewise smooth.

1.3 Previous Work

Some previous mathematical work deals with understanding whether equation
(1.2) can be given an existence and unigueness theory. In [10], Kichenassamy pro-
vides an argument for why this equation does not possess a weak solution in the
usual sense (if the initial data is not analytic in a neighborhood of high-gradient
regions). His argument draws on the regularization property of parabolic equations
(in divergence form, with possibly discontinuous coefficients). Specializing to the
one-dimensional version of (1.2), he then introduces a new notion of weak solu-
tion that allows for discontinuities. Naturally, this leads to a jump condition that
relates the speed of a “shock” to the jump in the value of the function and its space
derivative across the discontinuity. He also proposes an entropy condition with the
intention of obtaining uniqueness. These considerations lead him to a continuum
problem for piecewise smooth initial data with small derivatives. It consists of a
system of parabolic PDEs (one equation for each smooth piece) coupled through
their boundary conditions. Our goal—a well-posed PDE capturing the essential
behavior of the Perona-Malik scheme—is similar to Kichenassamy’s. However,
our treatment is different in two important ways: (1) We specify a relation between
the parametek and the grid sizeAx, and (2) we prove a rigorous convergence
theorem linking the discrete and continuous schemes.

The paper by Kawohl and Kutev [8] is also about the one-dimensional Perona-
Malik PDE rather than the numerical scheme. It concerns v@adolutions. (The
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set of such solutions is not empty, since if we start with initial data with small
slope, the equation remains parabolic for all time; such solutions therefore exist
and are well-behaved). Among the results presented is nonexistence of global-in-
time weakC? solutions whose initial data have regions with slope larger than the
parabolicity threshold. So even for analytic initial data such solutions break down
in finite time (if they exist at all; local-in-time existence is not known). Other re-
sults the authors obtain include maximum and comparison principles and a unique-
ness result for certai@! solutions. Our continuum limit is rather different from
that considered by Kawohl and Kutev. Still, we do make use of ideas from their
paper in deriving a suitable maximum principle (Proposition 2.4).

In [3], Chambolle prove$'-convergence of a class of discrete approximations
to the Mumford-Shah functional in two dimensions. Let us recall the form of this
functional:

(1.4) MSu) := / |Vu|2dx+aHl(S,)+)\/|u—u°|2dx.
Q-5 Q

It is defined for functionss in GSBV, the space of generalized special functions
of bounded variationH?! denotes the one-dimensional Hausdorff measgras

the jump set olu and Vu its approximate gradient, and is the original image.
Chambolle’s approximations to MS, witH* replaced by an anisotropic version
(cab driver length), are defined on uniform rectangular grids; they look like

Uit — Ui j Ui ioq — Ui
En(u) := Y h2 W[ L2 ) vy (2T
h(U) . ik( H + Wi H
+ ) hPuig — )
L

where the functioW(x) := min{x?, k} andh > 0 is the grid size. The function
W is convex for|x| < +/k. In that sense, the parameteplays the same kind
of thresholding role as it does in the Perona-Malik scheme. Chambolle shows that
if kis scaled ak = «/h with respect to the grid size, this family of discrete
functionalsT"-converge to MS. The Perona-Malik method is dynamic, while the
Mumford-Shah variational problem is static. There is, however, a very strong link
between our work and that of Chambolle: We follow his lead in assuming that the
parametek must scale with.

Paper [6] by Gobbino concerns the same kind of problem with a similar ap-
proach as in Chambolle’s work. It establisiegonvergence to MS (with = O,
an inessential difference) of a class of approximations that in one dimension have
the form

(1.5) F.(u) .= % f arctan(
R

o 2
(UX + &) — u(x)) )dx

&

Gobbino’s result in fact holds for the-dimensional analogue of the problem.
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The more recent paper by Gobbino [7] is dynamic rather than static and very
closely related to the present work. This paper looks at the one-dimensional ap-
proximations (1.5) as defined on spaces of piecewise constant functions

PC = {u € L2(R) : u(x) = u(e[g]),‘v’x € R}

wheree > 0 is the grid size anfl] denotes the integer part of its argument. The
paper is devoted to defining a gradient flow for MS as the limit of gradient flows to
(1.5), which are defined by the relation

(1.6) u.(x) = —(VF)(u.(t)) with u,(0) = u?.

The initial conditionu® is required to bé- . and have finite Mumford-Shah energy.
In one dimension, this stipulation implies that is piecewiseW2. Also, the
approximate initial datai (which are piecewise constant) must convergeito
in L2 and in energy. Gobbino shows that the flows generated by (1.6) converge,
and for a large class of initial data the limit is independent of the approximating

sequence.

Gobbino’s paper is related to our work because the gradient flows (1.5) are
given precisely by the semidiscrete (continuous-in-time) version of the Perona-
Malik scheme (1.1) withge(¢) = 1/(1 + £2/k?) and subject to the scalirgy =
1/Ax. The limiting evolution he obtains is similar to ours, consisting of solving a
system of linear heat equations in a variable domain. However, it differs from ours
in the boundary conditions that couple these equations to each other: His equations
have a homogeneous Neumann boundary condition at each “interface,” whereas
our limit involves nonlinear boundary conditions that strongly couple equations
on neighboring intervals to each other. Our analysis is therefore similar to that of
Gobbino at many points but also requires new ideas.

1.4 Our Approach

We now turn to the central task of this paper: understanding the Perona-Malik
scheme (1.1) as the grid sihegoes to 0 withk = k(h) scaled appropriately. We
shall address the semidiscrete version of the scheme (discrete in space, continuous
in time), and we restrict our attention to one space dimension. Thus, the scheme to
be analyzed is

d 1
(1.7) T ) = H(Rk(vEUj (1) — R(Vwuj (1))
whereR(£) := £g(£2). We will work with the specific family of nonlinearities

£ (B-1)
g® = (14})  wihpe[od).
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Let z(h) = zg(h) denote the threshold value of the slope for this family; more

explicitly,
1 ——
so that
9 Ry () >0 for|¢| < z(h)

<0 otherwise.

For later reference, we record two important properties of the fundliofirst,
R(&) := Rg(&) is a one-to-one, increasing function paz(h), z(h)]; it therefore
has an increasing inverse with dom&inR(z(h)), R(z(h))]. We shall denote this
functionR_%, i.e.,

(1.8) R = (R®)| ) 2)

Second, sincdR,(x)/x is a function of onlyx/z, we have the following bound
from below, which is independent af

-1

o Ra(X) — Ra(y)
(1.9) 0(B) := |x|y|<'<9§%z —xy ‘ > 0.

Let us now try to understand how the one-dimensional scheme (1.7) operates
on an initial image that is smooth except at a pgntat which it has a jump of
heightJ. Let p be located between the two grid poinsandx;.i. The scheme

then reads
. 1 J Ui —uj_
n=a(R(m R ().

i 1 Uj 12 — Uj J
o= (R =R (5))

Roughly speaking, we interpret this to mean that the scheme imposes the condition

U —Ui-1\_ () _ (Yi+z— U
o (2 -a()-n(22, ).

In words, the slopes on either side of a jump are equal and are related to the jump
height by the above formula. One way to understand why this is so is to note that
unless these three quantities are withith) of each other, a process that operates
at a faster time scale will adjust them until this is the case. Kichenassamy also
observed this property as a “note added in proof” of his paper [10].

We therefore expect the scheme to impose (possibly inhomogeneous) Neumann
boundary conditions at jump locations of a piecewise smooth image.

Second, we note that the difference quotigits.1 — u;j)/h scale agO(1) at
differentiable regions in the image and @¢1/h) across jumps. We are thus led
to look for a way to adjust the thresholding paramétérat appears in the scheme
with respect to grid sizh so that relation (1.10) translates into a nontrivial bound-
ary condition in the limit afy — O*.
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When we try a scaling of the foria(h) = h* and look fora, we see that for
eachg € [0, %) there is only one value far that leads to a nontrivial limit: We
find that

28 —
1-58
Such scalings that depend on the discretization appear in a different context in the

works of A. Chambolle [3] and Chambolle and Dal Maso [4] onfheonvergence
of discrete approximations to the Mumford-Shah functional.

The threshold value(h) of slope for a given grid sizk thus becomes
_
JI=28

and has the important property tteh) — oo andhz(h) — 0 ash — 0. As

a consequence, for small enoulyithe scheme becomes diffusive at all regions

in which the image is differentiable, no matter how high the slope there is. The
only features in a piecewise differentiable image that “feel” the backwards nature
of the scheme are jumps, at which the backwardness manifests itself as boundary
conditions.

In fact, scaling in the manner indicated by (1.11) leads to

J
1.11 = leadsto limRs | = | = J131%2.
1) iR () =319

2(h) = h(26-D/(2-2p)

lim Rgk(X) =X,
h—0t+ ﬁ’k( )

which means in the limit we should expect the scheme to solve the standard heat
equation wherever the image is differentiable. We have thus obtained enough
clues as to what kind of continuum limit, defined for piecewise smooth images,
we should put forth.

1.5 Proposed Limit

ou;
W:Aui forp_1<x<p,
ou; ou; _ .

112 Moo= 0= 33# fori=12. N-1
auj

Jup
a—x(po,t) = 8_X(pN’t) =0,

whereg € [0,3), Ppo < p1 < --- < pn, andJ = Uiy (pi, t) — ui(pi, t). For

the function{u; (x, t)}iN:1 we prescribe piecewise continuous initial conditions with
jumps at{ p; }iN:‘ll. This is our proposed limit for the Perona-Malik scheme provided
that we scaleRg (&) = £(1 + £2/k)#~1 according to the prescription

(1.13) k = h®#=D/0-p)
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FIGURE1.3. Evolution up to and beyond the quenching time for a sym-
metric step. The solid line is the solution generated by the Perona-Malik
scheme withgk () = 1/(1 + £/k), k = 100, and mesh size = 1/100.

