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Abstract

We investigate how the Perona-Malik scheme evolves piecewise smooth initial
data in one dimension. By scaling a natural parameter that appears in the scheme
in an appropriate way with respect to the grid size, we obtain a meaningful con-
tinuum limit. The resulting evolution can be seen as the gradient flow for an
energy, just as the discrete evolutions are gradient flows for discrete energies.
It involves, except at special isolated times, solving a system of heat equations
coupled to each other through nonlinear boundary conditions. At the special
times, the solutions experience gradient blowup; nevertheless, there is a natural
continuation for the solutions beyond these singular times.c© 2001 John Wiley
& Sons, Inc.

1 Introduction

In [16] Perona and Malik proposed a numerical method for selectively smooth-
ing digital images, designed to keep “edges” in pictures sharp. The essence of their
method is contained in the following discretization:
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whereN, S, E, andW denote north, south, east, and west, the symbol∇ denotes
the nearest-neighbor difference quotient in the direction of its subscript, and the
remaining coefficients are given by
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wheregk is a function with certain important properties, as we shall presently ex-
plain. In applications, the computational domain is ordinarily just a rectangle, and
one imposes either periodic or homogeneous Neumann boundary conditions.

In this paper we focus on the one-dimensional version of scheme (1.1). Our
purpose is to recognize a continuum (PDE) problem that it solves in the limit as
the grid size1x goes to 0. As indicated, the functiongk comes equipped with a
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parameterk; we obtain our continuum limit by choosing a specific relation between
k and 1x. The resulting evolution is unusual: It involves solving a system of
heat equations coupled to each other through nonlinear boundary conditions that
become singular at special times, leading to gradient blowup for the solutions.
However, the scheme suggests a natural continuation beyond each one of these
singular times that involves a change in the PDE system. Our convergence proof
applies on any bounded interval of time, which might include singular times (under
some technical restrictions). And our continuum limit has some of the features
observed in applications of the numerical scheme.

It is natural to think of discretization (1.1) as a candidate for the numerical
solution of the continuum problem:

(1.2) ut = div(gk(|∇u|2)∇u) .

To be more precise, and as Perona and Malik note in their paper, the discretization
(1.1) is suggestive of the similar but more anisotropic equation

(1.3) ut = (
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y
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In fact, the authors propose their numerical scheme with this intention.
An essential feature of the method is the choice of the functiongk(ξ). For

Perona and Malik’s choices, equation (1.2) (or (1.3)) is not parabolic: In regions
of high enough gradient (depending on the parameterk), the diffusion coefficient
becomes negative. Our approach avoids trying to make sense of equations (1.2) or
(1.3). It instead concentrates on the scheme (1.1) itself.

1.1 Background

Image segmentation and edge detection are two fundamental procedures of
computer vision that rely on image smoothing as an important first step. Their
goal is to decompose a given image into regions that are essentially homogeneous
(with little variation in color or brightness). These regions should be separated by
sharp boundaries (edges). Such an operation forms an early stage of interpreting
and extracting useful information from digital pictures, since it helps recognize
parts of the scene that belong to different objects [14].

An image is described mathematically by a real-valued, bounded function de-
fined on a subset of the plane; the value of the function at a point represents the
gray-scale intensity, or brightness, at that point in the image. We think of edges in
the image as places where the intensity function has high gradient or discontinuity
due to an abrupt change. Abrupt changes in an image occur, however, not only
because of a transition from one distinct region in the scene to another, but also
because of the presence of noise or fine detail within regions. Those can appear as
redundant edges. The natural approach of thresholding the gradient, therefore, is
not a satisfactory method of locating edges. As a cure, a preprocessing step is of-
ten introduced. It involves smoothing the image—for instance, by some averaging
technique—in order to remove noise and fine detail.
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A common way of “de-noising” is to convolve the original image with the
Gauss kernel, or equivalently, to solve the heat equation with the original image
as initial data [12]. In that case, the variance of the kernel (or the time variable
t of the heat equation) plays the role of a coarseness parameter. This method has
an obvious disadvantage: Edges in the image, which are the ultimate goal, get
blurred. Ideally, ast gets large, we would like edges to remain sharp, and hence
well-defined and localized, until they disappear. One therefore wishes for a more
selective smoothing procedure: one that smoothes the interior of individual regions
but not their boundaries.

Various methods have been suggested to avoid the disadvantages of Gauss-
ian smoothing; a recurring theme is to replace the heat equation by a nonlinear
diffusion equation. One such approach is directional diffusion, a typical example of
which is the equationut = |∇u| div(∇u/|∇u|) that models “motion by curvature”
and also appears in other contexts [11]; it is degenerate along the gradient direction,
and so has the effect of smoothing the image along but not across the edges. Perona
and Malik proposed another procedure in [16]. Their idea is to coarsen the image
using a nonlinear heat equation whose constitutive function decreases rapidly for
large values of the gradient and thus suppresses diffusion near edges. There are also
methods based on modifications of Perona and Malik’s idea [2] and methods that
combine their idea with the degeneracy in the motion by curvature equation [1].

1.2 The Perona-Malik Method
In [16] Perona and Malik report numerical experiments with their scheme using

gk(ξ) = 1

1 + ξ

k

and gk(ξ) = exp

(
− ξ

2k

)
.

Other choices used in practice include

gk(ξ) =
(

1 + ξ

k

)(β−1)

whereβ ∈ (
0, 1

2

)
.

These choices have the following common characteristics, as noted in [10]:

(1) gk(ξ) > 0 for all ξ ≥ 0.
(2) The parameterk defines a positive critical valuez(k) such that∂ξ (ξgk(ξ

2))

> 0 for |ξ | < z(k) and∂ξ (ξgk(ξ
2)) < 0 for |ξ | > z(k).

(3) Bothgk(ξ) and∂ξ (ξgk(ξ
2)) tend to 0 asξ goes to infinity.

Figure 1.1 illustratesξgk(ξ
2) for such a choice ofgk(ξ).

In light of these properties, the parameterk constitutes a threshold for the in-
tensity gradient: In regions where the gradient is small compared tok, the equa-
tion is parabolic. On the other hand, if the gradient is large compared tok, not
only does the diffusion coefficient vanish, but it actually becomes negative. This
is an alarming situation since backwards heat equations are notoriously ill-posed.
Nevertheless, experiments with the scheme yield visually impressive segmenta-
tions [15, 16].
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z(k)

Rk(ξ) vs.ξ

FIGURE 1.1. Graph ofRk(ξ) := ξgk(ξ
2) for a typical choice of the

functiongk(ξ) in the Perona-Malik scheme. In this case,gk(ξ) = 1/(1+
ξ/k).

Many previous authors have reported numerical experiments with the Perona-
Malik scheme. Some of the important features observed are as follows: Large-scale
oscillations that one expects to see (as an indication of ill-posedness) are promi-
nently absent. Instead, unstable behavior seems to be confined to regions that are
thick with high gradient. Such regions are uncommon in real pictures, but do arise
in very blurred ones. In one dimension, the intensity function in these regions goes
through a transition period during which it develops terraces separated by sudden
jumps; this is the effect referred to as “staircasing” in [8, 10, 15]. We understand by
a terrace any maximal subinterval of the domain in which the discrete derivatives
(difference quotients) are small enough, compared to the parameterk, so that the
scheme is parabolic. The sharp transition from one terrace to the next occurs over
a single grid cell, and the gradient across this transition exceeds the parabolicity
threshold. The configuration of steps that emerge from regions of high gradient
is very sensitive to perturbations and has global influence on the evolution of the
image [19]. Our own experiments agree with these observations.

The formation and subsequent interaction of steps (or terraces) mentioned in
the previous paragraph is a major characteristic of the scheme and seems to be
related to coarsening. Indeed, in one dimension we observed that the transitions
between terraces do not move. Furthermore, the scheme does not introduce new
transitions: Neighboring terraces can merge, but a terrace never breaks into smaller
ones. Remarkably, this property holds even at the level of a few grid cells (one can
think of a single grid cell as a very small terrace). As a result, terraces quickly
merge to form larger ones, and the image evolves into one that looks piecewise
smooth (see Figure 1.2). From the point of view of image segmentation, these
properties are very desirable.

The success of the Perona-Malik scheme at its intended purpose and its better-
than-expected stability have led to some recent work on obtaining a continuum
theory that might explain the major characteristics observed in numerical experi-
ments.
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FIGURE 1.2. Evolution of a ramp with noise superposed under the
Perona-Malik scheme withgk(ξ) = 1/(1 + ξ/k). The grid size is
h = 1/500 and the threshold value of slope isz(h) = √

80. The ramp
has slope 10. The noisy original image turns very quickly (byt = 0.002)
into one that looks piecewise smooth.

1.3 Previous Work

Some previous mathematical work deals with understanding whether equation
(1.2) can be given an existence and uniqueness theory. In [10], Kichenassamy pro-
vides an argument for why this equation does not possess a weak solution in the
usual sense (if the initial data is not analytic in a neighborhood of high-gradient
regions). His argument draws on the regularization property of parabolic equations
(in divergence form, with possibly discontinuous coefficients). Specializing to the
one-dimensional version of (1.2), he then introduces a new notion of weak solu-
tion that allows for discontinuities. Naturally, this leads to a jump condition that
relates the speed of a “shock” to the jump in the value of the function and its space
derivative across the discontinuity. He also proposes an entropy condition with the
intention of obtaining uniqueness. These considerations lead him to a continuum
problem for piecewise smooth initial data with small derivatives. It consists of a
system of parabolic PDEs (one equation for each smooth piece) coupled through
their boundary conditions. Our goal—a well-posed PDE capturing the essential
behavior of the Perona-Malik scheme—is similar to Kichenassamy’s. However,
our treatment is different in two important ways: (1) We specify a relation between
the parameterk and the grid size1x, and (2) we prove a rigorous convergence
theorem linking the discrete and continuous schemes.

The paper by Kawohl and Kutev [8] is also about the one-dimensional Perona-
Malik PDE rather than the numerical scheme. It concerns weakC1 solutions. (The
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set of such solutions is not empty, since if we start with initial data with small
slope, the equation remains parabolic for all time; such solutions therefore exist
and are well-behaved). Among the results presented is nonexistence of global-in-
time weakC1 solutions whose initial data have regions with slope larger than the
parabolicity threshold. So even for analytic initial data such solutions break down
in finite time (if they exist at all; local-in-time existence is not known). Other re-
sults the authors obtain include maximum and comparison principles and a unique-
ness result for certainC1 solutions. Our continuum limit is rather different from
that considered by Kawohl and Kutev. Still, we do make use of ideas from their
paper in deriving a suitable maximum principle (Proposition 2.4).

In [3], Chambolle proves0-convergence of a class of discrete approximations
to the Mumford-Shah functional in two dimensions. Let us recall the form of this
functional:

(1.4) MS(u) :=
∫

�−Su

|∇u|2 dx + αH1(Su) + λ

∫
�

|u − u0|2 dx .

It is defined for functionsu in GSBV, the space of generalized special functions
of bounded variation.H1 denotes the one-dimensional Hausdorff measure,Su is
the jump set ofu and∇u its approximate gradient, andu0 is the original image.
Chambolle’s approximations to MS, withH1 replaced by an anisotropic version
(cab driver length), are defined on uniform rectangular grids; they look like

Eh(u) :=
∑
i, j

h2

{
Wk

(
ui+1, j − ui, j

h

)
+ Wk

(
ui, j +1 − ui, j

h

)}

+ λ
∑
i, j

h2|ui, j − u0
i, j |2

where the functionWk(x) := min{x2, k} andh > 0 is the grid size. The function
Wk is convex for|x| ≤ √

k. In that sense, the parameterk plays the same kind
of thresholding role as it does in the Perona-Malik scheme. Chambolle shows that
if k is scaled ask = α/h with respect to the grid size, this family of discrete
functionals0-converge to MS. The Perona-Malik method is dynamic, while the
Mumford-Shah variational problem is static. There is, however, a very strong link
between our work and that of Chambolle: We follow his lead in assuming that the
parameterk must scale withh.

Paper [6] by Gobbino concerns the same kind of problem with a similar ap-
proach as in Chambolle’s work. It establishes0-convergence to MS (withλ = 0,
an inessential difference) of a class of approximations that in one dimension have
the form

(1.5) Fε(u) := 1

ε

∫
R

arctan

(
(u(x + ε) − u(x))2

ε

)
dx .