It quenches just beforie= 0.059. The dashed line is the solution to the
proposed continuum limit, computed on a very fine mesh. It quenched
a little aftert = 0.049. There is a discrepancy between the quenching
times, but they coincide in the limit ds— 0.

We single out the casg = 0 that gives the most singular boundary condition

U Ui 11

(1.14) a—x(pi,t): (pi,t)=1 fori=1,2...,N—-1

0X Ji
because it requires special treatment in some of our claims.

The system (1.12) is meaningful until one (or more) of the jump heights
vanish, since according to the boundary conditions the slope at a jump location
goes to infinity as the jump height goes to 0. We will refer to such a breakdown
asquenching It is easy to see that quenching has to happen in finite time (see
Proposition 2.8). Therefore, this PDE system is only part of our proposed limit; we
will explain how to continue the solution beyond quenching times.

1.6 Numerical Experiments and Experience

As we mentioned earlier, at least under some circumstances the Perona-Malik
scheme turns a general image quickly into one that looks piecewise smooth: The
number of jumps in the picture becomes small compared to the number of pixels,
and the terraces become wide. This numerical observation is supported by Propo-
sition 3.2 and Lemma 3.3, and is illustrated by Figure 1.2. Since our approach
to understanding the Perona-Malik scheme, as expressed in Theorem 3.13, is lim-
ited to piecewise smooth initial data, we cannot expect it to describe what happens
during this initial transition.

Figure 1.3 illustrates how the Perona-Malik scheme behaves after an interface
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FIGURE 1.4. Interaction of steps under the Perona-Malik scheme. The
small terrace at the right (at aboxit= 380) washes out quickly despite
the large jumps on either side of it.

heals. The solid line is generated by the original scheme. The dashed line rep-
resents our proposed limit, which in this symmetric situation can be expressed in
terms of the solution to thginglenonlinear boundary value problem
Ut (X, t) = uxx(X,t) onx e (0,0.5)

-1
2u(0.5,t)
In order to compute an accurate solution to the PDE above, we followed a sugges-
tion in [9] and discretized in a standard way the equation satisfieaf fwhich
involves a constant Neumann boundary condition) instead, and used a very fine
grid. As explained in Section 2.4, after the quenching time of abeu0.049 for
the proposed continuum limit, the continuation of the solution beyond the blowup
in this case calls for the solution of the standard heat equation on the entire interval
(0, 1). This was accomplished by a straightforward finite difference discretization
of the heat equation, again on the very fine grid.

Figure 1.4 shows how the Perona-Malik scheme evolves piecewise smooth data.
Neighboring terraces interact and merge to form fewer and bigger terraces sepa-
rated by larger jumps.

with uy (0, t) = 0 anduy(0.5,t) =

2 Analysis of the Limit Problem

This section is devoted to the study of the PDE system (1.12). Section 2.1 is
standard: It recalls some simple facts about the heat equation to establish well-
posedness for the system while jump heights remain bounded away from 0. In
Section 2.2 we obtain some fundamental estimates for (1.12). Among them, the
result regarding Holder continuity in time allows us to extend the solutions up
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to the singular (quenching) times. That paves the way to Section 2.4, where we
explain how to modify the PDE system and continue the solution after an interface
heals. In Section 2.3 we look more carefully into what happens in a neighborhood
of quenching times. Our results show that the solutions do not spend too much
time with large gradients: Under suitable conditions, quenching time for a jump
can be estimated from above in terms of the jump height.

The results we obtain here have discrete analogues for the Perona-Malik scheme
and will be derived also in that context in Section 3. Together, they will eventually
be used in our convergence argument.

2.1 Existence, Uniqueness, and Regularity

We first consider the following linear Neumann problem on an interval:
Given continuous and boundddt) andg(t) and continuous

X : [pi-1, Pl = R,
findu € C2Y([pi_1, pil x (0, 00)) N C([pi—1, pi] x [0, 0o)) such that
Ut(X, 1) = Uxx(X,t) onx € (pi—1, pi) fort >0,
(2.1) Ux(pi—1, t) = f(t) and ux(pi,t) =g(t) fort >0,
ux,0) = ¢(x).

The solution to this problem can be represented via the method of images, as
follows: Let

e 1
P(x,y,t) = Z _Znt{e%xfyfzmz/(zn +ef<x+y72n>2/(2t)}’
n=—o00
1 X—P1 Y—Pa t )
P(x,y,t) = P , , .
R (pi_pi—l p—pPi-1 (P — Pi_1)?

Then the solution to problem (2.1) is given by

t t
U(x,t)=/ P (X, pil,t—S)f(S)dS+f P (X, pi,t —9s)g(s)ds
(2.2) ° 0
+ / P, y. D (y)dy.
P

i—1

Some Basic Estimates

From the explicit formula (2.2) we can compute various derivatives of the solu-
tion. That yields estimates such as the following:

(23)  sup Y D{DLuCx, Dl < Cle, TH{Iflcr, +lglcr, + IlL:]
Xe[pi-1,pil 2a+B<2n

T>t>e

«o,BeN
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where|fcn, = |flcngeT). If we also restricx to remain bounded away from
the spatial boundary, we can bound interior derivatives by low-order nornis of
g, and¢:

(2.4) sup  |D{DEu(x,t)| < C(e, 8, TH{I Tl + IQlLe + [pli1} -

X€[pi—1+38, pi —4]
T>t>e

The case of the first-derivativeuy (x, t) is slightly better in that for positive time
it is controlled by the lower norms up to the spatial boundary

(2.5) sup  Jux(X, )| < C(e, TH{| flLe + 19l + @11}
Xe[pi-1,pil

T>t>e

Solution of the Nonlinear System

We establish local-in-time existence and uniqueness for continuous initial data.

PrROPOSITION2.1 The system of equations

ou; 82Ui
= forp_1 <x < pi,
oui - AUip1
a—x(p|,t)— ™ (pi, t)
(2.6) = fi(Uiza(pi, t) —ui(pi,t)) fori #0,N,

BIVE ouy
Al 7t = 7t :05
oy (Po: ) = —=(pn. D)

Ui (X, 0) = ¢i(X),

where the {f(x) are Lipschitz-continuous and the functiagh$x) in the initial con-
dition are continuous, has a unigyecal-in-timé solution.

PrROOF LetX; ={ue C([0, T]xIj) : u(x,0) = ¢y X)} with I; := (Pi—1, Pi),
and setX = X; x Xo x -+ x Xy. On this set we take the metric

d(u,v) := max sup Ju(X,t) —v(X,t)|] foru,ve X.
i=12,...N xel;
te[0,T]
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Now consider the mappin§ : X — X defined in the following manner: For
v € X, S(v) = uwherey; is the solution of the problem:

au; 3%y .
—=— inlj,
ot ax2
JU; Jdu; .
S (b= a'x“uoi,t): fi(isa(pi.t) — vi(p. 1) fori #0,N,

duy
aX
Ui (x,0) = ¢i(x),

which is a linear decoupled system whose solutions can be expressed by formula
(2.2). Indeed, if we leth [u](t) := uj1(pi, t) — Ui (pi, t), we obtain the formula

Jup
(pOst) - a_X(pN7t) — O’

pi t
s = [ Recy.0emdy+ X [ Roup9 I - 9)ds.
Pi

-1 j=i—Li

We will show that the mappin& can be made contractive by choosifig> 0
small enough. To this end, let v € X and setL := max Lip(f;). Then the
representation obtained above implies

t
ISy — S| < L/ P(X Pros.t — 9Ui_1(Pr_1, S) — vi_1(pi_s, 9)|ds
0
t
+L/ PL(X, Pt t — 9)IUi(Pr_s. ) — vi (Pi_s. 9)|ds
0
t
+Lf PL(X. pi,t —S)[Ui(Pi. S) — vi(pi, 9)[ds
0

t
+ L/ P (X, pi,t —9)Uit1(pi, S) — viy1(pi, S)lds,
0

which by the elementary bound

t
/ P(X,y,t —s)ds| < Cvt
0

implies the inequality

sup [S(W);i — S(v)i| = CVTd(u, v)
Pi—1=X=pi
o<t<T

whereC depends or. But then taking the maximum ovemwe get
d(S(w), S(v)) = CVTdu, v),

which of course means we have a contraction for a sufficiently small choice of
T > 0. It follows that the mapping has a fixed pointi(x, t) in the (complete)
metric spaceX. This is our candidate for the solution to the system.
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Next, we note thati(x, t) can be recognized as the limit of a sequefut® 1}
whereu?(x, 1) := ¢ (x) andu™V(x,t) := Su™) forn = 0,1,..., by def-
inition. By virtue of our argument, this sequence converges uniformly as soon
as we ensure thad is contractive by takingl > 0 suitably small. Applying
estimate (2.4) tai™(x,t) — u™(x, 1), we see that the sequence of derivatives
{Df DEu™ (x, t)}o2 , converges uniformly on every compactly included subset of
(Po, P1) X (P1, P2) X -+ - X (Pn—1, Pn) X (0, T), and therefore the limiting function
u(x, t) is smooth on this domain and satisfies the heat equation there just like every
term in the sequence.

We also need to check that the boundary condition makes sense (i.e., the limit
possesses one derivativexnup to the boundary for positive time) and is satis-
fied. This is a consequence of (2.5) applied once againi™ox, t) — u™(x, t);
this time we see thau{" (x, t)}°°, converges uniformly on every set of the form
[Po, p1] X [P1, P2] X - -+ X [Pn—1, Pn] X [e, T — €]. So the limitu(x, t) possesses
anx-derivative up to the spatial boundary, and since the sequence of boundary val-
ues{ f; U™ (pj+1, 1) = fjU™ (py, 1)}52, converge tofj (U(pj+1, 1) —u(p;, 1), it
satisfies the correct boundary condition.

Finally, the candidatei(x, t) assumes the correct initial value as> 0" as
a consequence of its continuity and the manner in which the sequence has been
constructed. We hence see théx, t) is the unique solution of the nonlinear sys-
tem. O

Remark.The choice off > 0 in the existence argument is constrained only by the
size of the Lipschitz constants of the functiofis Therefore, in case the functions
are globally Lipschitz, by iteration of the argument we can obtain global-in-time
existence.

Higher Regularity

We need bounds on higher derivatives (ewxx) on the domair po, p1] x
[p1, p2] X -+ - x [Pn_1, Pn] X (O, T); in other words, we need higher regularity up
to the spatial boundary for positive time. This will be needed for the convergence
argument later on, where we shall need to estimate how well difference quotients
approximate first and second derivatives of the solution to the system.

PROPOSITION2.2 Let fj, fp, ..., fno1 € C, and let ux, t) = {y; (x,t)}i’\‘:1 be
the solution to the system with nonlinear boundary condit{@#®). Then

Ui (x,t) € C*°([pi_1, pi] x (0,00)) fori =1,2,...,N.
ProOF. We recall some fundamental properties of heat potentials; for details,

see [5] and [13]. First, iffj(t) are continuous functions, then the single layer
potential

t
2.7) > fo P (X, pj, ) fj(s)ds

j=i—1,i
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is C"¥/2([pi_1, pil x [8, T —8]) for anyy € (0, 3). To fix ideas, takes = 3. Itis
easy to see by a uniqueness argument that this implies) has the same Holder
continuity.

Second, iff; (t) € C"/? wherev is a noninteger positive number, then the single-
layer potential given in (2.7) is in fac@ *>®*+Y/2_ In other words, convolution
with the heat potentialP; as in (2.7) allows us to gain (at least) one full derivative
in the x-direction and half a derivative (in the Holder sense) inttlairection.

The proof of regularity can now proceed by induction. Assume C”-¥/? so
thatu(p;, t) areC/?-functions of time. Then the jump heighgu](t) e C/2.
Since the functiond; areC, we get

Ui (Pr, t) = dxUipa(pi, t) = fi(J[ul(t)) € C*/2.

Our remarks in the previous paragraph implyx,t) € C*+1+b/2 By induc-
tion,u € C*, O

COROLLARY 2.3 System(1.12) proposed as a continuum limit for the Perona-
Malik scheme, has a unigue solution with good regularity properties while the jump
heights J(t) remain bounded away frofh

PrROOF Interms of the notation employed in the existence proof, the proposed
continuum limit (1.12) is nothing other than system (2.6) witk¢) := &|£|2—2
fori=1,2,..., N — 1.

Letm := mini_;».n_1J(0) > 0, and fixe € (0, m). Let f© (&) be aC>-
function such thatf © (&) = £|£|?#=2 for || > ¢. Apply the existence theorem
(2.1) with the choice of functions; (§) = f© ) fori = 1,2,..., N — 1. That
yields a (global-in-time) solution; call it (x, t). But thenu® (x, t) is a solution
to the system (1.12) as long as miny,_n-1U%;(pi, 1) — u” (pi,t) > e. Note
that if 0 < &' < &, thenu® = u" while min u®)(pi, t) — u®(pi,t) > &. That
proves our claim, since > 0 can be chosen arbitrarily small. O

2.2 Properties of Solutions

Here we discuss some important properties of solutions to the proposed con-
tinuum limit: maximum principle, bounds on gradients, and Hoélder continuity in
time. We will denoteau(x, t) the piecewise continuous function ppy, pn] where
ux,t) :=ui(x,t) forx e (pi_1, pi)-

PROPOSITION2.4 (Maximum Principle)Let u(x, t) := {u;(x, t)}; be a solution
to the proposed continuum limit.12)for 0 <t < T with 8 € [0, %). Then for all
t >0,

suplu(x, )| < suplu(x, 0)| .
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PROOF A convenient way of showing this statement is to follow an argument
given in [8]. Setf (£) = £|£]%$~2, the boundary conditions in (1.12). Then

1d Pi Pi
——/ |Ui|de=/ |ui |P~2u; 07u; dx
pdt Pi-1 Pi—1
Pi
< |ui [P2u; dkui (
Pi-1

= ui| P2 f(ujg — Ui)‘ — Jui [P72u; f (Ui — Uifl)‘ .
Pi Pi-1

Summing ovei =1, 2, ..., N we see that
N-1

1d N bi
—— 2/ Ui Pdx < > {1 P72u — (Ui P20 ] F (U — Ui)‘ :
pdt i=1 YPi-1 pi

i=1
which is negative becausef (x) > 0 for our specific choice of boundary condi-
tions, and

(IXIP72x = yIP2y)(x = y) = O
for all x, y provided thatp > 1. Lettingp — oo gives the desired result. O
Fore > 0andp > 1let
Fp.e(X) = (X* +&9)P/2
so that

0 forallp>1
2.8 Fo
@9 00 {mp — D+ eHP22 forpe (1,2].

Now we compute

d N pi
a Z/ Fp,s(axui)dx
i=1vP-1
N Pi
= Z/ Fr’)’s(axui)axtui dx
i=1 i—1
pi

N p N
= - Z/ Ry . (0xUi)9Zu; 0 U; dX + Z F . (BxU) U .
i=1 YPi-1

i=1 '

where we integrated by parts in the last step. Invoking the boundary conditions
(1.12), we find

d . P N Pi )
a Z/ Fp,s(ain)dX = — Z/ F[/)/,g(axui)axui acu; dx
=1 H- i=1 YPi-1

(2.9) N
— Y R G OIFOP D85
i=1
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where we rearranged the terms in the last sum. Integratingpirer (t1, t;) and
making the change of variable= J;(t) in the boundary terms that make up the
last sum, we obtain the equation

t Pi
Z/ Fp.e (0xU; )dX Z/t / F,;fe(axui)afuiatui dx dt

3 (t2) -
- Z/ Fr . (yly[f~2)dy.
Ji(t)

From this formula we obtain the following estimates:

PrRoPOSITION2.5 (LP-Bound for Derivatives)Let u(x,t) = {uj(x, t)}’2, be a
solution to syster(iL.12)with 8 € [O, %) forO<t < T. We then have

N P au; P d
su —(x,t)’ X=C(p) < o0
0<t§pT ; /i—l ax p
wherel < p < 2(1— B)/(1 — 28). Furthermore, the constant@) depends only
on the piecewise WP-norm of the initial condition and the initial jump heights, in
addition to p ands.

PROOF. Sinced;u; = d2u; and Fg,fg(s) > O for all ¢ as seenin (2.8), we get
Frr . (8cU)d2u; Uy = F, (3 (8up)? > 0.

So the first term in the right-hand side of formula (2.10) is negative; once e let
go to 0 in this formula, we therefore get the inequality

N
D 18U Gt oy oy <
i=1

N N-1 .3t

28—-1)(p—1
IOt g+ P [ IOV dy
i=1 =1 Y Jit)

The integrands on the right-hand side are locally integrablgfar2(1— 8)/(1—

28). Furthermore, the intervals of integration can be bounded in terms of the initial
condition by using, for example, Proposition 2.4 (the maximum principle). That

proves the claim, since the right-hand side is shown to be controlled completely in
terms of the initial condition. O

A most important property of solutions to the proposed limit (1.12) with the
less singular boundary conditions that correspong to(0, %) is that they are the
steepest descent for an energy. This is merely a special case of equation (2.9):
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PROPOSITION2.6 (Steepest Descentet u(x, t) = {u; (X, t)}i’\‘=1 be a solution to
system(1.12)with 8 € (0, %) for0 <t < T. Define the energy

N-1

(2.11) Eu(t) := 2/ (ﬁ(x t)) dx+iZ|J.(t)|25

Then the following relation holds

pi 2
(2.12) Eu(t)_ Z/ <—(x t))

PROOF In equation (2.9) take = 2 ande = 0. Noting that

d
aﬁ”' 1% = Foo(JOIF®P?),

we obtain the promised formula. O

Remark.The case8 = 0 decreases the energy

8. 2 N-1
Eu(t) := Zf (i(x t)) dx+ Y log( 4t
i=1

which, however, is not bounded from below &s— 0.

As a consequence of the estimates above, we obtain the following Hdolder-
continuity-in-time result, which shows that solutions to the continuum limit evolve
slowly all the way up to the singular times.

COROLLARY 2.7 (HOlder Continuity)Let u(x, t) = {u; (X, t)}72, be a solution to
systen(1.12)with g € (0, 3) forO <t < T. Thenfori=1,2,..., N,

ui (t, ) € CY2(10, T); L*((pi—1, P)))
and
ui(t, ) € CY4(10, T); L¥((pi—1, P))) -
For the more singular casg = 0, we instead have
Ui (t, ) € C*([0, T); LA((pi-1, P)))
and
ui(t, ) € C'([0, T); L¥((pi—1, Pi)))

foranyu € (0, %) andv € (0, ;11). Furthermore, in all cases the Holder constants
involved depend only on the appropriate piecewisePorm and jump heights
of the initial condition.
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PROOF. By an application of the Holder inequality followed by switching the
order of integration, we have

Pi
Zf Ui (X, t2) = Ui (X, ty)| dx—Zf

t2 Pi
< |t — | Z / f
i—1 vt i —

The right-hand side of the above inequality can now be bounded by the integral in
t over([ty, t;] of the energy identity (2.12) to get

—(x s)ds dx

(x S) dx ds.