Gobbino’s result in fact holds for then-dimensional analogue of the problem.
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The more recent paper by Gobbino [7] is dynamic rather than static and very
closely related to the present work. This paper looks at the one-dimensional ap-
proximations (1.5) as defined on spaces of piecewise constant functions

PC2
ε :=

{
u ∈ L2(R) : u(x) = u

(
ε

[
x

ε

])
,∀x ∈ R

}

whereε > 0 is the grid size and[·] denotes the integer part of its argument. The
paper is devoted to defining a gradient flow for MS as the limit of gradient flows to
(1.5), which are defined by the relation

(1.6) u′
ε(x) = −(∇Fε)(uε(t)) with uε(0) = u0

ε .

The initial conditionu0 is required to beL∞
loc and have finite Mumford-Shah energy.

In one dimension, this stipulation implies thatu0 is piecewiseW1,2. Also, the
approximate initial datau0

ε (which are piecewise constant) must converge tou0

in L2 and in energy. Gobbino shows that the flows generated by (1.6) converge,
and for a large class of initial data the limit is independent of the approximating
sequence.

Gobbino’s paper is related to our work because the gradient flows (1.5) are
given precisely by the semidiscrete (continuous-in-time) version of the Perona-
Malik scheme (1.1) withgk(ξ) = 1/(1 + ξ2/k2) and subject to the scalingk =
1/1x. The limiting evolution he obtains is similar to ours, consisting of solving a
system of linear heat equations in a variable domain. However, it differs from ours
in the boundary conditions that couple these equations to each other: His equations
have a homogeneous Neumann boundary condition at each “interface,” whereas
our limit involves nonlinear boundary conditions that strongly couple equations
on neighboring intervals to each other. Our analysis is therefore similar to that of
Gobbino at many points but also requires new ideas.

1.4 Our Approach

We now turn to the central task of this paper: understanding the Perona-Malik
scheme (1.1) as the grid sizeh goes to 0 withk = k(h) scaled appropriately. We
shall address the semidiscrete version of the scheme (discrete in space, continuous
in time), and we restrict our attention to one space dimension. Thus, the scheme to
be analyzed is

(1.7)
d

dt
uj (t) = 1

h

(
Rk(∇Euj (t)) − Rk(∇Wuj (t))

)
whereRk(ξ) := ξgk(ξ

2). We will work with the specific family of nonlinearities

gβ,k(ξ) =
(

1 + ξ

k

)(β−1)

with β ∈ [
0, 1

2

)
.
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Let z(h) = zβ(h) denote the threshold value of the slope for this family; more
explicitly,

z(h) = 1√
1 − 2β

√
k(h)

so that

∂ξ Rβ,h(ξ)

{
> 0 for |ξ | < z(h)

≤ 0 otherwise.

For later reference, we record two important properties of the functionR. First,
R(ξ) := Rk(ξ) is a one-to-one, increasing function on[−z(h), z(h)]; it therefore
has an increasing inverse with domain[−R(z(h)), R(z(h))]. We shall denote this
function R−1∗ , i.e.,

(1.8) R−1
∗ (ξ) := (

R(ξ)
∣∣[−z(h),z(h)]

)−1
.

Second, sinceRh(x)/x is a function of onlyx/z, we have the following bound
from below, which is independent ofh:

(1.9) θ(β) := inf
|x|<z(h)/2
|y|<z(h)

∣∣∣∣ Rh(x) − Rh(y)

x − y

∣∣∣∣ > 0 .

Let us now try to understand how the one-dimensional scheme (1.7) operates
on an initial image that is smooth except at a pointp, at which it has a jump of
height J. Let p be located between the two grid pointsxj andxj +1. The scheme
then reads

u̇j = 1

h

(
Rk

(
J

h

) − Rk

(
uj − uj −1

h

))
,

u̇j +1 = 1

h

(
Rk

(
uj +2 − uj +1

h

)
− Rk

(
J

h

))
.

Roughly speaking, we interpret this to mean that the scheme imposes the condition

(1.10) Rk

(
uj − uj −1

h

)
= Rk

(
J

h

)
= Rk

(
uj +2 − uj +1

h

)
.

In words, the slopes on either side of a jump are equal and are related to the jump
height by the above formula. One way to understand why this is so is to note that
unless these three quantities are withinO(h) of each other, a process that operates
at a faster time scale will adjust them until this is the case. Kichenassamy also
observed this property as a “note added in proof” of his paper [10].

We therefore expect the scheme to impose (possibly inhomogeneous) Neumann
boundary conditions at jump locations of a piecewise smooth image.

Second, we note that the difference quotients(uj +1 − uj )/h scale asO(1) at
differentiable regions in the image and asO(1/h) across jumps. We are thus led
to look for a way to adjust the thresholding parameterk that appears in the scheme
with respect to grid sizeh so that relation (1.10) translates into a nontrivial bound-
ary condition in the limit ash → 0+.
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When we try a scaling of the formk(h) = hα and look forα, we see that for
eachβ ∈ [0, 1

2) there is only one value forα that leads to a nontrivial limit: We
find that

(1.11) α = 2β − 1

1 − β
leads to lim

h→0+ Rβ,k

(
J

h

)
= J|J|2β−2 .

Such scalings that depend on the discretization appear in a different context in the
works of A. Chambolle [3] and Chambolle and Dal Maso [4] on the0-convergence
of discrete approximations to the Mumford-Shah functional.

The threshold valuez(h) of slope for a given grid sizeh thus becomes

z(h) = 1√
1 − 2β

h(2β−1)/(2−2β)

and has the important property thatz(h) → ∞ andhz(h) → 0 ash → 0+. As
a consequence, for small enoughh the scheme becomes diffusive at all regions
in which the image is differentiable, no matter how high the slope there is. The
only features in a piecewise differentiable image that “feel” the backwards nature
of the scheme are jumps, at which the backwardness manifests itself as boundary
conditions.

In fact, scaling in the manner indicated by (1.11) leads to

lim
h→0+ Rβ,k(x) = x ,

which means in the limit we should expect the scheme to solve the standard heat
equation wherever the image is differentiable. We have thus obtained enough
clues as to what kind of continuum limit, defined for piecewise smooth images,
we should put forth.

1.5 Proposed Limit
∂ui

∂t
= 1ui for pi−1 < x < pi ,

∂ui

∂x
(pi , t) = ∂ui+1

∂x
(pi , t) = Ji |Ji |2β−2 for i = 1, 2, . . . , N − 1 ,(1.12)

∂u1

∂x
(p0, t) = ∂uN

∂x
(pN, t) = 0 ,

whereβ ∈ [0, 1
2), p0 < p1 < · · · < pN , and Ji = ui+1(pi , t) − ui (pi , t). For

the function{ui (x, t)}N
i=1 we prescribe piecewise continuous initial conditions with

jumps at{pi }N−1
i=1 . This is our proposed limit for the Perona-Malik scheme provided

that we scaleRβ,k(ξ) = ξ(1 + ξ2/k)β−1 according to the prescription

(1.13) k = h(2β−1)/(1−β) .
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FIGURE 1.3. Evolution up to and beyond the quenching time for a sym-
metric step. The solid line is the solution generated by the Perona-Malik
scheme withgk(ξ) = 1/(1 + ξ/k), k = 100, and mesh sizeh = 1/100.
It quenches just beforet = 0.059. The dashed line is the solution to the
proposed continuum limit, computed on a very fine mesh. It quenched
a little after t = 0.049. There is a discrepancy between the quenching
times, but they coincide in the limit ash → 0+.

We single out the caseβ = 0 that gives the most singular boundary condition

(1.14)
∂ui

∂x
(pi , t) = ∂ui+1

∂x
(pi , t) = 1

Ji
for i = 1, 2, . . . , N − 1

because it requires special treatment in some of our claims.
The system (1.12) is meaningful until one (or more) of the jump heightsJi

vanish, since according to the boundary conditions the slope at a jump location
goes to infinity as the jump height goes to 0. We will refer to such a breakdown
asquenching. It is easy to see that quenching has to happen in finite time (see
Proposition 2.8). Therefore, this PDE system is only part of our proposed limit; we
will explain how to continue the solution beyond quenching times.

1.6 Numerical Experiments and Experience

As we mentioned earlier, at least under some circumstances the Perona-Malik
scheme turns a general image quickly into one that looks piecewise smooth: The
number of jumps in the picture becomes small compared to the number of pixels,
and the terraces become wide. This numerical observation is supported by Propo-
sition 3.2 and Lemma 3.3, and is illustrated by Figure 1.2. Since our approach
to understanding the Perona-Malik scheme, as expressed in Theorem 3.13, is lim-
ited to piecewise smooth initial data, we cannot expect it to describe what happens
during this initial transition.

Figure 1.3 illustrates how the Perona-Malik scheme behaves after an interface
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FIGURE 1.4. Interaction of steps under the Perona-Malik scheme. The
small terrace at the right (at aboutx = 380) washes out quickly despite
the large jumps on either side of it.

heals. The solid line is generated by the original scheme. The dashed line rep-
resents our proposed limit, which in this symmetric situation can be expressed in
terms of the solution to thesinglenonlinear boundary value problem

ut(x, t) = uxx(x, t) on x ∈ (0, 0.5)

with ux(0, t) = 0 andux(0.5, t) = −1

2u(0.5, t)
.

In order to compute an accurate solution to the PDE above, we followed a sugges-
tion in [9] and discretized in a standard way the equation satisfied byu2 (which
involves a constant Neumann boundary condition) instead, and used a very fine
grid. As explained in Section 2.4, after the quenching time of aboutt = 0.049 for
the proposed continuum limit, the continuation of the solution beyond the blowup
in this case calls for the solution of the standard heat equation on the entire interval
(0, 1). This was accomplished by a straightforward finite difference discretization
of the heat equation, again on the very fine grid.

Figure 1.4 shows how the Perona-Malik scheme evolves piecewise smooth data.
Neighboring terraces interact and merge to form fewer and bigger terraces sepa-
rated by larger jumps.

2 Analysis of the Limit Problem

This section is devoted to the study of the PDE system (1.12). Section 2.1 is
standard: It recalls some simple facts about the heat equation to establish well-
posedness for the system while jump heights remain bounded away from 0. In
Section 2.2 we obtain some fundamental estimates for (1.12). Among them, the
result regarding Hölder continuity in time allows us to extend the solutions up
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to the singular (quenching) times. That paves the way to Section 2.4, where we
explain how to modify the PDE system and continue the solution after an interface
heals. In Section 2.3 we look more carefully into what happens in a neighborhood
of quenching times. Our results show that the solutions do not spend too much
time with large gradients: Under suitable conditions, quenching time for a jump
can be estimated from above in terms of the jump height.

The results we obtain here have discrete analogues for the Perona-Malik scheme
and will be derived also in that context in Section 3. Together, they will eventually
be used in our convergence argument.

2.1 Existence, Uniqueness, and Regularity

We first consider the following linear Neumann problem on an interval:
Given continuous and boundedf (t) andg(t) and continuous

φ(x) : [pi−1, pi ] → R ,

find u ∈ C2,1([pi−1, pi ] × (0,∞)) ∩ C([pi−1, pi ] × [0,∞)) such that

ut(x, t) = uxx(x, t) on x ∈ (pi−1, pi ) for t > 0 ,

ux(pi−1, t) = f (t) and ux(pi , t) = g(t) for t > 0 ,(2.1)

u(x, 0) = φ(x) .

The solution to this problem can be represented via the method of images, as
follows: Let

P(x, y, t) =
∞∑

n=−∞

1√
2π t

{
e−(x−y−2n)2/(2t) + e−(x+y−2n)2/(2t)

}
,

Pi (x, y, t) = 1

pi − pi−1
P

(
x − pi−1

pi − pi−1
,

y − pi−1

pi − pi−1
,

t

(pi − pi−1)2

)
.

Then the solution to problem (2.1) is given by

u(x, t) =
∫ t

0
Pi (x, pi−1, t − s) f (s)ds+

∫ t

0
Pi (x, pi , t − s)g(s)ds

+
∫ pi

pi −1

Pi (x, y, t)φ(y)dy .

(2.2)

Some Basic Estimates

From the explicit formula (2.2) we can compute various derivatives of the solu-
tion. That yields estimates such as the following:

(2.3) sup
x∈[pi −1,pi ]

T≥t≥ε

∑
2α+β≤2n
α,β∈N

|Dα
t Dβ

x u(x, t)| ≤ C(ε, T)
{| f |Cn

ε,T
+ |g|Cn

ε,T
+ |φ|L1

}
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where| f |Cn
ε,T

:= | f |Cn([ε,T]). If we also restrictx to remain bounded away from
the spatial boundary, we can bound interior derivatives by low-order norms off ,
g, andφ:

(2.4) sup
x∈[pi −1+δ,pi −δ]

T≥t≥ε

|Dα
t Dβ

x u(x, t)| ≤ C(ε, δ, T)
{| f |L∞ + |g|L∞ + |φ|L1

}
.