N Pi
> / Ui (X, t) — Ui (%, )| dx < [t — ta] (Eq(t2) — Eu(t2)
< |to —t1|Eu(ty),

which is exactly the definition oE /2 Holder continuity in time with values ih?
of space, and the Holder constaBt, (t1))? depends on conditions at the begin-
ning of the time interval, as promised.

To get Holder continuity with values ib* of space, first note that by Proposi-
tion 2.5 theL2-norm of derivatives),u; are bounded:

N

supZ 18xUi (-, D[Lp((pr_.p) < 00
t>0 *

We can therefore apply the interpolation lemma (Lemma 4.1) te u; (X, tp) —
Ux,ty)withp=qg=r =2andd = % to get the desired result.

For the casg = 0, the boundary terms are not integrable fioe 2, so we are
forced to work withp < 2. To that end, we takie < t, and write equation (2.9) as

N rtz b
Z_/ / Féﬁs(axui)(atui)zdx dt <
t -

Pi
Zf Fp.e (3xUi )dx

where we note that as before the right-hand side can be bounded in terms of the
initial condition. So we have that, for each

t2 rpi
/ / Fo . (0xUi) (3iu)? dx dt
1 Pi-1 ’

Ji(t2)

Z fJ Fp (YIYI#2)dy,

i (t1)
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is bounded. Apply now the Holder inequality with exponentp 2nd 2/(2 — p)
to get

t2 pi
/ f |ocui [P dx dt
1 Jpi-1

2 rhi o ,
=/ / |3eui [PFg  (9xui) 2 Fy (9xui) ™2 dx dt
1 Jpi-1

t : P ' 2-p

2 Pi 2 t2 Pi p 2

< (/ / |0 |°F ), (BxUi)d X dt) </ / Fo . (0xui) P2 dx dt) :
ty -1 ty -1

The first term in the right-hand side is bounded by our comments above; as for the
second term, by (2.8) we have

IFy. 0172 < C(P)OE + D)8 < Cp)(IXI + [¢]P)

and therefore

2=p

to 2p to =P
(f /Fé’,s@xui)p"z dxdt> | < (/ /C(p)(|3xui|p+|8|p)dxdt) ,,
11 ty

2-p

2
= C(P)ltz — tal 2" (‘supllaxui 1P + lel®) © .
t>0

But by Proposition 2.5 the term sug ||dxUi||Lr is bounded in terms of the initial
condition. Hence we finally get

2 rpi 2p
/"/ P dx dt < Cltp — 1]
1 Jpi-1

where the constan® depends only on the initial condition and the exponpnt
Proceeding now as in the case fpr= 2, another application of the Hélder in-
equality gives

pi pi t2
/mlmmiﬁ—WWJﬂWd=/1 /'amasmS
pi-1 pi-1 1 Jty
t2 pi
S|t2—t1|p_1/ / |0qu; [P dx dt
t1 i1

<Cltp—ty]?

p
dx

which meansi; (-, t) € CY2([0, T); LP((pi_1, pi))) with the Holder constant de-
pending only on initial data as before. But now judicious use of the interpolation
lemma, as in theg = 2 case, shows that the solutions also lie in the spaces quoted
in the proposition. O
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2.3 Healing of Interfaces

We start by showing that for solutions of the proposed continuum limit, jump
heights J; (t) at the discontinuity pointg; converge to 0 in finite time, thereby
leading to gradient blowup at the jump locations.

PrRoOPOSITION 2.8 Let u(x,t) be the solution to the proposed continuum limit
(1.12)with B € [0, ). Then there exists B 0 such that

@) 1J®] >0foralli =1,2,...,N—21andte [0, T).
(i) Thereis je {1,2,..., N — 1} such thaliminf,_, - |J;(t)| = 0.
(i) Foralli € 1,2,...,N—1withliminf,_t-|J(t)] = 0, we have in fact
lim¢_t- |3 ()] =0.

In order to prove this proposition, we first show the following lemma, which
establishes the preliminary result that jump height$) cannot remain bounded
away from 0, so that no solution to the proposed limit with discontinuous initial
data can exist for all time.

LEMMA 2.9 There are no global-in-time solutions to the system give(lih2)if
the initial condition has jumps. In particular, jump heights cannot remain bounded
away fromQ.

PROOF For the most singular boundary condition (cgse 0) given in (1.14),
the statement is particularly easy to show: Supposeuhatt) = {u; (x, )}, is
a global-in-time solution to (1.12) wittN > 1. We will obtain a contradiction.
Compute

1d N /Di )
=3 u?(x, t)dx
2dt — o,
N N-1

> /pi (B0 (%, )2 dX = 3 (B a1 axuiui)‘

i—1 i—1 (pi.H)
< - 1 = —(no. of jumps),
i=1

where we integrated by partsiand then employed the boundary conditions. We
thus see that the?-norm of the solution decays at a definite rate in the presence of
jumps and therefore would become negative in finite time if the jumps persisted;
this is a contradiction. The evolution will necessarily be interrupted, and that can
happen only if jump heights vanish.

For the less singular boundary conditions (cgse (0, 1)), one can proceed
as follows: We consider the jump @t. Without loss of generality, assume that
Uo(p1, 0) > ui(p1, 0) so that the jumpdyi(t) is positive. By Proposition 2.4
(maximum principle), we are assured that there is a condthnt 0 such that
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lur(x, O], [u2(X, t)] < M; so in particular,;(t) = uz(p1, t) — U(ps, t) < 2M.
But then we compute

d P1 d P1
a/po M —uy(x,t)|dx = at " (M — uq(x, t))dx

P1
- _/ axxul(x, t)dX

Po

= —dxUL(x, D[} = —dxua(pr, 1)
= It <—emP <o,

So theL*-norm of M — u; decays at a definite rate, and it would become negative
if the jJump atp; survived. This is a contradiction; jumps cannot remain bounded
away from 0. That concludes the proof. O

PROOF OFPROPOSITION2.8: LetT > 0 be the maximal time of existence for
the solution. By Lemma 2.9 we know th&it< oco. Furthermore, the local-in-time
existence result verifies the second assertion of the proposition, since if all jump
heights remained bounded away from 0 u@tahe solution could be continued a
little further.

For the third assertion, we use the Holder continuity in time with valuésin
of space property given by Corollary 2.7. As a consequence, the limit

Gi .= lim u(-, 1)
t—>T-

exists in the uniform sense ¢p;_1, p;] for everyi, and so liminf_ - |J ()] =0

for anyi implies limsup_ - |Ji (t)| = 0 as well. Moreover, uniform convergence
also means that the functiofisare continuous up to the boundary on their respec-
tive domains. 0

If only one jump height vanishes at the maximal time of existence, we can say
more about the behavior of the solution. The next lemma shows that under this
circumstance, the jump height in question strictly decreases once it becomes small
enough. We will employ the following notation:

Q' = (pi_1. pi) x (0, T],

I =[pi-1, pil x {0} U {pi_1} x [0, TIU {pi} x [0, T],
fori = 1,2,...,N. SoI is the parabolic boundary of the cylindrical domain
Q.
LEMMA 2.10 Let {u;(x, )}, be a solution to the PDE system (h.12) and let
Tq > 0 be the first quenching time. Assume

m:=min inf |J()] >0
i#k 0<t<Tq
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so that p is the only quenching point at+ Ty. Let

Mi=max| sup [3,uc(x. 0, SUp [duia(x 0)l}.

Pk—1<X<pPk Pk <X<Pk+1

Then there exists & > 0, depending only on m and M, such thatJf(tg)| < §;
for some{ € [0, Ty, then|Jk(t)] is decreasing for & [to, Tq].

PrROOF. Without loss of generality, we will takd(0) > 0. Choose’; > 0

so small thats; < m andSiﬁ_1 > M. Letty := inf{t > 0 : X)) = 8;}.

We need to show that J«(t) < O fort e [to, Ty). Assume not; then we can let
T, :=inf{t € [to, Ty) : d K(t) > 0}. The choice ob; and the definitions af and
T. give

dxUk(P, T) = dxUii1(Pr, T) > max{M, m# 1)

so that
OxUk (Pk, Ti) > OxUk(X, 1) forall (x,t) e I''* — (px, Ty)
and
OxUiy1 (P To) > dxliea(x, ) forall (x, 1) € Ty — (P, To) -
By the strict maximum principle applied taux anddxuy.; we must have
OxUk(Pk, Ti) > OxUk(X, 1) forall (x,1) €
and
AUki1(Pes T) > dxUia(x, 1) forall (x,t) € ',
which leads to
AUk (Px, Ti) = IxxUk(Px, T) > 0
and
It Uk+1(Pk> Te) = OxxUk+1(Pk, To) < 0.
In fact, by the parabolic analogue of the Hopf lemma (Lemma 4.2), we must have
dUk(Pe, T) > 0 and diukya(px, To) <0,

which impliesd; k(T.) < 0, a contradiction. O

Under the circumstances of the last lemma, we can establish an upper bound on
the quenching timdy in terms of the jump heighdi(t); that is the content of the
next lemma.
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LEMMA 2.11 Let{u;(x,t)}\, and m, M, and; be asin Lemm&.10Q Let Ty > O
be the quenching time of th& kump, and assume t< Tq is such that J(to)| <
83. Then

2K (Pk — Pk-1)
| J(to) [~ — m2A-2

where K:= sup, |u; (X, 0)|.