The case of the firstx-derivativeux(x, t) is slightly better in that for positive time
it is controlled by the lower norms up to the spatial boundary

(2.5) sup
x∈[pi −1,pi ]

T≥t≥ε

|ux(x, t)| ≤ C(ε, T)
{| f |L∞ + |g|L∞ + |φ|L1

}
.

Solution of the Nonlinear System

We establish local-in-time existence and uniqueness for continuous initial data.

PROPOSITION2.1 The system of equations

(2.6)

∂ui

∂t
= ∂2ui

∂x2
for pi−1 < x < pi ,

∂ui

∂x
(pi , t) = ∂ui+1

∂x
(pi , t)

= fi (ui+1(pi , t) − ui (pi , t)) for i 6= 0, N ,

∂u1

∂x
(p0, t) = ∂uN

∂x
(pN, t) = 0 ,

ui (x, 0) = φi (x) ,

where the fi (x) are Lipschitz-continuous and the functionsφi (x) in the initial con-
dition are continuous, has a unique(local-in-time) solution.

PROOF: Let Xi = {u ∈ C([0, T]× Ii ) : u(x, 0) = φi (x)} with Ii := (pi−1, pi ),
and setX = X1 × X2 × · · · × XN . On this set we take the metric

d(u, v) := max
i=1,2,...,N

sup
x∈Ii

t∈[0,T]
|ui (x, t) − vi (x, t)| for u, v ∈ X.
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Now consider the mappingS : X → X defined in the following manner: For
v ∈ X, S(v) = u whereui is the solution of the problem:

∂ui

∂t
= ∂2ui

∂x2
in Ii ,

∂ui

∂x
(pi , t) = ∂ui+1

∂x
(pi , t) = fi (vi+1(pi , t) − vi (pi , t)) for i 6= 0, N ,

∂u1

∂x
(p0, t) = ∂uN

∂x
(pN, t) = 0 ,

ui (x, 0) = φi (x) ,

which is a linear decoupled system whose solutions can be expressed by formula
(2.2). Indeed, if we letJi [u](t) := ui+1(pi , t) − ui (pi , t), we obtain the formula

S(u)i =
∫ pi

pi −1

Pi (x, y, t)φ(y)dy +
∑

j =i−1,i

∫ t

0
Pi (x, pj , s) f j (Jj [u](t − s))ds.

We will show that the mappingS can be made contractive by choosingT > 0
small enough. To this end, letu, v ∈ X and setL := maxi Lip( fi ). Then the
representation obtained above implies

|S(u)i − S(v)i | ≤ L
∫ t

0
Pi (x, pi−1, t − s)|ui−1(pi−1, s) − vi−1(pi−1, s)|ds

+ L
∫ t

0
Pi (x, pi−1, t − s)|ui (pi−1, s) − vi (pi−1, s)|ds

+ L
∫ t

0
Pi (x, pi , t − s)|ui (pi , s) − vi (pi , s)|ds

+ L
∫ t

0
Pi (x, pi , t − s)|ui+1(pi , s) − vi+1(pi , s)|ds,

which by the elementary bound∣∣∣∣
∫ t

0
Pi (x, y, t − s)ds

∣∣∣∣ ≤ C
√

t

implies the inequality

sup
pi −1≤x≤pi

0≤t≤T

|S(u)i − S(v)i | ≤ C
√

T d(u, v)

whereC depends onL. But then taking the maximum overi we get

d(S(u), S(v)) ≤ C
√

T d(u, v) ,

which of course means we have a contraction for a sufficiently small choice of
T > 0. It follows that the mappingS has a fixed pointu(x, t) in the (complete)
metric spaceX. This is our candidate for the solution to the system.



ANALYSIS OF PERONA-MALIK SCHEME 15

Next, we note thatu(x, t) can be recognized as the limit of a sequence{u(n)}∞n=0

whereu(0)
i (x, t) := φi (x) andu(n+1)(x, t) := S(u(n)) for n = 0, 1, . . . , by def-

inition. By virtue of our argument, this sequence converges uniformly as soon
as we ensure thatS is contractive by takingT > 0 suitably small. Applying
estimate (2.4) tou(n)(x, t) − u(m)(x, t), we see that the sequence of derivatives
{Dα

t Dβ
x u(n)(x, t)}∞n=1 converges uniformly on every compactly included subset of

(p0, p1)×(p1, p2)×· · ·×(pN−1, pN)×(0, T), and therefore the limiting function
u(x, t) is smooth on this domain and satisfies the heat equation there just like every
term in the sequence.

We also need to check that the boundary condition makes sense (i.e., the limit
possesses one derivative inx up to the boundary for positive time) and is satis-
fied. This is a consequence of (2.5) applied once again tou(n)(x, t) − u(m)(x, t);
this time we see that{u(n)

x (x, t)}∞n=1 converges uniformly on every set of the form
[p0, p1] × [p1, p2] × · · · × [pN−1, pN] × [ε, T − ε]. So the limitu(x, t) possesses
anx-derivative up to the spatial boundary, and since the sequence of boundary val-
ues{ f j (u(n)(pj +1, t))− f j (u(n)(pj , t))}∞n=1 converge tof j (u(pj +1, t)−u(pj , t)), it
satisfies the correct boundary condition.

Finally, the candidateu(x, t) assumes the correct initial value ast → 0+ as
a consequence of its continuity and the manner in which the sequence has been
constructed. We hence see thatu(x, t) is the unique solution of the nonlinear sys-
tem. �
Remark.The choice ofT > 0 in the existence argument is constrained only by the
size of the Lipschitz constants of the functionsfi . Therefore, in case the functions
are globally Lipschitz, by iteration of the argument we can obtain global-in-time
existence.

Higher Regularity

We need bounds on higher derivatives (e.g.,uxxx) on the domain[p0, p1] ×
[p1, p2]× · · · × [pN−1, pN]× (0, T); in other words, we need higher regularity up
to the spatial boundary for positive time. This will be needed for the convergence
argument later on, where we shall need to estimate how well difference quotients
approximate first and second derivatives of the solution to the system.

PROPOSITION2.2 Let f1, f2, . . . , fN−1 ∈ C∞, and let u(x, t) = {ui (x, t)}N
i=1 be

the solution to the system with nonlinear boundary conditions(2.6). Then

ui (x, t) ∈ C∞([pi−1, pi ] × (0,∞)) for i = 1, 2, . . . , N .

PROOF: We recall some fundamental properties of heat potentials; for details,
see [5] and [13]. First, iffi (t) are continuous functions, then the single layer
potential

(2.7)
∑

j =i−1,i

∫ t

0
Pi (x, pj , s) f j (s)ds
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is Cγ,γ /2([pi−1, pi ] × [δ, T − δ]) for anyγ ∈ (0, 1
2). To fix ideas, takeγ = 1

4. It is
easy to see by a uniqueness argument that this impliesu(x, t) has the same Hölder
continuity.

Second, iffi (t) ∈ Cν/2 whereν is a noninteger positive number, then the single-
layer potential given in (2.7) is in factCν+1,(ν+1)/2. In other words, convolution
with the heat potentialPi as in (2.7) allows us to gain (at least) one full derivative
in thex-direction and half a derivative (in the Hölder sense) in thet-direction.

The proof of regularity can now proceed by induction. Assumeu ∈ Cγ,γ /2 so
that u(pi , t) areCγ /2-functions of time. Then the jump heightsJi [u](t) ∈ Cγ /2.
Since the functionsfi areC∞, we get

∂xui (pi , t) = ∂xui+1(pi , t) = fi (Ji [u](t)) ∈ Cγ /2 .

Our remarks in the previous paragraph implyui (x, t) ∈ Cγ+1,(γ+1)/2. By induc-
tion, u ∈ C∞. �

COROLLARY 2.3 System(1.12), proposed as a continuum limit for the Perona-
Malik scheme, has a unique solution with good regularity properties while the jump
heights Ji (t) remain bounded away from0.

PROOF: In terms of the notation employed in the existence proof, the proposed
continuum limit (1.12) is nothing other than system (2.6) withfi (ξ) := ξ |ξ |2β−2

for i = 1, 2, . . . , N − 1.
Let m := mini=1,2,...,N−1 Ji (0) > 0, and fixε ∈ (0, m). Let f (ε)(ξ) be aC∞-

function such thatf (ε)(ξ) = ξ |ξ |2β−2 for |ξ | > ε. Apply the existence theorem
(2.1) with the choice of functionsfi (ξ) = f (ε)(ξ) for i = 1, 2, . . . , N − 1. That
yields a (global-in-time) solution; call itu(ε)(x, t). But thenu(ε)(x, t) is a solution
to the system (1.12) as long as mini=1,2,...,N−1 u(ε)

i+1(pi , t) − u(ε)
i (pi , t) ≥ ε. Note

that if 0 < ε′ < ε, thenu(ε) = u(ε′) while mini u(ε′)
i+1(pi , t) − u(ε′)

i (pi , t) ≥ ε. That
proves our claim, sinceε > 0 can be chosen arbitrarily small. �

2.2 Properties of Solutions

Here we discuss some important properties of solutions to the proposed con-
tinuum limit: maximum principle, bounds on gradients, and Hölder continuity in
time. We will denoteu(x, t) the piecewise continuous function on[p0, pN] where
u(x, t) := ui (x, t) for x ∈ (pi−1, pi ).

PROPOSITION2.4 (Maximum Principle)Let u(x, t) := {ui (x, t)}N
i=1 be a solution

to the proposed continuum limit(1.12)for 0 ≤ t ≤ T withβ ∈ [0, 1
2). Then for all

t ≥ 0,

sup
x

|u(x, t)| ≤ sup
x

|u(x, 0)| .
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PROOF: A convenient way of showing this statement is to follow an argument
given in [8]. Set f (ξ) = ξ |ξ |2β−2, the boundary conditions in (1.12). Then

1

p

d

dt

∫ pi

pi −1

|ui |p dx =
∫ pi

pi −1

|ui |p−2ui ∂
2
xui dx

≤ |ui |p−2ui ∂xui

∣∣∣pi

pi −1

= |ui |p−2ui f (ui+1 − ui )

∣∣∣
pi

− |ui |p−2ui f (ui − ui−1)

∣∣∣
pi −1

.

Summing overi = 1, 2, . . . , N we see that

1

p

d

dt

N∑
i=1

∫ pi

pi −1

|ui |p dx ≤
N−1∑
i=1

[|ui |p−2ui − |ui+1|p−2ui+1
]

f (ui+1 − ui )

∣∣∣
pi

,

which is negative becausex f (x) ≥ 0 for our specific choice of boundary condi-
tions, and

(|x|p−2x − |y|p−2y)(x − y) ≥ 0

for all x, y provided thatp > 1. Letting p → ∞ gives the desired result. �

For ε > 0 andp > 1 let

Fp,ε(x) = (x2 + ε2)p/2

so that

(2.8) F ′′
p,ε(x) ≥

{
0 for all p > 1

p(p − 1)(x2 + ε2)(p−2)/2 for p ∈ (1, 2] .

Now we compute

d

dt

N∑
i=1

∫ pi

pi −1

Fp,ε(∂xui )dx

=
N∑

i=1

∫ pi

pi −1

F ′
p,ε(∂xui )∂xtui dx

= −
N∑

i=1

∫ pi

pi −1

F ′′
p,ε(∂xui )∂

2
xui ∂tui dx +

N∑
i=1

F ′
p,ε(∂xui )∂tui

∣∣∣pi

pi −1

where we integrated by parts in the last step. Invoking the boundary conditions
(1.12), we find

d

dt

N∑
i=1

∫ pi

pi −1

Fp,ε(∂xui )dx = −
N∑

i=1

∫ pi

pi −1

F ′′
p,ε(∂xui )∂

2
xui ∂tui dx

−
N∑

i=1

F ′
p,ε(Ji (t)|Ji (t)|2β−2)∂t Ji (t)

(2.9)
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where we rearranged the terms in the last sum. Integrating int over (t1, t2) and
making the change of variabley = Ji (t) in the boundary terms that make up the
last sum, we obtain the equation

N∑
i=1

∫ pi

pi −1

Fp,ε(∂xui )dx
∣∣∣t2
t1

= −
N∑

i=1

∫ t2

t1

∫ pi

pi −1

F ′′
p,ε(∂xui )∂

2
xui ∂tui dx dt

−
N−1∑
i=1

∫ Ji (t2)

Ji (t1)
F ′

p,ε(y|y|2β−2)dy .

(2.10)

From this formula we obtain the following estimates:

PROPOSITION2.5 (L p-Bound for Derivatives)Let u(x, t) = {ui (x, t)}∞i=1 be a
solution to system(1.12)with β ∈ [0, 1

2) for 0 ≤ t < T . We then have

sup
0<t≤T

N∑
i=1

∫ pi

pi −1

∣∣∣∣∂ui

∂x
(x, t)

∣∣∣∣
p

dx = C(p) < ∞

where1 < p < 2(1− β)/(1− 2β). Furthermore, the constant C(p) depends only
on the piecewise W1,p-norm of the initial condition and the initial jump heights, in
addition to p andβ.

PROOF: Since∂tui = ∂2
xui andF ′′

p,ε(ξ) ≥ 0 for all ξ as seen in (2.8), we get

F ′′
p,ε(∂xui )∂

2
xui ∂tui = F ′′

p,ε(∂xui )(∂tui )
2 ≥ 0 .

So the first term in the right-hand side of formula (2.10) is negative; once we letε

go to 0 in this formula, we therefore get the inequality

N∑
i=1

‖∂xui (·, t2)‖p
L p(pi −1,pi )

≤
N∑

i=1

‖∂xui (·, t1)‖p
L p(pi −1,pi )

+ p
N−1∑
i=1

∫ Ji (t2)

Ji (t1)
|y|(2β−1)(p−1) dy

The integrands on the right-hand side are locally integrable forp < 2(1−β)/(1−
2β). Furthermore, the intervals of integration can be bounded in terms of the initial
condition by using, for example, Proposition 2.4 (the maximum principle). That
proves the claim, since the right-hand side is shown to be controlled completely in
terms of the initial condition. �

A most important property of solutions to the proposed limit (1.12) with the
less singular boundary conditions that correspond toβ ∈ (0, 1

2) is that they are the
steepest descent for an energy. This is merely a special case of equation (2.9):
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PROPOSITION2.6 (Steepest Descent)Let u(x, t) = {ui (x, t)}N
i=1 be a solution to

system(1.12)with β ∈ (0, 1
2) for 0 ≤ t < T . Define the energy

(2.11) Eu(t) := 1

2

N∑
i=1

∫ pi

pi −1

(
∂ui

∂x
(x, t)

)2

dx + 1

2β

N−1∑
i=1

|Ji (t)|2β .

Then the following relation holds:

(2.12)
d

dt
Eu(t) = −

N∑
i=1

∫ pi

pi −1

(
∂ui

∂t
(x, t)

)2

dx .

PROOF: In equation (2.9) takep = 2 andε = 0. Noting that

d

dt

1

2β
|Ji (t)|2β = F2,0

(
Ji (t)|Ji (t)|2β−2

)
,

we obtain the promised formula. �

Remark.The caseβ = 0 decreases the energy

Eu(t) := 1

2

N∑
i=1

∫ pi

pi −1

(
∂ui

∂x
(x, t)

)2

dx +
N−1∑
i=1

log(|Ji (t)|) ,

which, however, is not bounded from below asJi → 0.

As a consequence of the estimates above, we obtain the following Hölder-
continuity-in-time result, which shows that solutions to the continuum limit evolve
slowly all the way up to the singular times.

COROLLARY 2.7 (Hölder Continuity)Let u(x, t) = {ui (x, t)}∞i=1 be a solution to
system(1.12)with β ∈ (0, 1

2) for 0 ≤ t < T . Then for i= 1, 2, . . . , N,

ui (t, ·) ∈ C1/2
([0, T); L2((pi−1, pi ))

)
and

ui (t, ·) ∈ C1/4
([0, T); L∞((pi−1, pi ))

)
.

For the more singular caseβ = 0, we instead have

ui (t, ·) ∈ Cµ
([0, T); L2((pi−1, pi ))

)
and

ui (t, ·) ∈ Cν
([0, T); L∞((pi−1, pi ))

)
for anyµ ∈ (0, 1

2) andν ∈ (0, 1
4). Furthermore, in all cases the Hölder constants

involved depend only on the appropriate piecewise W1,p-norm and jump heights
of the initial condition.
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PROOF: By an application of the Hölder inequality followed by switching the
order of integration, we have

N∑
i=1

∫ pi

pi −1

|ui (x, t2) − ui (x, t1)|2 dx =
N∑

i=1

∫ pi

pi −1

∣∣∣∣
∫ t2

t1

∂ui

∂t
(x, s)ds

∣∣∣∣
2

dx

≤ |t2 − t1|
N∑

i=1

∫ t2

t1

∫ pi

pi −1

∣∣∣∣∂ui

∂t
(x, s)

∣∣∣∣
2

dx ds.

The right-hand side of the above inequality can now be bounded by the integral in
t over[t1, t2] of the energy identity (2.12) to get

N∑
i=1

∫ pi

pi −1

∣∣ui (x, t2) − ui (x, t1)
∣∣2

dx ≤ |t2 − t1|
(
Eu(t1) − Eu(t2)

)
≤ |t2 − t1|Eu(t1) ,

which is exactly the definition ofC1/2 Hölder continuity in time with values inL2

of space, and the Hölder constant(Eu(t1))1/2 depends on conditions at the begin-
ning of the time interval, as promised.

To get Hölder continuity with values inL∞ of space, first note that by Proposi-
tion 2.5 theL2-norm of derivatives∂xui are bounded:

sup
t≥0

N∑
i=1

‖∂xui (·, t)‖L p((pi −1,pi )) < ∞ .

We can therefore apply the interpolation lemma (Lemma 4.1) tof = ui (x, t2) −
ui (x, t1) with p = q = r = 2 andθ = 1

2 to get the desired result.

For the caseβ = 0, the boundary terms are not integrable forp = 2, so we are
forced to work withp < 2. To that end, we taket1 ≤ t2 and write equation (2.9) as

N∑
i=1

∫ t2

t1

∫ pi

pi −1

F ′′
p,ε(∂xui )(∂tui )

2 dx dt ≤
N∑

i=1

∫ pi

pi −1

Fp,ε(∂xui )dx

∣∣∣∣
t1

−
N−1∑
i=1

∫ Ji (t2)

Ji (t1)
F ′

p,ε(y|y|2β−2)dy ,

where we note that as before the right-hand side can be bounded in terms of the
initial condition. So we have that, for eachi ,∫ t2

t1

∫ pi

pi −1

F ′′
p,ε(∂xui )(∂tui )

2 dx dt
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is bounded. Apply now the Hölder inequality with exponents 2/p and 2/(2 − p)

to get∫ t2

t1

∫ pi

pi −1

|∂tui |p dx dt

=
∫ t2

t1

∫ pi

pi −1

|∂tui |pF ′′
p,ε(∂xui )

p
2 F ′′

p,ε(∂xui )
− p

2 dx dt

≤
(∫ t2

t1

∫ pi

pi −1

|∂tui |2F ′′
p,ε(∂xui )dx dt

) p
2
(∫ t2

t1

∫ pi

pi −1

F ′′
p,ε(∂xui )

p
p−2 dx dt

) 2−p
2

.

The first term in the right-hand side is bounded by our comments above; as for the
second term, by (2.8) we have

|F ′′
p,ε(x)| p

p−2 ≤ C(p)(x2 + ε2)
p
2 ≤ C(p)(|x|p + |ε|p)

and therefore(∫ t2

t1

∫
F ′′

p,ε(∂xui )
p

p−2 dx dt

) 2−p
2

≤
( ∫ t2

t1

∫
C(p)(|∂xui |p + |ε|p)dx dt

) 2−p
p

≤ C(p)|t2 − t1| 2−p
2

(
sup
t≥0

‖∂xui ‖p
L p + |ε|p

) 2−p
p

.

But by Proposition 2.5 the term supt≥0 ‖∂xui ‖L p is bounded in terms of the initial
condition. Hence we finally get∫ t2

t1

∫ pi

pi −1

|∂tui |p dx dt ≤ C|t2 − t1| 2−p
2

where the constantC depends only on the initial condition and the exponentp.
Proceeding now as in the case forp = 2, another application of the Hölder in-
equality gives∫ pi

pi −1

|ui (x, t2) − ui (x, t1)|p d =
∫ pi

pi −1

∣∣∣∣
∫ t2

t1

∂tui (x, s)ds

∣∣∣∣
p

dx

≤ |t2 − t1|p−1
∫ t2

t1

∫ pi

pi −1

|∂tui |p dx dt

≤ C|t2 − t1| p
2

which meansui (·, t) ∈ C1/2([0, T); L p((pi−1, pi ))) with the Hölder constant de-
pending only on initial data as before. But now judicious use of the interpolation
lemma, as in thep = 2 case, shows that the solutions also lie in the spaces quoted
in the proposition. �
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2.3 Healing of Interfaces

We start by showing that for solutions of the proposed continuum limit, jump
heightsJi (t) at the discontinuity pointspi converge to 0 in finite time, thereby
leading to gradient blowup at the jump locations.

PROPOSITION 2.8 Let u(x, t) be the solution to the proposed continuum limit
(1.12)with β ∈ [0, 1

2). Then there exists T> 0 such that

(i) |Ji (t)| > 0 for all i = 1, 2, . . . , N − 1 and t ∈ [0, T).
(ii) There is j∈ {1, 2, . . . , N − 1} such thatlim inf t→T− |Jj (t)| = 0.

(iii) For all i ∈ 1, 2, . . . , N − 1 with lim inf t→T− |Ji (t)| = 0, we have in fact
limt→T− |Ji (t)| = 0.

In order to prove this proposition, we first show the following lemma, which
establishes the preliminary result that jump heightsJi (t) cannot remain bounded
away from 0, so that no solution to the proposed limit with discontinuous initial
data can exist for all time.

LEMMA 2.9 There are no global-in-time solutions to the system given in(1.12) if
the initial condition has jumps. In particular, jump heights cannot remain bounded
away from0.

PROOF: For the most singular boundary condition (caseβ = 0) given in (1.14),
the statement is particularly easy to show: Suppose thatu(x, t) = {ui (x, t)}N

i=1 is
a global-in-time solution to (1.12) withN > 1. We will obtain a contradiction.
Compute

1

2

d

dt

N∑
i=1

∫ pi

pi −1

u2
i (x, t)dx

= −
N∑

i=1

∫ pi

pi −1

(∂xui (x, t))2 dx −
N−1∑
i=1

(
∂xui+1ui+1 − ∂xui ui

)∣∣∣
(pi ,t)

≤ −
N−1∑
i=1

1 = −(no. of jumps),

where we integrated by parts inx and then employed the boundary conditions. We
thus see that theL2-norm of the solution decays at a definite rate in the presence of
jumps and therefore would become negative in finite time if the jumps persisted;
this is a contradiction. The evolution will necessarily be interrupted, and that can
happen only if jump heights vanish.

For the less singular boundary conditions (caseβ ∈ (0, 1
2)), one can proceed

as follows: We consider the jump atp1. Without loss of generality, assume that
u2(p1, 0) > u1(p1, 0) so that the jumpJ1(t) is positive. By Proposition 2.4
(maximum principle), we are assured that there is a constantM > 0 such that
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|u1(x, t)|, |u2(x, t)| ≤ M ; so in particular,J1(t) = u2(p1, t) − u1(p1, t) ≤ 2M .
But then we compute

d

dt

∫ p1

p0

|M − u1(x, t)|dx = d

dt

∫ p1

p0

(M − u1(x, t))dx

= −
∫ p1

p0

∂xxu1(x, t)dx

= −∂xu1(x, t)
∣∣p1

p0
= −∂xu1(p1, t)

= −J2β−1
1 ≤ −(2M)2β−1 < 0 .

So theL1-norm of M − u1 decays at a definite rate, and it would become negative
if the jump atp1 survived. This is a contradiction; jumps cannot remain bounded
away from 0. That concludes the proof. �

PROOF OFPROPOSITION2.8: LetT > 0 be the maximal time of existence for
the solution. By Lemma 2.9 we know thatT < ∞. Furthermore, the local-in-time
existence result verifies the second assertion of the proposition, since if all jump
heights remained bounded away from 0 up toT , the solution could be continued a
little further.

For the third assertion, we use the Hölder continuity in time with values inL∞
of space property given by Corollary 2.7. As a consequence, the limit

ûi := lim
t→T− ui (·, t)

exists in the uniform sense on[pi−1, pi ] for everyi , and so lim inft→T− |Ji (t)| = 0
for any i implies lim supt→T− |Ji (t)| = 0 as well. Moreover, uniform convergence
also means that the functionsûi are continuous up to the boundary on their respec-
tive domains. �

If only one jump height vanishes at the maximal time of existence, we can say
more about the behavior of the solution. The next lemma shows that under this
circumstance, the jump height in question strictly decreases once it becomes small
enough. We will employ the following notation:

�T
i = (pi−1, pi ) × (0, T] ,

0T
i = [pi−1, pi ] × {0} ∪ {pi−1} × [0, T] ∪ {pi } × [0, T] ,

for i = 1, 2, . . . , N. So0T
i is the parabolic boundary of the cylindrical domain

�T
i .