PROOF. By Proposition 2.4 we know that sup, |u; (X, t)] = K. Without loss
of generality, we will takeJc(0) > 0. By Lemma 2.10, the hypothesig(ty) < §;
means thal(t) < 0 for allt € (to, Tq). So in particularpyUx(pk, t) > J(to)% 1
forallt e (to, Ty). Consequently,

d /Pk q d Pk d
- K —u(X, Hldx = — K — uk(x, t)dx
dt Pk—1 dt Pk-1

= —Uk(P, 1) + dxUk(Pr—1. ) < mP ™ — J(t)? 1
which, after integration in over[to, Tq], implies that we have

0§f|K — Uk (X, Tg)|dx
S/M_W“MW*HW“kJm&“WE—w

< 2K (px — Pe-n) + (M7 = K(te)? ) (Tq — to) ,
and that is exactly the inequality required. O

2.4 Continuation Beyond Blowup

We have seen how the proposed PDE limit breaks down in finite time; to give a
global-in-time candidate for the continuum limit, we must supplement the descrip-
tion afforded by (1.12).

Proposition 2.8 characterizes the manner in which the breakdown occurs: One
or more of the jump heights converge to 0. Ogtbe the first of these quenching
times. In view of the results of the last section, it is easy to show that solutions
{ui (x, O}, to the PDE system (1.12) have well-behaved limit$ as Ty - Let
¢i(X) = Iimt_ﬂqf ui (X, t); what we meant is that this limit exists, agg(x) are
continuous up to the boundary on their respective domgms;, pi). What is
more, according to Proposition 2.5, if the initial data ar&\ihP (where the expo-
nentp is related to the parametgrof the scheme as described in that proposition),
then so arep; (x). We continue the evolution beyond the merging tifiaein the
following manner:

If at the quenching tim¢ = T, the jump located apy vanishes
so that lim_, 7 J(t) = O, then there is no longer a discontinu-
ity acrosspk (in other wordsgw(px) = dxkr1(px)). We therefore
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removepy from our list of jump locations and merge the two in-
tervals(px_1, px) and (pk, pxy1) on either side ofpy into a sin-

gle, longer interval px_1, px+1). That brings us back to a setting
where the PDE-based evolution given in (1.12) makes sense, al-
though we now have a different system with fewer jump points.
We continue the evolution as the solution to the new PDE system.

3 Perona-Malik as a Numerical Scheme

In this section, we first obtain for the Perona-Malik scheme discrete analogues
of the results from the last section. Section 3.3 then pulls together all that we know
to prove the promised convergence result. It is worth emphasizing that our purpose
has not been to propose an efficient numerical method for the proposed continuum
problem; rather, it has been to show that the Perona-Malik scheme, although not
intended for this purpose, in effect solves our proposed limit. And since the original
purpose of Perona and Malik was quite different, we cannot expect the scheme to
be particularly efficient in solving our limit.

3.1 Definitions and Hypothesis
DEFINITIONS (i) Forh = 1/m with m € N, define the gridG;, to be the

collection of points{xo, X1, ..., Xm} Wherexg = 0, Xn = 1, andx; =
Xj-1+ h.

(i) Fork > j +2let
Q= (X412 Xj420 . X} x (0, T,

r[k = (Xj, Xj+1, -+ X} X {0} U {x} x [0, TTU {x} x [0, T].

(iii) For afunctiong defined on the intervdD, 1], let S(¢) denote the set of its
discontinuity points.

(iv) For afunctiong” defined on the gri@y,, let

¢l — ] o
¢l i=¢"(x), DYel:= —th -, and D¢ = S L

(v) For afunctionp” defined on the gridy, defineS(¢") to be the collection

ofindicesj € {0,1,..., m— 1} such tha{D*¢"| > z(h).
The Numerical Scheme

Let us recall the one-dimensional semidiscrete version of the Perona-Malik
scheme; it can be written as

%vi t) = D‘Rh(D+vj t) forl<j<m-1,

d 1
3.1 gl = ﬁRh(D+v0(t)),

d

t) = 1Rh Dt t
&Um()—_ﬁ ( vm-1(1)) .
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Assumptions on Initial Data
Assume that we are given piecewige"P initial data with discontinuities at

P1, P2, ..., Pro1 € (0, 1). More precisely, we require
(1) ¢ € WHP((pi_1, pi)) wherep = 2 for B € (0, %) andp € (1, 2) for
B =0.

(2) Ilmx—>p|’ d)(X) 7é Ilmx_>pl+¢(x)
(3) pi ¢ Gy, for anyi andh > 0.

Note. Condition 1 implies continuity up to the boundary in each inte¢yal1, p;).
Condition 3 is purely for convenience; see also remark 2 below.

Assumptions on Approximate Initial Data

It is required that the numerical approximatiop’ to the initial conditiong
have jump sets compatible with that@f More precisely, assume the following:

(1) For allp, € S(¢) there existy € S(¢") such thatp; € (x;, x;11). For all
j € S(¢M) there exists a uniqup; € S(¢) such thatp; € (Xj 5 Xj+1)-

(2) max |¢(Xj) — ¢"(x;)| - 0ash — O*.

3) SUR\-.0 2 ¢sieh) h|D+q>jh|p < oo for the samep as in the assumptions on
initial data above.

Remarks. (1) By the assumptions on continuum initial data, such an approxi-
mating sequence is easy to generate. For instance, one can take a piecewise
C! sequencep,(x) that converges tg (x) in the W-P-norm on each one

of the intervals(pi_1, pi), with |¢/(X)] < z(1/n), and then Ietp-l/" =

i
dn(Xj).

(2) It is possible to be less restrictive about how well the juogationsof
discrete data should match those of the continuum data. In fact, it should
not be hard to show that both the continuum and the discrete evolutions are
stable (in theL?-norm) under changes in jump positions.

(3) Our assumptions impose a one-to-one correspondence between jump sets
of the continuum initial condition and its discrete approximations. In Gob-
bino’s work [7], this condition is automatically satisfied by requiring con-
vergence of energies. Our energies do not impose compatibility of jump
sets; we therefore made the necessary assumptions explicitly.

3.2 Qualitative Properties and Estimates

PROPOSITION3.1 (Maximum Principle)Let {vj (1)}, be the solution generated
by schemé3.1)on G, x [0, co) from initial data¢". Then

sup max |vj(t)| < max |¢/'| .
t>0 0<j<m 0<j=<m

PrROOF. This property was noticed by a number of previous authors; a proof
appears in [17], for instance. Here, we mimic the proof of Proposition 2.4. Note
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thatx R(x) > O for all x. We now compute, using summation by parts,

d m m . m
0t > “hiy [P = "hpjyj|P2v0; = Y hplyj P2y D~ (R(Dv)))
j=0 j=0 j=0
m—1
= thD+(|v,- P2y )R(D ™))
j=0
— PR(D*v_1)[v| "% + pR(D vm) [om| P2
m—1
=—Y hp(p— (DT v)RD v)l§|°~2

j=0

whereg; is betweery; andvj1. Therefore, whenevep > 1,

m m
> “hlyj®)|P <> “higy[P.
j=0 j=0
Sendingp — oo proves the claim. 0

We next show that the difference quotients generated by the discretization sat-
isfy a strict maximum principle; in particular, scheme (3.1) does not generate new
jump locations. A proof of this fact first appeared in Gobbino’s paper [7].

PROPOSITION3.2 Let {v;(t)} be the solution generated by sche(Bel) on the
grid G,. We have

(i) S(vj(t2)) € S(vj(t1)) wheneverd > t;.

(i) Let{Xy,..., Xy 11} be a subset of Bwith «’ > « + 2. Assume that

sup D"y (0)| < z(h)

at+l<j<a’-1
and set M:= sup; 7, IR(Dvj(1)]. Then
sup [DFy(H)] < R7Y(M).
(j.bey
Moreover, if there exist6jo, to) € QOTLO[, such that D vj, (to) = =R (M),
then D"v;(0) = £R_1(M) for all j.

PrROOF. To show the first claim, we follow the argument in Gobbino’s paper
[7]: Forall j, D*vj(t) satisfies an ODE of the form

d 2
(3.2) aD+u,- t) = F(A(t) — R(D" (1))

where|A(t)| < R(z(h)) forallt > 0. If [D*v;(0)| < z(h), acomparison argument
immediately shows thgD*v; ()| < z(h) forall t > 0.
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To show the second claim, let

M:= sup |R(D"vj(t))].

rrouQl
o, o,o

Assume there igjo, to) € Ql’a, such thatR(D*vj,(to)) = M; thend; Dt vj, (to) >
0. Discretization (3.1) implies

1
R(D*vjp)(to) = 5 (R(D vjp-1)(t0) + R(D*vjo42)()

which of course meanR(D*vj,_1) = R(D*vj,41) = M att = to. Repetition of
this reasoning leads to

R(D™vj(tp)) =M forall j € {a,...,a}.

Therefore, M = M. Reuvisiting formula (3.2), we see thaf(t)] < M and
ID* v (0)] < R-1(M). The same comparison argument shows that, under our
assumptionD*v;j(t) = R;1(M) for all t € [0, to]. In caseR(D*vj,(to)) = —M,
the argument is the same, leadingMo= —M and D" v;(t) = —R_ (M) for all
te [0, to]. O

Furthering the similarities between the evolutions of jump sets in the discrete
and continuous settings, we next show that all jumps of a discrete solution vanish
in finite time.

LEMMA 3.3 Let {¢"} be a sequence of discrete approximati¢each defined on
Gp) to a given piecewise continuous initial dagawith ¢" and ¢ subject to the
usual assumptions. L¢b"(t)} be the corresponding discrete solutions generated
by the scheme i(8.1)in which the constitutive functions are scaled with respect to
h as prescribed iff1.13) Let T, := inf{t > 0: S(v"(t)) is empty. Then

limsupT, < co.
h—0t

PROOF. Let S(¢") := {l1(h), ..., 1,(h)} be ordered. By induction, it is suffi-
cient to show that the leftmost jump (locatedxg) will “vanish” in finite time; in
precise terms this means we will show that

lim supinf {t > 0: |D*v ()] = z(h)} < o0.
h—0t

Since the approximating sequengg } is required to converge t in a uniform
sense on the grid ds— 0", for h small enough we have that

max|gf'| < M := 2max|¢(x)| < co.
j j
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By Proposition 3.1, we then have syp, |vjh(t)| < M. Without loss of generality,
we assume thaﬁ)%ﬂ > 0. Let us writev := v" and compute

d & d &
aZhu\/l —v”:aZh(M —v))
j=0 j=0

Iy Iy
=—> hij=—> hD Ry(D"vj) = —Ry(DTuy,) .
j=0 j=0
Butif I; € Sw"(t)), thenD*v, > z(h) by definition, and by the bound on the
maximum normD*v;, < 2M/h. That gives

Ro(DTu,) > C(B)MZ# L,
which means

d &
gt 2 NIM = y| < —C(EMF
j=0

which is a definite decay rate for the-norm that is independent &f As in the

proof of Lemma 2.9, that implies the leftmost jump located avanishes in finite

time. The argument can be iterated to show that all the other jumps also collapse
in finite time. That concludes the proof. O

We thus have seen that quenching is also inevitable in the discrete setting. We
now specialize to the case where only one jump is eliminated at a given quenching
time. Under this assumption, and in the continuum setting of the proposed limiting
evolution, Lemmas 2.10 and 2.11 gave us an upper bound on the quenching time
in terms of the jump height. They have very simple discrete analogues.

LEMMA 3.4 Let{v;(t)} be the solution generated by sche{@el) on the grid G,,
and let{J (t)}{'_, be the jump heights. Assume=T0 is such that quenching does
not occur on te [0, T], and let

m:= rigélpoé?; [Ji (D]
In particular, m > hz(h). Let

M := max{ sup  |[DTy(0)), sup  |D¥y; (0)|} .
lk-1+1<j<lk—1 lk+1<j<lky1—-1
Then there exists & > hz(h), depending only on m and M such thatf(tp)| <
3, forsomeg < T, then|J(to)| is nonincreasing on & [0, T].

PrROOF. The argument is the same as that of Lemma 2.10 with minor modifica-
tions. Without loss of generality, také* v, (0) > 0. Choosé; > hz(h) so small
that R\ (8;/h) > maxR,(m/h), Ry(M)}. Letty := inf{t > 0: J() = §;}. We
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must show:d; Jc(t) < O fort € [tp, T). Assume not, and I€k, := inf{t € [tg, T) :
0t Jk(t) > 0}. The hypothesis and the definitionstefind T, imply

RD*u(T))= sup R(DTy(T)= sup RO v(T.).
(J'-t)EFIT;il,Ik (J',t)eI‘lr(*Jk+1

By the strict maximum principle (Proposition 3.2),
D*v,-1(T), D*u41(T) < REHD 0 (L)

so thatyy, _1(T,) > 0 andv, +1(T,) < 0. That means; J(T,) < 0, a contradiction.
O

LEMMA 3.5 Let {y;(t)} and m, M,§;, and T be as in Lemm3.4. Assumedt e
[0, T]is such that J(tg)| < ;. Then
2K (Ix = lk=1)h
Ra(|Jk(to)/h) — Ra(m/h)

T <ty+
where K= sup [vj (0)|.

PrOOF Without loss of generality, assume thiat0) > 0. Lemma 3.4 implies
that J,(0) < Oforallt € [to, T]. Therefore

d Ik—1
— h|K — vi ()]
e j=|l<2—1:+1 J
d Ik—1 Ik—1
=5 2 K-y == )  hD (R(D¥y()
j=lk-1+1 j=l_1+1
t
= Ry(DTuy_,) — Ra(DT ) < Rh(%) - Rh(Jk%)~
Integrating int over[tg, T], we find
Ik—1
0< Y hK—uv(T)
j=lk-1+1
t
< 2Kk — I ph+ (Rh(%) - F«(&%))(T 1),
which gives the desired inequality. O

Energy Estimates

The energy estimates we obtained for the proposed continuum limit have dis-
crete versions. We start with the analogue of Proposition 2.6 that holds for the less
singular boundary conditions.
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PROPOSITION3.6 (Steepest Descentlet {v; (t)}jm=l be the solution generated by

the schem¢3.1), with the constitutive functiony¢t) = (1 + £/k)#=D for g e
(0, 3). Define the energy

m-—1
(3.3) EN®) =) hdy((Dv))?)

j=0
where

B 28-1
(3.4) Py p(6) = %((14‘ i) - 1) and k=hi7.
Then
1d b o

(3.5) sqo® = ghw,) :

PROOF In complete analogy with the proof of Proposition 2.6, we compute

d m—1
aE{](t) = Z 2hR(D*v;) D™ 9
j=0
m-—1

= Z 2h D™ (R(D*v))dj — 2R(D T vg) g + 2R(D* vm_1)iim
j=1

= ZZh(i)j)z sinceR(§) = £} ,(6%) andi; = D™ (R(D*vy)),
j=0

which is what we wanted. O

Remark.Assumptions on the initial dag imply that sup_, E'U‘h (0) < oc.

Next we obtain Holder continuity in time and thé-bound for difference quo-
tients still in theg € (0, ) case.

COROLLARY 3.7 (Holder Continuityg € (O, %)) Let {v; (t)}lf“:1 be as in Proposi-
tion 3.6. Then

v e C¥2([0, 00); L%(Gp)) and v e CY4([0, 00); L®(Gn)).

Furthermore, the Holder constants involved depend only on the energy and jump
locations of the initial condition.
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PrROOF. Take 0< t; < t,. By the Holder inequality,
m m t 2
> hivj(tp) — v (t)> = Zh(/ 0j dt)
j=0 j=0 4
m tp
<ltp—t Y h [ @p>dt
._ tl

t
=|t, —t ———Ehtdt
It2 1|/l > dt »

1
= |t — tné(Et}(tl) —EN() < Itz — 1| EN(ty)

which is the definition ofCY/2 Holder continuity in time with values in2(Gy,).

Just as in the continuum case (i.e., as in Corollary 2.7) Hélder continuity with
values inL*°(Gy) now follows from an interpolation lemma (discrete analogue of
Lemma 4.1) once we notice that

2

erea Prp @) =GB =
and therefore
(3.6) > hiD w02 < CAHENW).
j#Sw)
That concludes the proof. O

Note. The whole point of Corollary 3.7 is that the HOlder constants do not depend
on discretization sizé, provided that the approximations to the initial condition
remain bounded in energy hs— 0*.

Turning now to the more singular case®t= 0, we have first:

ProPOSITION3.8 (L P-bound for Difference Quotients)et {v; (t)}}":O be gener-
ated from the initial conditiorj¢; }Jm:o by the scheme given {8.1) with the consti-
tutive function g(¢) = 1/(1+£&/k) where the parameter k is subject to the scaling
k =1/h as usual. Then for g (1, 2),

sup > h|D¥y|P < > h|D¢|P + C(p) < oo.
= J¢S(v(t)) i ¢S(#)

Furthermore, the constant () depends only on the initial jump heightg(Q) in
addition to p.

PrROOF. For convenience, we will sum frojm= —1 to j = m with the under-
standing thaD*v; = D*vy, = 0; hencej ¢ S(v) meansj € {—-1,0,1,...,m} —
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S(v). The calculation is completely analogous to the one in the proof of Proposi-
tion 2.5. Fixe > 0 and letF,(x) = (x2 + £2)P/2, We compute

d
@7 o > h((DF P +eAHP2= > hF (D v DT oy =1+ 11 41l
j #S(v) i €S(v)
where
-1 n lkp—1
=—> hDF'(D*vpi; — > > hD F'(DTv))i
j=0 k=1 j=lx+2

m
— Y hD F'(D*))iy
j=In+2
n

=) (nF'(D*v_1) — ty1F' (DT 11))
k=1

Il = —o_1F' (DY v_1) + OmeaF'(DTum) .

We start with term |. We have
D™ F'(D"v)d; = F"(§)R (7;)(D~ DT v))?

where&; andn; are betwee*v;_; andD*v;. Wheneverj ¢ S(v) U{S(v) + 1},
we have thatD*vj_1|, [D*vj| € (—z(h), z(h)); therefore for suclj we also have
R'(n;) > 0. SinceF” (&) > O for all £, we see at once that4 0.

Term lll is easily seen to be 0 by the remarks made at the beginning of the proof
concerningDtv_; andD " vp,.

Turning our attention to term Il, we recall the definition Bf 1(x) given in
(1.8). We make the observation that for any increasing functiot) anda, b € R
we have

(3.8) F'(f(ha+b)a> F'(f(b)a.
Apply (3.8) witha = v, b = R(D*v,_1), and f (x) = R-%(x). Noting that
1 1

Ul+1 — Vi B ‘Jk(t) '

ha+b=R(D"y,) and R *(R(D'w,)) =

we get

R S 1.
U|kF (D+v|kfl) < F (Jk(t))vlk .

Then we apply (3.8), this time with = —7;, ;1 andb = R(D*v;,41). Noting that
we again havéaa+ b = R(D*y, ), we get in this case

. / / 1 .
U +1F (D+Ulk+1) > F (m)vlwl-
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That means
n
1 d
(3.9) < — F/(—)—Jk(t)
— \k®
so that

d 1\d
> h((D*u)? +62)% < — F’(—)— k().
d i #S() o VO

Integrating this inequality in over [ty to], we find

Z h((D*’vj)2 + 82) P2
j €S(v)

=<
t2

Z h((D+UJ‘)2+82)p/2
i €S(v)

n to
—Z/ F’<i>—Jk(t)dt
t1 k=1 vt ()

After making the change of variablgs= J(t) and sending — 0%, this expres-
sion becomes

Z h|D* v (tp)|P < Z h|D*vj (t)|P — Z/

i #Sv) i #Sw) Kt

J(t2)

|y|<P 2>/2y

The integrand on the right-hand side is integrable over any bounded interval of time
provided thatp € (1, 2). That proves the proposition. g

COROLLARY 3.9 (Holder Continuity8 = 0) Let {y; (t)}}“:O be the solution gen-
erated by schemg.1), this time withg = 0. Assume that the jump se{i$ is
constant over the interval of timdy, T2]. LetG = {1,2, ..., m} — S(v(Ty)) U
{S(v(T1)) + 1}. Then for any € [0, 3) and € [0, ) we have

ve C'([T, Tl L2(Ix : ] € GY)) and v e CH([Ty, Tol; L¥({x; : | € G})).