LEMMA 2.10 Let {ui (x, t)}N
i=1 be a solution to the PDE system in(1.12), and let

Tq > 0 be the first quenching time. Assume

m := min
i 6=k

inf
0≤t≤Tq

|Ji (t)| > 0
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so that pk is the only quenching point at t= Tq. Let

M := max
{

sup
pk−1<x<pk

|∂xuk(x, 0)|, sup
pk<x<pk+1

|∂xuk+1(x, 0)|
}

.

Then there exists aδJ > 0, depending only on m and M, such that if|Jk(t0)| ≤ δJ

for some t0 ∈ [0, Tq], then|Jk(t)| is decreasing for t∈ [t0, Tq].

PROOF: Without loss of generality, we will takeJk(0) > 0. ChooseδJ > 0
so small thatδJ < m and δ

2β−1
J > M . Let t0 := inf{t ≥ 0 : Jk(t) = δJ}.

We need to show that∂t Jk(t) < 0 for t ∈ [t0, Tq). Assume not; then we can let
T∗ := inf{t ∈ [t0, Tq) : ∂t Jk(t) ≥ 0}. The choice ofδJ and the definitions oft0 and
T∗ give

∂xuk(pk, T∗) = ∂xuk+1(pk, T∗) > max{M, m2β−1}
so that

∂xuk(pk, T∗) > ∂xuk(x, t) for all (x, t) ∈ 0
T∗
k − (pk, T∗)

and

∂xuk+1(pk, T∗) > ∂xuk+1(x, t) for all (x, t) ∈ 0
T∗
k+1 − (pk, T∗) .

By the strict maximum principle applied to∂xuk and∂xuk+1 we must have

∂xuk(pk, T∗) > ∂xuk(x, t) for all (x, t) ∈ �
T∗
k

and

∂xuk+1(pk, T∗) > ∂xuk+1(x, t) for all (x, t) ∈ �
T∗
k+1 ,

which leads to

∂tuk(pk, T∗) = ∂xxuk(pk, T∗) ≥ 0

and

∂tuk+1(pk, T∗) = ∂xxuk+1(pk, T∗) ≤ 0 .

In fact, by the parabolic analogue of the Hopf lemma (Lemma 4.2), we must have

∂tuk(pk, T∗) > 0 and ∂tuk+1(pk, T∗) < 0 ,

which implies∂t Jk(T∗) < 0, a contradiction. �

Under the circumstances of the last lemma, we can establish an upper bound on
the quenching timeTq in terms of the jump heightJk(t); that is the content of the
next lemma.
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LEMMA 2.11 Let {ui (x, t)}N
i=1 and m, M, andδJ be as in Lemma2.10. Let Tq > 0

be the quenching time of the kth jump, and assume t0 < Tq is such that|Jk(t0)| <

δJ. Then

Tq < t0 + 2K (pk − pk−1)

|Jk(t0)|2β−1 − m2β−1

where K := supi,x |ui (x, 0)|.
PROOF: By Proposition 2.4 we know that supi,x,t |ui (x, t)| = K . Without loss

of generality, we will takeJk(0) > 0. By Lemma 2.10, the hypothesisJk(t0) < δJ

means thatJ ′
k(t) < 0 for all t ∈ (t0, Tq). So in particular,∂xuk(pk, t) > Jk(t0)2β−1

for all t ∈ (t0, Tq). Consequently,

d

dt

∫ pk

pk−1

|K − uk(x, t)|dx = d

dt

∫ pk

pk−1

K − uk(x, t)dx

= −∂xuk(pk, t) + ∂xuk(pk−1, t) ≤ m2β−1 − Jk(t0)
2β−1

which, after integration int over[t0, Tq], implies that we have

0 ≤
∫

|K − uk(x, Tq)|dx

≤
∫

|K − uk(x, t0)|dx + (
m2β−1 − Jk(t0)

2β−1
)
(Tq − t0)

≤ 2K (pk − pk−1) + (
m2β−1 − Jk(t0)

2β−1
)
(Tq − t0) ,

and that is exactly the inequality required. �

2.4 Continuation Beyond Blowup

We have seen how the proposed PDE limit breaks down in finite time; to give a
global-in-time candidate for the continuum limit, we must supplement the descrip-
tion afforded by (1.12).

Proposition 2.8 characterizes the manner in which the breakdown occurs: One
or more of the jump heights converge to 0. LetTq be the first of these quenching
times. In view of the results of the last section, it is easy to show that solutions
{ui (x, t)}N

i=1 to the PDE system (1.12) have well-behaved limits ast → T−
q . Let

φi (x) := limt→T−
q

ui (x, t); what we meant is that this limit exists, andφi (x) are
continuous up to the boundary on their respective domains(pi−1, pi ). What is
more, according to Proposition 2.5, if the initial data are inW1,p (where the expo-
nentp is related to the parameterβ of the scheme as described in that proposition),
then so areφi (x). We continue the evolution beyond the merging timeTq in the
following manner:

If at the quenching timet = Tq the jump located atpk vanishes
so that limt→T−

q
Jk(t) = 0, then there is no longer a discontinu-

ity acrosspk (in other words,φk(pk) = φk+1(pk)). We therefore
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removepk from our list of jump locations and merge the two in-
tervals(pk−1, pk) and(pk, pk+1) on either side ofpk into a sin-
gle, longer interval(pk−1, pk+1). That brings us back to a setting
where the PDE-based evolution given in (1.12) makes sense, al-
though we now have a different system with fewer jump points.
We continue the evolution as the solution to the new PDE system.

3 Perona-Malik as a Numerical Scheme

In this section, we first obtain for the Perona-Malik scheme discrete analogues
of the results from the last section. Section 3.3 then pulls together all that we know
to prove the promised convergence result. It is worth emphasizing that our purpose
has not been to propose an efficient numerical method for the proposed continuum
problem; rather, it has been to show that the Perona-Malik scheme, although not
intended for this purpose, in effect solves our proposed limit. And since the original
purpose of Perona and Malik was quite different, we cannot expect the scheme to
be particularly efficient in solving our limit.

3.1 Definitions and Hypothesis
DEFINITIONS (i) For h = 1/m with m ∈ N, define the gridGh to be the

collection of points{x0, x1, . . . , xm} wherex0 = 0, xm = 1, andxj =
xj −1 + h.

(ii) For k ≥ j + 2 let

�T
j,k = {xj +1, xj +2, . . . , xk−1} × (0, T] ,

0T
j,k = {xj , xj +1, . . . , xk} × {0} ∪ {xj } × [0, T] ∪ {xk} × [0, T] .

(iii) For a functionφ defined on the interval[0, 1], let S(φ) denote the set of its
discontinuity points.

(iv) For a functionφh defined on the gridGh, let

φh
j := φh(xj ) , D+φh

j := φh
j +1 − φh

j

h
, and D−φh

j := φh
j − φh

j −1

h
.

(v) For a functionφh defined on the gridGh, defineS(φh) to be the collection
of indices j ∈ {0, 1, . . . , m − 1} such that|D+φh

j | ≥ z(h).

The Numerical Scheme

Let us recall the one-dimensional semidiscrete version of the Perona-Malik
scheme; it can be written as

d

dt
vj (t) = D−Rh(D+vj (t)) for 1 ≤ j ≤ m − 1 ,

d

dt
v0(t) = 1

h
Rh(D+v0(t)) ,

d

dt
vm(t) = −1

h
Rh(D+vm−1(t)) .

(3.1)
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Assumptions on Initial Data

Assume that we are given piecewiseW1,p initial data with discontinuities at
p1, p2, . . . , pn−1 ∈ (0, 1). More precisely, we require

(1) φ ∈ W1,p((pi−1, pi )) where p = 2 for β ∈ (0, 1
2) and p ∈ (1, 2) for

β = 0.
(2) limx→p−

i
φ(x) 6= limx→p+

i
φ(x).

(3) pi 6∈ Gh for any i andh > 0.

Note.Condition 1 implies continuity up to the boundary in each interval(pi−1, pi ).
Condition 3 is purely for convenience; see also remark 2 below.

Assumptions on Approximate Initial Data

It is required that the numerical approximationsφh to the initial conditionφ

have jump sets compatible with that ofφ. More precisely, assume the following:

(1) For all pi ∈ S(φ) there existsj ∈ S(φh) such thatpi ∈ (xj , xj +1). For all
j ∈ S(φh) there exists a uniquepi ∈ S(φ) such thatpi ∈ (xj , xj +1).

(2) maxj |φ(xj ) − φh(xj )| → 0 ash → 0+.
(3) suph>0

∑
j 6∈S(φh) h|D+φh

j |p < ∞ for the samep as in the assumptions on
initial data above.

Remarks. (1) By the assumptions on continuum initial data, such an approxi-
mating sequence is easy to generate. For instance, one can take a piecewise
C1 sequenceφn(x) that converges toφ(x) in the W1,p-norm on each one
of the intervals(pi−1, pi ), with |φ′

n(x)| < z(1/n), and then letφ1/n
j :=

φn(xj ).
(2) It is possible to be less restrictive about how well the jumplocationsof

discrete data should match those of the continuum data. In fact, it should
not be hard to show that both the continuum and the discrete evolutions are
stable (in theL2-norm) under changes in jump positions.

(3) Our assumptions impose a one-to-one correspondence between jump sets
of the continuum initial condition and its discrete approximations. In Gob-
bino’s work [7], this condition is automatically satisfied by requiring con-
vergence of energies. Our energies do not impose compatibility of jump
sets; we therefore made the necessary assumptions explicitly.

3.2 Qualitative Properties and Estimates

PROPOSITION3.1 (Maximum Principle)Let {vj (t)}m
j =0 be the solution generated

by scheme(3.1)on Gh × [0,∞) from initial dataφh. Then

sup
t≥0

max
0≤ j ≤m

|vj (t)| ≤ max
0≤ j ≤m

|φh
j | .

PROOF: This property was noticed by a number of previous authors; a proof
appears in [17], for instance. Here, we mimic the proof of Proposition 2.4. Note
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thatx R(x) ≥ 0 for all x. We now compute, using summation by parts,

d

dt

m∑
j =0

h|vj |p =
m∑

j =0

hp|vj |p−2vj v̇j =
m∑

j =0

hp|vj |p−2vj D
−(R(D+vj ))

= −
m−1∑
j =0

hpD+(|vj |p−2vj

)
R(D+vj )

− pR(D+v−1)|v0|p−2 + pR(D+vm)|vm|p−2

= −
m−1∑
j =0

hp(p − 1)(D+vj )R(D+vj )|ξj |p−2

whereξj is betweenvj andvj +1. Therefore, wheneverp > 1,

m∑
j =0

h|vj (t)|p ≤
m∑

j =0

h|φj |p .

Sendingp → ∞ proves the claim. �

We next show that the difference quotients generated by the discretization sat-
isfy a strict maximum principle; in particular, scheme (3.1) does not generate new
jump locations. A proof of this fact first appeared in Gobbino’s paper [7].

PROPOSITION3.2 Let {vj (t)} be the solution generated by scheme(3.1) on the
grid Gh. We have

(i) S(vj (t2)) ⊆ S(vj (t1)) whenever t2 ≥ t1.
(ii) Let {xα, . . . , xα′+1} be a subset of Gh with α′ ≥ α + 2. Assume that

sup
α+1≤ j ≤α′−1

|D+vj (0)| < z(h)

and set M:= sup( j,t)∈0T
α,α′ |R(D+vj (t))|. Then

sup
( j,t)∈�T

α,α′
|D+vj (t)| ≤ R−1

∗ (M) .

Moreover, if there exists( j0, t0) ∈ �T
α,α′ such that D+vj0(t0) = ±R−1∗ (M),

then D+vj (0) = ±R−1∗ (M) for all j .

PROOF: To show the first claim, we follow the argument in Gobbino’s paper
[7]: For all j , D+vj (t) satisfies an ODE of the form

(3.2)
d

dt
D+vj (t) = 2

h2

(
A(t) − R(D+vj (t))

)
where|A(t)| ≤ R(z(h)) for all t ≥ 0. If |D+vj (0)| < z(h), a comparison argument
immediately shows that|D+vj (t)| < z(h) for all t ≥ 0.
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To show the second claim, let

M := sup
0T

α,α′∪�T
α,α′

|R(D+vj (t))| .

Assume there is( j0, t0) ∈ �T
α,α′ such thatR(D+vj0(t0)) = M ; then∂t D+vj0(t0) ≥

0. Discretization (3.1) implies

R(D+vj0)(t0) ≤ 1

2

(
R(D+vj0−1)(t0) + R(D+vj0+1)(t0)

)
,

which of course meansR(D+vj0−1) = R(D+vj0+1) = M at t = t0. Repetition of
this reasoning leads to

R(D+vj (t0)) = M for all j ∈ {α, . . . , α′} .

Therefore,M = M . Revisiting formula (3.2), we see that|A(t)| ≤ M and
|D+vj (0)| ≤ R−1∗ (M). The same comparison argument shows that, under our
assumption,D+vj (t) = R−1∗ (M) for all t ∈ [0, t0]. In caseR(D+vj0(t0)) = −M ,
the argument is the same, leading toM = −M andD+vj (t) = −R−1∗ (M) for all
t ∈ [0, t0]. �

Furthering the similarities between the evolutions of jump sets in the discrete
and continuous settings, we next show that all jumps of a discrete solution vanish
in finite time.

LEMMA 3.3 Let {φh} be a sequence of discrete approximations(each defined on
Gh) to a given piecewise continuous initial dataφ with φh and φ subject to the
usual assumptions. Let{vh(t)} be the corresponding discrete solutions generated
by the scheme in(3.1) in which the constitutive functions are scaled with respect to
h as prescribed in(1.13). Let Th := inf{t ≥ 0 : S(vh(t)) is empty}. Then

lim sup
h→0+

Th < ∞ .

PROOF: Let S(φh) := {l1(h), . . . , ln(h)} be ordered. By induction, it is suffi-
cient to show that the leftmost jump (located atxl1) will “vanish” in finite time; in
precise terms this means we will show that

lim sup
h→0+

inf
{
t ≥ 0 : |D+vh

l1
(t)| = z(h)

}
< ∞ .

Since the approximating sequence{φh} is required to converge toφ in a uniform
sense on the grid ash → 0+, for h small enough we have that

max
j

|φh
j | ≤ M := 2 max

j
|φ(xj )| < ∞ .
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By Proposition 3.1, we then have supj,t≥0 |vh
j (t)| ≤ M . Without loss of generality,

we assume thatD+vh
l1

> 0. Let us writev := vh and compute

d

dt

l1∑
j =0

h|M − vj | = d

dt

l1∑
j =0

h(M − vj )

= −
l1∑

j =0

hv̇j = −
l1∑

j =0

hD−Rh(D+vj ) = −Rh(D+vl1) .

But if l1 ∈ S(vh(t)), then D+vl1 ≥ z(h) by definition, and by the bound on the
maximum normD+vl1 ≤ 2M/h. That gives

Rh(D+vl1) ≥ C(β)M2β−1 ,

which means

d

dt

l1∑
j =0

h|M − vj | ≤ −C(β)M2β−1 ,

which is a definite decay rate for theL1-norm that is independent ofh. As in the
proof of Lemma 2.9, that implies the leftmost jump located atxl1 vanishes in finite
time. The argument can be iterated to show that all the other jumps also collapse
in finite time. That concludes the proof. �

We thus have seen that quenching is also inevitable in the discrete setting. We
now specialize to the case where only one jump is eliminated at a given quenching
time. Under this assumption, and in the continuum setting of the proposed limiting
evolution, Lemmas 2.10 and 2.11 gave us an upper bound on the quenching time
in terms of the jump height. They have very simple discrete analogues.

LEMMA 3.4 Let {vj (t)} be the solution generated by scheme(3.1)on the grid Gh,
and let{Ji (t)}n

i=1 be the jump heights. Assume T> 0 is such that quenching does
not occur on t∈ [0, T], and let

m := min
i 6=k

inf
0≤t≤T

|Ji (t)| .
In particular, m> hz(h). Let

M := max
{

sup
lk−1+1≤ j ≤lk−1

|D+vj (0)|, sup
lk+1≤ j ≤lk+1−1

|D+vj (0)|
}

.

Then there exists aδJ > hz(h), depending only on m and M such that if|Jk(t0)| ≤
δJ for some t0 < T , then|Jk(t0)| is nonincreasing on t∈ [0, T].

PROOF: The argument is the same as that of Lemma 2.10 with minor modifica-
tions. Without loss of generality, takeD+vlk(0) > 0. ChooseδJ > hz(h) so small
that Rh(δJ/h) > max{Rh(m/h), Rh(M)}. Let t0 := inf{t ≥ 0 : Jk(t) = δJ}. We
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must show:∂t Jk(t) < 0 for t ∈ [t0, T). Assume not, and letT∗ := inf{t ∈ [t0, T) :
∂t Jk(t) ≥ 0}. The hypothesis and the definitions oft0 andT∗ imply

R(D+vlk(T∗)) = sup
( j,t)∈0

T∗
lk−1,lk

R(D+vj (T∗)) = sup
( j,t)∈0

T∗
lk,lk+1

R(D+vj (T∗)) .

By the strict maximum principle (Proposition 3.2),

D+vlk−1(T∗), D+vlk+1(T∗) < R−1
∗ (D+vlk(T∗))

so thatv̇lk−1(T∗) > 0 andv̇lk+1(T∗) < 0. That means∂t Jk(T∗) < 0, a contradiction.
�

LEMMA 3.5 Let {vj (t)} and m, M,δJ, and T be as in Lemma3.4. Assume t0 ∈
[0, T] is such that|Jk(t0)| < δJ. Then

T ≤ t0 + 2K (lk − lk−1)h

Rh(|Jk(t0)|/h) − Rh(m/h)

where K= supj |vj (0)|.
PROOF: Without loss of generality, assume thatJk(0) > 0. Lemma 3.4 implies

that J ′
k(0) < 0 for all t ∈ [t0, T]. Therefore

d

dt

lk−1∑
j =lk−1+1

h|K − vj (t)|

= d

dt

lk−1∑
j =lk−1+1

h(K − vj (t)) = −
lk−1∑

j =lk−1+1

hD−(
Rh(D+vj (t))

)

= Rh(D+vlk−1) − Rh(D+vlk) ≤ Rh

(
m

h

)
− Rh

(
Jk

(t0)

h

)
.

Integrating int over[t0, T], we find

0 ≤
lk−1∑

j =lk−1+1

h|K − vj (T)|

≤ 2K (lk − lk−1)h +
(

Rh

(
m

h

)
− Rh

(
Jk

(t0)

h

))
(T − t0) ,

which gives the desired inequality. �

Energy Estimates

The energy estimates we obtained for the proposed continuum limit have dis-
crete versions. We start with the analogue of Proposition 2.6 that holds for the less
singular boundary conditions.
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PROPOSITION3.6 (Steepest Descent)Let {vj (t)}m
j =1 be the solution generated by

the scheme(3.1), with the constitutive function gk(ξ) = (1 + ξ/k)(β−1) for β ∈
(0, 1

2). Define the energy

(3.3) Eh
v(t) =

m−1∑
j =0

h8k,β

(
(D+vj )

2
)

where

(3.4) 8k,β(ξ) = k

β

((
1 + ξ

k

)β

− 1

)
and k= h

2β−1
1−β .

Then

(3.5)
1

2

d

dt
Eh

v(t) = −
m∑

j =0

h(v̇j )
2 .

PROOF: In complete analogy with the proof of Proposition 2.6, we compute

d

dt
Eh

v(t) =
m−1∑
j =0

2hR(D+vj )D+v̇j

= −
m−1∑
j =1

2hD−(R(D+vj ))v̇j − 2R(D+v0)v̇0 + 2R(D+vm−1)v̇m

=
m∑

j =0

2h(v̇j )
2 sinceR(ξ) = ξ8′

k,β(ξ2) andv̇j = D−(R(D+vj )),

which is what we wanted. �

Remark.Assumptions on the initial dataφh imply that suph>0 Eh
vh(0) < ∞.

Next we obtain Hölder continuity in time and theL2-bound for difference quo-
tients still in theβ ∈ (0, 1

2) case.

COROLLARY 3.7 (Hölder Continuity,β ∈ (0, 1
2)) Let {vj (t)}m

j =1 be as in Proposi-
tion 3.6. Then

v ∈ C1/2
([0,∞); L2(Gh)

)
and v ∈ C1/4

([0,∞); L∞(Gh)
)
.

Furthermore, the Hölder constants involved depend only on the energy and jump
locations of the initial condition.
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PROOF: Take 0≤ t1 ≤ t2. By the Hölder inequality,
m∑

j =0

h|vj (t2) − vj (t1)|2 =
m∑

j =0

h

( ∫ t2

t1

v̇j dt

)2

≤ |t2 − t1|
m∑

j =0

h
∫ t2

t1

(v̇j )
2 dt

= |t2 − t1|
∫ t2

t1

−1

2

d

dt
Eh

v(t)dt

= |t2 − t1|1
2

(
Eh

v(t1) − Eh
v(t2)

) ≤ |t2 − t1|Eh
v(t1)

which is the definition ofC1/2 Hölder continuity in time with values inL2(Gh).
Just as in the continuum case (i.e., as in Corollary 2.7) Hölder continuity with
values inL∞(Gh) now follows from an interpolation lemma (discrete analogue of
Lemma 4.1) once we notice that

sup
|ξ |≤z(k)

ξ2

8k,β(ξ2)
:= C(β) < ∞

and therefore

(3.6)
∑

j 6∈S(v)

h|D+vj (t)|2 ≤ C(β)Eh
v(t) .

That concludes the proof. �

Note. The whole point of Corollary 3.7 is that the Hölder constants do not depend
on discretization sizeh, provided that the approximations to the initial condition
remain bounded in energy ash → 0+.

Turning now to the more singular case ofβ = 0, we have first:

PROPOSITION3.8 (L p-bound for Difference Quotients)Let {vj (t)}m
j =0 be gener-

ated from the initial condition{φj }m
j =0 by the scheme given in(3.1)with the consti-

tutive function gk(ξ) = 1/(1+ξ/k) where the parameter k is subject to the scaling
k = 1/h as usual. Then for p∈ (1, 2),

sup
t≥0

∑
j 6∈S(v(t))

h|D+vj |p ≤
∑

j 6∈S(φ)

h|D+φj |p + C(p) < ∞ .

Furthermore, the constant C(p) depends only on the initial jump heights Jk(0) in
addition to p.

PROOF: For convenience, we will sum fromj = −1 to j = m with the under-
standing thatD+v1 = D+vm = 0; hencej 6∈ S(v) meansj ∈ {−1, 0, 1, . . . , m} −
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S(v). The calculation is completely analogous to the one in the proof of Proposi-
tion 2.5. Fixε > 0 and letFε(x) = (x2 + ε2)p/2. We compute

(3.7)
d

dt

∑
j 6∈S(v)

h((D+vj )
2 + ε2)p/2 =

∑
j 6∈S(v)

hF′(D+vj )D+v̇j = I + II + III

where

I = −
l1−1∑
j =0

hD−F ′(D+vj )v̇j −
n∑

k=1

lk+1−1∑
j =lk+2

hD−F ′(D+vj )v̇j

−
m∑

j =ln+2

hD−F ′(D+vj )v̇j ,

II =
n∑

k=1

(
v̇lk F ′(D+vlk−1) − v̇lk+1F ′(D+vlk+1)

)
,

III = −v̇−1F ′(D+v−1) + v̇m+1F ′(D+um) .

We start with term I. We have

D−F ′(D+vj )v̇j = F ′′(ξj )R′(ηj )(D−D+vj )
2

whereξj andηj are betweenD+vj −1 andD+vj . Wheneverj 6∈ S(v) ∪ {S(v) + 1},
we have that|D+vj −1|, |D+vj | ∈ (−z(h), z(h)); therefore for suchj we also have
R′(ηj ) > 0. SinceF ′′(ξ) > 0 for all ξ , we see at once that I< 0.

Term III is easily seen to be 0 by the remarks made at the beginning of the proof
concerningD+v−1 andD+vm.

Turning our attention to term II, we recall the definition ofR−1∗ (x) given in
(1.8). We make the observation that for any increasing functionf (x) anda, b ∈ R

we have

(3.8) F ′( f (ha + b))a ≥ F ′( f (b))a .

Apply (3.8) witha = v̇lk , b = R(D+vlk−1), and f (x) = R−1∗ (x). Noting that

ha + b = R(D+vlk) and R−1
∗ (R(D+vlk)) = 1

vlk+1 − vlk

= 1

Jk(t)
,

we get

v̇lk F ′(D+vlk−1) ≤ F ′
(

1

Jk(t)

)
v̇lk .