Moreover, the Holder constants involved can be bounded by the discﬁe‘?é@)/—
norm and jump heights and locations of the initial data.

PROOF. Integrate equation (3.7) in time ovét, to] € [Ty, T2]. Using the
notation in Proposition 3.8, we get

to to

/Idt:—/ ZhD‘F’(D*v,—)i}jdt

t1 t1 j<6
ZhF(D*vJ(t))‘ /Ildt.

j¢Sv)
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Recalling estimate (3.9) for the term I, the equation above turns into

t2
Z hD~F/(D*v;)1; dt <

g jeé
3 hF(D+v,)‘ 2/ (—)—Jk(t)dt
j€S(v)

Notice that
D~F'(D*v))ij = F"(&)(D~ D vj)v; = F"(§)(@)°

whereg;j is betweerD*v;_; and D*vj; this is becausé; = R'(;) D~ D*v; with
n; betweenD*vj_; and D*vj, and because & R'(y;) < 1 for |p;| < z(h).
Consequently, we obtain the inequality

t2
/ > hF/(&) @) dt <
L JeG
> hF(D™y;(ty) —Z/ (—)—Jk(t)dt
IPED) & K(®

Here the right-hand side can be bounded in terms oMt (G)-norm and the
jump heights ob att = T;. Once we note the trivial fa¢§;| < |[DTvj_1|+|DTvj|,

it is possible to proceed exactly as we did in Corollary 2.7, relying on Proposition
3.8 when we needl *-bounds on difference quotients. One gets, in particular,

to -

(3.10) / > hji P dt < Cltp — ty] 2°

& jeG

where the constant depends only onk&P(G)-norm of the initial condition and

its jump heights, as it should. From here onwards, the argument is again the same
as that of Corollary 2.7, using the discrete analogue of Lemma 4.1. O

Remark. Corollary 3.9 allows us to get uniform-in-time estimates |pr(t,) —
v(ty)]lL~ on the entire gridG,, and not just on{x; : | € G}. Indeed, the
Holder continuity result of the corollary allows us to estimate the contribution to
lv(tz) — v(ty)]| 2 from the smaller grid. But the contribution to this norm from
Gh—1{xj:] € G} is orderh by virtue of maximum principles. Therefore, by tak-
ing h small enough|v(ty) — v(t1)|| .2 can be estimated on the full gri@;,. Then,

by interpolation, we can turn that into an estimatd oft;) — v(t1)||L~ on Gy,

The following technical lemma gives us &i°-bound on the difference quo-
tients generated by the numerical scheme; the bound depends only on the energy
of the initial data.

LEMMA 3.10 Given initial data¢ and a sequencép"} of numerical approxi-
mations subject to the usual assumptions, for any large enough N there exists a
8§ = 8§(N) > 0 with the following property
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For any t > Othere existsg € [t, t + §] such that

sup [DFv'(to)] < N
j #S(h(to))

wherev"(t) is the solution generated by scherf®l). Furthermore, it can be
arranged thas(N) — 0" as N — oc.

PROOF. We concentrate first on the cage> 0. By the energy identity (3.5)
we have

- +o 2__1'2 h
Zh(D R(D*v;))? = 2thv(O)

Integration of this equality im over[t, t + &] gives

t+4
(3.11) / Y “h(D~R(D*v)))?dt < EN(0).
t -
J
Therefore, there exists € [t, t + §] such that
m
E"(0)
3.12 h(D"R(D*v;))? < ==
(3.12) > h(D~R(D*y)” < =

j=0
Second, if we combine inequality (3.6) with the fact thBtg)| < |£] for all
|&], we find

(3.13) > hR(D*vj)® < C(BE}0).
j#S®)

Now apply the discrete analogue of the interpolation inequality (Lemma 4.1)
on the domair(x; : j & S(v(tp))} with f = R(D*v;) andd = p = 2. Estimates
(3.12) and (3.13) yield

C,
sup |R(D*j(to)] = Cu,/ENO) + 7 /ENO).
j #S(v(to))

But if |£] < z(h), then|g| < 6 1(B)|R(&)| whered(B) > 0 (see (1.9)). With that,
we get the same inequality as the last one, this timéfou; :

C
sup D" vj(to)| = C1y/ENO) + +75/EDO)

j #S(v(to))
but with different constant€; andC,. That implies the conclusion of the lemma
for the case3 € (0, %). For the casg = 0, we make the following modification:
Inequality (3 10) gives

Zh|v]|pdt_f Zh|D_R(D+UJ)|pdt§C|8|2;2p
jeG jeG

Once we replace inequality (3.11) with the one above, the same argument carries
through. g
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3.3 Convergence

Let u be the solution to the continuum problem described by the PDE system
(1.12) and the prescription given in Section 2.4, with initial datal et S(¢) =
{p1, P2, - - -, Pn} be ordered, and lek(t) = u(p,, t) — u(p,, t) be the associated
jump heights.

We assume throughout that we have access to a seqégncé&;, — R of
discrete approximations t¢ that satisfy the assumptions on approximate initial
data listed in Section 3.1.

The purpose of this section is to prove, under suitable conditions, the conver-
gence of the discrete solution8(t) : G, x [0, c0) — R generated by scheme
(3.1) from the initial condition®" to the proposed continuum limit.

Our proof has two components: a convergence argument, with a rate, that is
valid on any interval of time during which the jump heights of the continuum so-
lution are bounded away from 0, and an argument that controls the behavior of
the numerical and continuum solutions once a jump height becomes smaller than a
critical value (denoted; in what follows). The essential property of both the con-
tinuum and the discrete solutions that makes this possible is the following: Once
the jump height at a discontinuity point becomes small enough, quenching is im-
minent. Moreover, how much the solutions get modified in such a small interval of
time can be controlled.

PrRopPOSITION3.11 Let T > 0 be such that

§ :=min inf t
k te[0,T] |Jk( )l = 0

so that the jump set(8) of u does not change ford [0, T] and consequently the
evolution of u is described t.12) Let
n+1
M= sup lUllcap 1 m1y < 0.
;tem’?] C3(p-1.p D
Then
lim sup sup |uj(t) —vj(t)|=0.
h—0¢c[0,T] j=0,1,...m
The proof of Proposition 3.11 will of course need to concern itself with showing
the compatibility of jump setS(u(t)) and S(v(t)); note, however, that we already
know by virtue of Proposition 3.2 tha(v) is at most a decreasing function of
time, by hypothesis th&(u(t)) is constant, and by assumptions on initial data that
S(u(0)) and S(v(0)) agree. We will need the following lemma, which makes a
consistencgtatement:

LEMMA 3.12 Let Ej = uyx(Xj) — D™ R(D*u;). Then

CMh-20/A-8  for j & S(v) U {S(v) + 1}

|Ej| < .
CM otherwise
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where C is a constant that is independent of h and j.

PROOE For | ¢ S(v) U {S(v) + 1}, the segmenitxj_1, X;+1] lies in one of the
intervals on whichu is C3. Therefore, for such we have

D™ D" uj = uxx(Xj) + O(h).

Also, we haveR/'(§) = 1+ O(h®=2$/3=) for |§] < M and D~ R(D*uj) =
R'(§;)D~D™"u;. Hence we get, as claimed,

D~ R(D*uj) = Uxx(Xj) + O(hA-20/A=A))

For j € S(v) U {S(v) + 1}, we shall only considej € S(v) since the case of
j € {S(v) + 1} is completely analogous. First note that there exisfg & S(u)
such thatpy € [Xj, Xj+1] anduj1 — u; = J(t) + O(h). The functionRg n(x/h)
is Lipschitz inx, uniformly for h > 0; in other words, for any, b € R with
lal, |b] > § > 0 andh > 0 sufficiently small,

(3.14) ‘Rﬁ,h(%> _ Rﬁ,h<§)

whereC (8, §) = C(B8)8%#~2. Furthermore, ford bounded away from 0, we have
R(JI/h) = J|J31#72 + O(hY2=A). Applying (3.14) witha = uj;1 — u; and
b = J; we find

< C(8,9)|b—a|

R(Du)) = R<$) + O(h) (sinceh(DTuj) — J(t) = O(h))
= XD I®)|*72 4+ O(h) if J(t) is bounded away from 0
= Ux(Xj, 1) + O(h)

where we employed the boundary conditigy(py, t) = Jc(t)|J(t)|*~2 and also
the trivial factuy (x;, t) = ux(px, t) + O(h) at the last step. We thus get

R(D+Uj) = R(D+Uj,1) + O(h).