Then we apply (3.8), this time witha = −v̇lk+1 andb = R(D+vlk+1). Noting that
we again haveha + b = R(D+vlk), we get in this case

v̇lk+1F ′(D+vlk+1) ≥ F ′
(

1

Jk(t)

)
v̇lk+1 .



ANALYSIS OF PERONA-MALIK SCHEME 35

That means

(3.9) II ≤ −
n∑

k=1

F ′
(

1

Jk(t)

)
d

dt
Jk(t)

so that

d

dt

∑
j 6∈S(v)

h
(
(D+vj )

2 + ε2
)p/2 ≤ −

n∑
k=1

F ′
(

1

Jk(t)

)
d

dt
Jk(t) .

Integrating this inequality int over[t1, t2], we find

∑
j 6∈S(v)

h
(
(D+vj )

2 + ε2
)p/2

∣∣∣
t2

≤

∑
j 6∈S(v)

h
(
(D+vj )

2 + ε2
)p/2

∣∣∣
t1

−
n∑

k=1

∫ t2

t1

F ′
(

1

Jk(t)

)
d

dt
Jk(t)dt .

After making the change of variablesy = Jk(t) and sendingε → 0+, this expres-
sion becomes

∑
j 6∈S(v)

h|D+vj (t2)|p ≤
∑

j 6∈S(v)

h|D+vj (t1)|p −
n∑

k=1

∫ Jk(t2)

Jk(t1)

dy

|y|(p−2)/2y
.

The integrand on the right-hand side is integrable over any bounded interval of time
provided thatp ∈ (1, 2). That proves the proposition. �

COROLLARY 3.9 (Hölder Continuity,β = 0) Let {vj (t)}m
j =0 be the solution gen-

erated by scheme(3.1), this time withβ = 0. Assume that the jump set S(v) is
constant over the interval of time[T1, T2]. Let Ĝ = {1, 2, . . . , m} − S(v(T1)) ∪
{S(v(T1)) + 1}. Then for anyν ∈ [0, 1

2) andµ ∈ [0, 1
4) we have

v ∈ Cν
([T1, T2]; L2

({xj : j ∈ Ĝ})) and v ∈ Cµ
([T1, T2]; L∞({xj : j ∈ Ĝ})) .

Moreover, the Hölder constants involved can be bounded by the discrete W1,p(Ĝ)-
norm and jump heights and locations of the initial data.

PROOF: Integrate equation (3.7) in time over[t1, t2] ⊆ [T1, T2]. Using the
notation in Proposition 3.8, we get∫ t2

t1

I dt = −
∫ t2

t1

∑
j ∈Ĝ

hD−F ′(D+vj )v̇j dt

=
∑

j 6∈S(v)

hF(D+vj (t))
∣∣∣t2

t1
−

∫ t2

t1

II dt .



36 S. ESEDŌGLU

Recalling estimate (3.9) for the term II, the equation above turns into∫ t2

t1

∑
j ∈Ĝ

hD−F ′(D+vj )v̇j dt ≤
∑

j 6∈S(v)

hF(D+vj )

∣∣∣
t1

−
n∑

k=1

∫ t2

t1

F ′
(

1

Jk

)
d

dt
Jk(t)dt .

Notice that

D−F ′(D+vj )v̇j = F ′′(ξj )(D−D+vj )v̇j ≥ F ′′(ξj )(v̇j )
2

whereξj is betweenD+vj −1 andD+vj ; this is becausėvj = R′(ηj )D−D+vj with
ηj betweenD+vj −1 and D+vj , and because 0≤ R′(ηj ) ≤ 1 for |ηj | ≤ z(h).
Consequently, we obtain the inequality∫ t2

t1

∑
j ∈Ĝ

hF′′(ξj )(v̇j )
2 dt ≤

∑
j 6∈S(v)

hF(D+vj (t1)) −
n∑

k=1

∫ t2

t1

F ′
(

1

Jk(t)

)
d

dt
Jk(t)dt .

Here the right-hand side can be bounded in terms of theW1,p(Ĝ)-norm and the
jump heights ofv at t = T1. Once we note the trivial fact|ξj | ≤ |D+vj −1|+|D+vj |,
it is possible to proceed exactly as we did in Corollary 2.7, relying on Proposition
3.8 when we needL p-bounds on difference quotients. One gets, in particular,

(3.10)
∫ t2

t1

∑
j ∈Ĝ

h|v̇j |p dt ≤ C|t2 − t1| 2−p
2

where the constant depends only on theW1,p(Ĝ)-norm of the initial condition and
its jump heights, as it should. From here onwards, the argument is again the same
as that of Corollary 2.7, using the discrete analogue of Lemma 4.1. �
Remark.Corollary 3.9 allows us to get uniform-in-time estimates on‖v(t2) −
v(t1)‖L∞ on the entire gridGh, and not just on{xj : j ∈ Ĝ}. Indeed, the
Hölder continuity result of the corollary allows us to estimate the contribution to
‖v(t2) − v(t1)‖L2 from the smaller grid. But the contribution to this norm from
Gh − {xj : j ∈ Ĝ} is orderh by virtue of maximum principles. Therefore, by tak-
ing h small enough,‖v(t2) − v(t1)‖L2 can be estimated on the full gridGh. Then,
by interpolation, we can turn that into an estimate of‖v(t2) − v(t1)‖L∞ on Gh.

The following technical lemma gives us anL∞-bound on the difference quo-
tients generated by the numerical scheme; the bound depends only on the energy
of the initial data.

LEMMA 3.10 Given initial dataφ and a sequence{φh} of numerical approxi-
mations subject to the usual assumptions, for any large enough N there exists a
δ = δ(N) > 0 with the following property:
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For any t ≥ 0 there exists t0 ∈ [t, t + δ] such that

sup
j 6∈S(vh(t0))

|D+vh
j (t0)| < N

wherevh(t) is the solution generated by scheme(3.1). Furthermore, it can be
arranged thatδ(N) → 0+ as N → ∞.

PROOF: We concentrate first on the caseβ > 0. By the energy identity (3.5)
we have ∑

j

h(D−R(D+vj ))
2 = −1

2

d

dt
Eh

v(0) .

Integration of this equality int over[t, t + δ] gives

(3.11)
∫ t+δ

t

∑
j

h(D−R(D+vj ))
2 dt ≤ Eh

v(0) .

Therefore, there existst0 ∈ [t, t + δ] such that

(3.12)
m∑

j =0

h(D−R(D+vj ))
2 ≤ Eh

v(0)

δ
.

Second, if we combine inequality (3.6) with the fact that|R(ξ)| ≤ |ξ | for all
|ξ |, we find

(3.13)
∑

j 6∈S(v(t))

hR(D+vj )
2 ≤ C(β)Eh

v(0) .

Now apply the discrete analogue of the interpolation inequality (Lemma 4.1)
on the domain{xj : j 6∈ S(v(t0))} with f = R(D+vj ) andθ = p = 2. Estimates
(3.12) and (3.13) yield

sup
j 6∈S(v(t0))

|R(D+vj (t0))| ≤ C1

√
Eh

v(0) + C2

δ1/4

√
Eh

v(0) .

But if |ξ | < z(h), then|ξ | ≤ θ−1(β)|R(ξ)| whereθ(β) > 0 (see (1.9)). With that,
we get the same inequality as the last one, this time forD+vj :

sup
j 6∈S(v(t0))

|D+vj (t0)| ≤ C1

√
Eh

v(0) + C2

δ1/4

√
Eh

v(0)

but with different constantsC1 andC2. That implies the conclusion of the lemma
for the caseβ ∈ (0, 1

2). For the caseβ = 0, we make the following modification:
Inequality (3.10) gives∫ t+δ

t

∑
j ∈Ĝ

h|v̇j |p dt =
∫ t+δ

t

∑
j ∈Ĝ

h|D−R(D+vj )|p dt ≤ C|δ| 2−p
2 .

Once we replace inequality (3.11) with the one above, the same argument carries
through. �
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3.3 Convergence

Let u be the solution to the continuum problem described by the PDE system
(1.12) and the prescription given in Section 2.4, with initial dataφ. Let S(φ) =
{p1, p2, . . . , pn} be ordered, and letJk(t) = u(p+

k , t) − u(p−
k , t) be the associated

jump heights.
We assume throughout that we have access to a sequenceφh : Gh → R of

discrete approximations toφ that satisfy the assumptions on approximate initial
data listed in Section 3.1.

The purpose of this section is to prove, under suitable conditions, the conver-
gence of the discrete solutionsvh(t) : Gh × [0,∞) → R generated by scheme
(3.1) from the initial conditionsφh to the proposed continuum limit.

Our proof has two components: a convergence argument, with a rate, that is
valid on any interval of time during which the jump heights of the continuum so-
lution are bounded away from 0, and an argument that controls the behavior of
the numerical and continuum solutions once a jump height becomes smaller than a
critical value (denotedδJ in what follows). The essential property of both the con-
tinuum and the discrete solutions that makes this possible is the following: Once
the jump height at a discontinuity point becomes small enough, quenching is im-
minent. Moreover, how much the solutions get modified in such a small interval of
time can be controlled.

PROPOSITION3.11 Let T > 0 be such that

δ := min
k

inf
t∈[0,T]

|Jk(t)| > 0

so that the jump set S(u) of u does not change for t∈ [0, T] and consequently the
evolution of u is described by(1.12). Let

M :=
n+1∑
j =1

sup
t∈[0,T]

‖u‖C3([pj −1,pj ]) < ∞ .

Then
lim
h→0

sup
t∈[0,T]

sup
j =0,1,...,m

|uj (t) − vj (t)| = 0 .

The proof of Proposition 3.11 will of course need to concern itself with showing
the compatibility of jump setsS(u(t)) andS(v(t)); note, however, that we already
know by virtue of Proposition 3.2 thatS(v) is at most a decreasing function of
time, by hypothesis thatS(u(t)) is constant, and by assumptions on initial data that
S(u(0)) and S(v(0)) agree. We will need the following lemma, which makes a
consistencystatement:

LEMMA 3.12 Let Ej = uxx(xj ) − D−R(D+uj ). Then

|Ej | ≤
{

C Mh(1−2β)/(1−β) for j 6∈ S(v) ∪ {S(v) + 1}
C M otherwise
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where C is a constant that is independent of h and j.

PROOF: For j 6∈ S(v) ∪ {S(v) + 1}, the segment[xj −1, xj +1] lies in one of the
intervals on whichu is C3. Therefore, for suchj we have

D−D+uj = uxx(xj ) + O(h) .

Also, we haveR′(ξ) = 1 + O(h(1−2β)/(1−β)) for |ξ | ≤ M and D−R(D+uj ) =
R′(ξj )D−D+uj . Hence we get, as claimed,

D−R(D+uj ) = uxx(xj ) + O
(
h(1−2β)/(1−β)

)
.

For j ∈ S(v) ∪ {S(v) + 1}, we shall only considerj ∈ S(v) since the case of
j ∈ {S(v) + 1} is completely analogous. First note that there exists apk ∈ S(u)

such thatpk ∈ [xj , xj +1] anduj +1 − uj = Jk(t) + O(h). The functionRβ,h(x/h)

is Lipschitz in x, uniformly for h > 0; in other words, for anya, b ∈ R with
|a|, |b| ≥ δ > 0 andh > 0 sufficiently small,

(3.14)

∣∣∣∣Rβ,h

(
a

h

)
− Rβ,h

(
b

h

)∣∣∣∣ ≤ C(β, δ)|b − a|

whereC(β, δ) = C(β)δ2β−2. Furthermore, forJ bounded away from 0, we have
R(J/h) = J|J|2β−2 + O(h1/(1−β)). Applying (3.14) witha = uj +1 − uj and
b = Jk we find

R(D+uj ) = R

(
Jk(t)

h

)
+ O(h) (sinceh(D+uj ) − Jk(t) = O(h))

= Jk(t)|Jk(t)|2β−2 + O(h) if Jk(t) is bounded away from 0

= ux(xj , t) + O(h)

where we employed the boundary conditionux(pk, t) = Jk(t)|Jk(t)|2β−2 and also
the trivial factux(xj , t) = ux(pk, t) + O(h) at the last step. We thus get

R(D+uj ) = R(D+uj −1) + O(h) .

Sinceuxx is bounded, we are done. �

PROOF OFPROPOSITION3.11: Considerh > 0 small enough so thatz(h) >

2M . Let Ŝ = S(v) ∪ {S(v) + 1} and set

I (t) :=
m∑

j =0

h(uj − vj )
2 .
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We compute

1

2

d

dt
I (t)

=
m∑

j =0

h(uj − vj )
(
D−R(D+uj ) − D−R(D+vj ) + uxx(xj ) − D−R(D+uj )

)
= A + B + C

where

A = −
∑

j 6∈S(v)

hD+(uj − vj )
(
R(D+uj ) − R(D+vj )

)
,

B = −
n∑

k=1

(
(ulk+1 − vlk+1) − (ulk − vlk)

)(
R(D+ulk) − R(D+vlk)

)
,

C =
m∑

j =0

h(uj − vj )Ej .

We first examine term A. To that end, note thatj 6∈ S(v) implies

|D+vj | < z(h) and |D+uj | ≤ z(h)

2
and that means

(R(D+uj ) − R(D+vj ))(D+uj − D+vj ) ≥ θ(D+uj − D+vj )
2

for someθ > 0 by (1.9). From this observation we get

(3.15) A≤ −θ
∑

j 6∈S(v)

h(D+(uj − vj ))
2 .

To estimate the second term, we can use the trace theorem on each of the sum-
mands; let us call them Bk so that B= ∑

Bk. We have∣∣R(D+ulk) − R(D+vlk)
∣∣ ≤ C(β)

δ2−2β

∣∣(ulk+1 − ulk) − (vlk+1 − vlk)
∣∣

≤ C(β)

δ2−2β

(|ulk+1 − vlk+1| + |ulk − vlk |
)

where we used (3.14) again. That leads to

|Bk| ≤ C(β)

δ2−2β

(|ulk+1 − vlk+1|2 + |ulk − vlk |2
)
.

By the discrete trace theorem we have

(3.16) |B| ≤ ε
∑

j 6∈S(v)

h(D+(uj − vj ))
2 + C(ε)

m∑
j =0

h(uj − vj )
2 .

If we chooseε ∈ (0, θ), we can absorb the first term on the right-hand side into A.
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Turning our attention to term C, we first write it in the form

C = −
∑
j ∈Ŝ

h(uj − vj )Ej −
∑
j 6∈Ŝ

h(uj − vj )Ej .

Then by virtue of Lemma 3.12 we can estimate∣∣∣∣ ∑
j 6∈Ŝ

h(uj − vj )Ej

∣∣∣∣ ≤
m∑

j =0

h(uj − vj )
2 +

∑
j 6∈Ŝ

hE2
j

≤ I (t) + C(M)h
2−4β
1−β

∣∣∣∣ ∑
j ∈Ŝ

h(uj − vj )Ej

∣∣∣∣ ≤ 2nC(M)Nh

(3.17)

whereN = supj,t |uj − vj |, which is finite by Propositions 2.4 and 3.1 (maximum
principles). Putting together our estimates (3.15), (3.16), and (3.17), we end up
with a differential inequality forI (t) of the following kind:

(3.18) I ′(t) ≤ c1I (t) + c2hµ

whereµ := min{1, (2 − 4β)/(1 − β)}. Integrating (3.18), we find that

(3.19) I (t) ≤ (I (0) + c2hµt)ec1t .

This result bounds theL2-norm ofu−v under the assumption that the jump sets of
u andv remain compatible (needed in Lemma 3.12). This condition, although true
initially by hypothesis, cannot be verified for any definite interval of time by anL2-
estimate onu−v, since jump set information is not stable under perturbations small
in L2. We therefore improve (3.19) to anL∞-estimate, which is sufficient to ensure
compatibility of jump sets. This is accomplished once again via interpolation.
Indeed, lettingf j = uj −vj , for β = 0 Proposition 3.8 and forβ ∈ (0, 1

2) inequality
(3.6) imply D+ f j is bounded in theL p-norm for p ∈ (1, 2). Applying the discrete
analogue of Lemma 4.1 withp = q = r = 3

2, we obtain convergence inL∞, and
that completes the proof of the proposition. �
THEOREM 3.13 Let T1, T2, . . . , Tn be the quenching times, in order, of the pro-
posed limit with each Ti distinct. Given T≥ 0, ε > 0, and δ > 0 there exists
h∗ > 0 such that for all h∈ (0, h∗) we have

(i) supt∈[0,T] sup0≤ j ≤m(h) |u(xj , t) − vh
j (t)| < ε and

(ii) S(u(t)) and S(vh(t)) are compatible for t∈ [0, T] − ⋃[Ti − δ, Ti + δ].
PROOF: It is sufficient to prove the claim for the first quenching time, which

we assume takes place atx = pk. The general statement then follows by induction.
More precisely, the following statement will be proved: For allε∗ > 0 andδ∗ > 0,
there exists anh∗ > 0 such that ifh ∈ (0, h∗), then

(1) sup0≤t≤t∗ sup0≤ j ≤m(h) |u(xj , t) − vh
j (t)| < ε∗ and
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(2) S(u(t)) and S(vh(t)) are compatible fort ∈ [0, T1 − δ∗] ∪ {t∗} for some
t∗ ∈ (T1, T1 + δ∗].

The proof relies on two parameters involving the proposed limit, namely,

m := min
i 6=k

inf
0≤t≤T1

|Ji (t)| and δt := min
i=2,3,...,n

Ti − Ti−1 .

By hypothesis,m > 0 andδt > 0.

Step1. The Hölder continuity properties expressed in Propositions 2.7 and 3.7
give uniform-in-time estimates on how fast the continuum and discrete solutions
change. As a consequence, for any givenε > 0 we can choose aδ ∈ (0, T1) small
enough so that

sup
i=1,2,...,n

‖ui (·, t1) − ui (·, t2)‖L∞ ≤ ε if |t1 − t2| ≤ δ ,

sup
h>0

‖vh
j (t1) − vh

j (t2)‖L∞ ≤ ε if |t1 − t2| ≤ δ .
(3.20)

Since it is enough to prove the claim for only sufficiently smallδ∗, we can thus
assume that (3.20) is satisfied withε = min{m/8, ε∗/4} andδ = 2δ∗.

Step2. Regularity properties of the proposed limit yield bounds on the spatial
derivatives for positive time; we state it in two forms:

sup
1≤i≤n

‖ui (·, δ)‖C3 ≤ N(δ) and sup
1≤i≤n

‖∂xui (·, δt/2)‖L∞ ≤ C

δt

where the constantC depends only on theW1,p-norm of the initial condition (for
the appropriate choice ofp > 1). The constantN may depend onδ, as indicated
(δ will be fixed in step 4). Furthermore, by Lemma 3.10, for allh > 0 there exists
a δh ∈ [0, δt/2] such that

(3.21) sup
j 6∈S(vh)

|D+vh
j (δh)| ≤ 2C

δt
.

Step3. Now,m andδt determine a critical jump heightδJ : For anyδJ > 0 satisfy-
ing

δ
2β−1
J ≥ 4C

δt
and δJ <

m

2
,

Lemma 2.10 implies that if|Jk(t0)| ≤ δJ for somet0 ∈ [δt/2, T1], then |Jk(t0)|
is monotone decreasing on[t0, T1]. Moreover, according to Lemma 2.11, if we
chooseδJ to be small enough so that

2K (pk − pk−1)

δ
2β−1
J − (m/2)2β−1

< δ∗

whereK = supi,x |ui (x, 0)|, then

|T1 − t0| < δ∗ ,
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which is an upper bound on the quenching time of the proposed limit in terms of
the jump height at thekth discontinuity. Let

t0 := inf

{
t ≥ 0 : |Jk(t)| <

δJ

2

}
.

Step4. From now on letε := min{ε∗/20, δJ/20}. There exists aδ > 0 such that
(3.20) is satisfied for this choice ofε. Take a discrete initial conditionvh(0) with
supj |u(xj , 0) − vh

j (0)| ≤ ε. Then, supj |u(xj , δ) − vh
j (δ)| ≤ 3ε = min{3ε∗/20,

3δJ/20}.
Step5. The proposed limit is (piecewise)C3 for t ∈ [δ, t0], and its jump heights
are bounded away from 0 on this interval of time. We can therefore apply the
convergence argument Proposition 3.11 on[δ, t0]: For all h > 0 small enough
(depending onε), we have

(3.22) sup
0≤ j ≤m(h)

sup
0≤t≤t0

|u(xj , t) − vh
j (t)| < 4ε = min

{
ε∗
5

,
δJ

5

}
.

In particular,

(3.23)
1

10
δJ ≤ |Jh

k (t0)| ≤ 9

10
δJ and min

i 6=k
inf

t∈[0,t0]
|Jh

i (t)| ≥ 4

5
m .

As a consequence,S(u(t)) and S(vh(t)) are compatible fort ∈ [0, t0]. In other
words, neither the proposed limit nor the discrete solutions quench during this
interval of time.

Step6. The choice ofδ∗ made in step 1 implies that the inequalities in (3.23) and
(3.22) can be improved to

(3.24) sup
0≤ j ≤m(h)

sup
0≤t≤t0+δ∗

|u(xj , t) − vh
j (t)| < ε∗

and

(3.25) min
i 6=k

inf
t∈[0,t0+2δ∗]

|Jh
i (t)| ≥ m

2
.

Inequalities (3.21), (3.23), and (3.25) now allow us to apply Lemma 3.4: The dis-
crete jump height|Jh

k (t)| is decreasing fort ≥ t0. We can therefore apply Lemma
3.5 on[t0, min{t0 + δ∗, Th

1 }]. Since

(lk − lk−1)h

Rh(
9

10hδJ) − Rh(
1

2hm)
<

(pk − pk−1)

δ
2β−1
J − (m

2 )2β−1

for h small enough, and given the choice ofδJ in step 3, we conclude thatTh
1 <

t0 + δ∗. Moreover,S(u(t)) and S(vh(t)) are constant, again by the choice ofδ∗,
for t ∈ [max{T1, Th

1 }, t0 + δ∗]. Hence,S(u(t)) and S(vh(t)) are compatible on
[0, t0] ∪ {t0 + δ∗}. That proves the second assertion of the claim witht∗ = t0 + δ∗,
and inequality (3.24) proves the first assertion. �
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4 Technical Lemmas

LEMMA 4.1 (Interpolation Lemma)Let f(x) ∈ C1([a, b]). Then

‖ f ‖L∞ ≤ C
(‖ f ‖Lr + ‖ f ‖θ

L p‖ f ′‖1−θ
Lq

)
where p, q ≥ 1, θ ∈ (0, 1), θ/p + (1− θ)(1− q)/q = 0, and r ≥ 1. The constant
C depends only on the size of the interval and the choice of the exponents.

PROOF: Let f := ‖ f ‖L1/(b − a). By continuity, there isx0 ∈ [a, b] such that
f (x0) = f . For anyθ ∈ (0, 1),

| f (x)| 1
1−θ − | f | 1

1−θ = | f (x)| 1
1−θ − | f (x0)| 1

1−θ

=
∫ x

x0

(| f (s)| 1
1−θ

)′
ds

≤ C
∫ x

x0

| f (s)| θ
1−θ | f ′(s)| ds

≤ C

(∫
| f (s)| θq

(1−θ)(q−1) ds

) q−1
q

( ∫
| f ′(s)|q ds

) 1
q

where we applied the Hölder inequality in the last step. Letp := θq/((1− θ)(q −
1)). Then the inequality above reads

‖ f ‖1/(1−θ)

L∞ ≤ C
(| f |1/(1−θ) + ‖ f ‖θ/(1−θ)

L p ‖ f ′‖Lq
)
,

which means

‖ f ‖L∞ ≤ C
(| f | + ‖ f ‖θ

L p‖ f ′‖1−θ
Lq

) = C
(‖ f ‖L1 + ‖ f ‖θ

L p‖ f ′‖1−θ
Lq

)
.

Since we are on a bounded interval,‖ f ‖L1 is controlled by‖ f ‖Lr for anyr ≥1. �

Lemma 4.1 has an obvious discrete analogue.

LEMMA 4.2 (Parabolic Hopf Lemma)Let E = (p, q)×(0, T), and for t0 ∈ (0, T)

let Et0 := {(x, t) ∈ E : t ≤ t0}. Suppose u satisfies the uniformly parabolic
inequality auxx − ut ≥ 0 where a is bounded. Suppose that u is continuously
differentiable at the boundary point(x0, t0) ∈ {p, q} × (0, T), that u(x0, t0) = M,
and that u(x, t) < M for all (x, t) ∈ Et0. If ∂ν denotes any outward directional
derivative from Et0 at (x0, t0), then∂νu > 0 at (x0, t0).

PROOF: See [18] for the proof of a more general statement. �
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