Sinceuyy is bounded, we are done. O

PROOF OFPROPOSITION3.11: Consideh > 0 small enough so thath) >
2M. Let S= S(v) U {S(v) + 1} and set

L(t) == h(uj —v)?.
j=0
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We compute

1d

Eal(t)

= > h(uj — v))(D"R(D*u}) — DR(D*j) + Ux(X) — D"R(D*w)))
j=0

=A+B+C
where
A=— > hD"(u —v)(RD"uj) — R(DTv))),
j¢S)

n

B=- Z ((u|k+l - v|k+l) - (ulk - U|k))(R(D+U|k) - R(D+U|k)),
k:].

m
C= Zh(uj — UJ’)EJ' .
j=0
We first examine term A. To that end, note thag S(v) implies

h
ID*vj| < z(h) and |D*uyj| < iz)

and that means
(R(D"uj) — R(D'vj))(D"u; — DYvj) > H(DTu; — DFyy)?
for somed > 0 by (1.9). From this observation we get
(3.15) A< -6 > h(D¥(uj —v))>.
j#Sw)

To estimate the second term, we can use the trace theorem on each of the sum-
mands; let us call themBso that B= ) Bx. We have

C
|R(D*w,) — R(D*w)| < 52(%|(U|k+1 — i) — (Vg1 — 1)

_Cc®

< ﬂ(wlkﬂ — U] + Uy, — vy l)
where we used (3.14) again. That leads to

C(B)
5228

By the discrete trace theorem we have

2 2
|Bk| < (|u|k+l - v|k+l| + |U|k - U|k| ) .

m
(3.16) Bl <& > h(D¥(uj —vj)?+C(e) Y _hu; — v))?.
j¢S(v) j=0
If we choose: € (0, 8), we can absorb the first term on the right-hand side into A.
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Turning our attention to term C, we first write it in the form
C= —Zh(Uj — vj)Ej — Zh(uj — Uj)Ej .
ies ie8
Then by virtue of Lemma 3.12 we can estimate
m
Z h(Uj - vj)Ej < Zh(uj - Uj)2 + ZhEJ2
i#S 1=0 i#S

(3.17) < 1(t) + C(M)hT¥

‘ > h; - v,-)E,-' < 2nC(M)Nh
ieS
whereN = sup , [uj — vj|, which is finite by Propositions 2.4 and 3.1 (maximum

principles). Putting together our estimates (3.15), (3.16), and (3.17), we end up
with a differential inequality foil (t) of the following kind:

(3.18) /(1) < cyl (t) + ch*
whereu := min{1, (2 — 48)/(1 — B)}. Integrating (3.18), we find that
(3.19) | (t) < (I (0) + coh#t)et .

This result bounds the2-norm ofu — v under the assumption that the jump sets of
u andv remain compatible (needed in Lemma 3.12). This condition, although true
initially by hypothesis, cannot be verified for any definite interval of time by &n
estimate omu—v, since jump setinformation is not stable under perturbations small
in L2. We therefore improve (3.19) to ar°-estimate, which is sufficient to ensure
compatibility of jump sets. This is accomplished once again via interpolation.
Indeed, lettingf; = u; —v;, for 8 = 0 Proposition 3.8 and fg# € (0, %) inequality
(3.6) imply D* f; is bounded in thé.P-norm for p € (1, 2). Applying the discrete
analogue of Lemma4.lwith=q=r = g we obtain convergence in*>, and

that completes the proof of the proposition. O

THEOREM 3.13 Let Ty, Ty, ..., T, be the quenching times, in order, of the pro-
posed limit with each Tdistinct. Given T> 0, ¢ > 0, andé > 0 there exists
h, > 0 such that for all he (0, h,.) we have

(i) SURcio.T) SURY<j<mmy UK. 1) — v (D] < ¢ and
(i) S(u(t)) and Sv"(t)) are compatible for te [0, T] — [T — 8, T; + 81

PROOF It is sufficient to prove the claim for the first quenching time, which
we assume takes placexat= px. The general statement then follows by induction.
More precisely, the following statement will be proved: Forsalk> 0 ands, > O,
there exists ah, > 0 such that ifh € (0, h,,), then

(1) SUR-t<t, SUR<j<m(n lU(X, ) — 1] (t)] < &, and



42 S. ESEDGLU

(2) S(u(t)) and S(v"(t)) are compatible fot € [0, Ty — §,] U {t,} for some
t* € (T1, Tl + 8*]

The proof relies on two parameters involving the proposed limit, namely,

m:=min inf |J{t) and & := min T —Ti_1.
i#k 0<t<Ty i=2.3,....,n

By hypothesism > 0 ands; > 0.

Stepl. The Holder continuity properties expressed in Propositions 2.7 and 3.7
give uniform-in-time estimates on how fast the continuum and discrete solutions
change. As a consequence, for any given 0 we can choose &< (0, T;) small
enough so that

sup [Jui (-, t) — Ui ) llie <& it —tp] <6,
i=1,2,....,n

(3.20) h h _
ﬁUpHUJ‘ (t) — v ()l <& if [t —tp] <3

>0
Since it is enough to prove the claim for only sufficiently sndall we can thus
assume that (3.20) is satisfied with= min{m/8, ¢../4} andé = 24...
Step2. Regularity properties of the proposed limit yield bounds on the spatial
derivatives for positive time; we state it in two forms:

sup [ui (-, §)llcs < N() and  suplloxUi(-, 6t/ [lLe < 59
1<i<n 1<i<n t

where the constar@ depends only on th&/*-P-norm of the initial condition (for

the appropriate choice gf > 1). The constanN may depend o#, as indicated

(6 will be fixed in step 4). Furthermore, by Lemma 3.10, fortal- 0 there exists

adn € [0, /2] such that

2C
(3.21) sup [DT v (8| < —.
jgswh J
Step3. Now,m andé; determine a critical jump heigldy: For anys; > 0 satisfy-
ing
4C
21> "7 and §; < —,
T 1T
Lemma 2.10 implies that ifJ(to)| < 8; for somety € [6:/2, T1], then|J(to)|
is monotone decreasing dty, T;]. Moreover, according to Lemma 2.11, if we
choose’; to be small enough so that

2K (px — Px-1)
57— (my2)%-1
whereK = sup , |ui (X, 0)[, then

Ty —to| <,
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which is an upper bound on the quenching time of the proposed limit in terms of
the jump height at thi™ discontinuity. Let

8
ty 1= inf{t >0: | k)] < EJ}

Step4. From now on lek := min{e, /20, §;/20}. There exists @ > 0 such that
(3.20) is satisfied for this choice ef Take a discrete initial condition”(0) with
sup |u(x;, 0) — v](0)| < . Then, suplu(x;, ) — v]'(§)] < 3¢ = min{3e,/20,
35;/20}.

Step5. The proposed limit is (piecewis€)? for t e [8, to], and its jump heights

are bounded away from 0 on this interval of time. We can therefore apply the
convergence argument Proposition 3.11[8nty]: For allh > 0 small enough
(depending omr), we have

(3.22) sup  sup Ju(xj, t) — of(t)] < e = min{%*, %J} .
0<j<m(h) O<t<tp
In particular,
(3.23) i(sj < 13t < 333 and min inf |J"(t)| > ilm.
10 10 ik te[0,to] 5

As a consequence§(u(t)) and S(v"(t)) are compatible fot € [0, to]. In other
words, neither the proposed limit nor the discrete solutions quench during this
interval of time.

Step6. The choice ob, made in step 1 implies that the inequalities in (3.23) and
(3.22) can be improved to

(3.24) sup  sup Ju(x;.t) — vt < &,
0<j=m(h) O<t<to+3,

and

. . h m
(3.25) QLnte[o,'Qizs*] 197D = 5
Inequalities (3.21), (3.23), and (3.25) now allow us to apply Lemma 3.4: The dis-
crete jump heightJ{‘(t)| is decreasing for > ty. We can therefore apply Lemma
3.5 onlto, min{ty + 8., T"}1. Since

(I = lk-h R Sl Y
Ro(z38) — Ra(zm) 6571 — (1

for h small enough, and given the choicedgfin step 3, we conclude that' <
to + 8,.. Moreover,S(u(t)) and S(v"(t)) are constant, again by the choicesof
fort € [maxTy, Tlh}, to + 8,]. Hence,S(u(t)) and S(v"(t)) are compatible on
[0, to] U {to + 4.}. That proves the second assertion of the claim Witk ty + 6.,
and inequality (3.24) proves the first assertion. g
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4 Technical Lemmas
LEMMA 4.1 (Interpolation Lemma).et f(x) € C!([a, b]). Then
I fllee < C(Fll + 1 FIT oI E/1E7)

where pg > 1,0 € (0,1),0/p+(1—-6)(1—q)/q = 0,andr > 1. The constant
C depends only on the size of the interval and the choice of the exponents.

PROOF. Let f := | f||.2/(b— a). By continuity, there iq € [a, b] such that
f(xg) = f. Foranyd € (0, 1),

10017 — [F177 = 10077 — | (x0)| =7

=/ (1f(s)|77) ds

0

X
scf|nﬁﬁﬂw9mS
Xo

q-1 1
sc(f|n$w4%®d§‘*(/ﬁx$wd§q

where we applied the Holder inequality in the last step. et 6q/((1 —6)(q —
1)). Then the inequality above reads

1/(1-0 +11/(1— 6/(1—6
I < CFIYED 4 £ 10521 £ 11),

which means
[ flee < CUTFI+NENCRI L") = C>Flle + IHEU ol F/11ES°) -

Since we are on a bounded intervief,|| 1 is controlled byj| f ||.r foranyr >1. O

Lemma 4.1 has an obvious discrete analogue.

LEMMA 4.2 (Parabolic Hopf Lemmallet E= (p,q) x (0, T),andfort € (0, T)

let E, := {(X,t) € E : t < tpo}. Suppose u satisfies the uniformly parabolic
inequality ayx — uy > 0 where a is bounded. Suppose that u is continuously
differentiable at the boundary poilixg, to) € {p, q} x (0, T), that u(xg, tg) = M,

and that ux,t) < M for all (x,t) € Ey,. If 9, denotes any outward directional
derivative from E, at (Xo, tp), thend,u > 0 at (Xo, to).

PROOF. See [18] for the proof of a more general statement. O
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