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Abstract—The active contour/snake model is one of the most
successful variational models in image segmentation. It consists of
evolving a contour in images toward the boundaries of objects. Its
success is based on strong mathematical properties and efficient
numerical schemes based on the level set method. The only
drawback of this model is the existence of local minima in
the active contour energy, which makes the initial guess critical
to get satisfactory results. In this paper, we propose to solve
this problem by determining a global minimum of the active
contour model. Our approach is based on the unification of image
segmentation and image denoising tasks into a global minimiza-
tion framework. More precisely, we propose to unify three well-
known image variational models, namely the snake model, the
Rudin-Osher-Fatemi denoising model and the Mumford-Shah’s
segmentation model. We will establish theorems with proofs
to determine the existence of a global minimum of the active
contour model. From a numerical point of view, we propose
a new practical way to solve the active contour propagation
problem toward object boundaries through a dual formulation
of the minimization problem. The dual formulation, easy to
implement, allows us a fast global minimization of the snake
energy. It avoids the usual drawback in the level set approach that
consists of initializing the active contour in a distance function
and re-initializing it periodically during the evolution, which
is time-consuming. We apply our segmentation algorithms on
synthetic and real-world images, such as texture images and
medical images, to emphasize the performances of our model
compared with other segmentation models.

Index Terms—active contour, global minimization, variational
model, weighted total variation norm, ROF model, Mumford-
Shah energy, dual formulation of TV.

I. INTRODUCTION AND MOTIVATIONS

The image segmentation problem is fundamental in the
field of computer vision. It is a core component toward
e.g. automated vision systems and medical applications. Its
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aim is to find a partition of an image into a finite number
of semantically important regions. Various variational and
partial differential equations (PDEs)-based methods have been
proposed to extract objects of interest in images such as
the well-known and successful active contour/snake model,
initially proposed by Kass, Witkin and Terzopoulos in [1]. The
number of applications of this method is numerous in various
image processing applications such as in medical imaging to
extract anatomical structures [2], [3], [4].
Following the first model of active contours, Caselles,

Kimmel and Sapiro in [5] and Kichenassamy, Kumar, Olver,
Tannenbaum and Yezzi in [6] proposed a new enhanced
version of the snake model called the geodesic/geometric
active contour (GAC) model. This new formulation is said
geometrically intrinsic because the proposed snake energy is
invariant with respect to (w.r.t.) the curve parametrization. The
model is defined by the following minimization problem:

min
C

{

EGAC(C) =

∫ L(C)

0
g(|∇I0(C(s))|) ds

}

, (1)

where ds is the Euclidean element of length and L(C) is the
length of the curve C defined by L(C) =

∫ L(C)
0 ds. Hence,

the energy functional (1) is actually a new length obtained by
weighting the Euclidean element of length ds by the function
g which contains information concerning the boundaries of
objects [5]. The function g is an edge indicator function that
vanishes at object boundaries such as g(|∇I0|) = 1

1+β|∇I0|2
,

where I0 is the original image and β is an arbitrary positive
constant. The calculus of variations provides us the Euler-
Lagrange equation of the functional EGAC and the gradient
descent method gives us the flow that minimizes as fast as
possible EGAC (see [5]):

∂tC = (κg − 〈∇g,N 〉)N , (2)
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where ∂tC := ∂C/∂t, t being an artificial time parameter,
and κ, N are respectively the curvature and the normal
to the curve C. The evolution equation of active contours,
defined in Equation (2), is well-defined because a unique
viscosity solution [5], [7] associated to the PDE (2) exists.
Osher and Sethian introduced in [8] the level set method to
efficiently solve the contour propagation problem and to deal
with topological changes. Equation (2) can be written in the
level set form as follows:

∂tφ =

(

κg + 〈∇g,
∇φ
|∇φ| 〉

)

|∇φ|, (3)

where φ is the level set function embedding the evolving active
contour C such that C(t) = {x ∈ RN | φ(x, t) = 0}. The
PDE (3) is implemented with numerical schemes based on
hyperbolic conservation laws, see Osher-Sethian [8], [9], [10],
which can be highly accurate [11], [12] to give very fine/sub-
pixel segmentations.
Despite the many good numerical results obtained with

this segmentation model and strong theoretical properties, the
snake/GAC model is highly sensitive to the initial condition.
Actually, the quality of the segmentation result depends a lot
on the choice of the initial contour, which means that a bad
initial contour can give an unsatisfactory result. The problem
of a good initial condition is related to the non-convexity of
the energy functional, EGAC , to be minimized and then the
existence of local minima. This drawback is not specific to
this variational model because it is a widespread issue when
dealing with variational models in image processing which
also suffer from local minima. In the case of the active con-
tours, the existence of local minima in EGAC can prevent the
segmentation of meaningful objects lying in images. A simple
example is given on Figure 1. The initial GAC (embedded in a
level set function in order to allow natural topology changes)
on Figure 1(a) can not fully segment both objects, Figure
1(b), because it gets stuck in a local minimum. Hence local
minima are undesirable in optimization problems and one of
the objectives of this paper is to get rid of local minima so
that the standard snake model may become independent of the
initial contour position.

(a) Initial Snake/GAC. (b) Final Snake/GAC.

Fig. 1. The standard snake model, defi ned in Equations (1)-(3), fails to
segment both objects.

In a recent work, Chan, Esedoḡlu and Nikolova [13] pro-
posed a new approach to overcome the limitation of local
minima. In their paper, they related image segmentation to
image denoising in order to find global minimizers of two
denoising and segmentation models. The first model is a binary

image denoising model which removes the geometric noise in
a given shape and the second model is the active contours
without edges (ACWE) model of Chan and Vese [14].
In this paper, we develop three theoretical global minimiza-

tion models for the active contour model inspired by [13].
The first model is based on the standard snake segmentation
model [1], [5], [6] and the well-known image denoising model
of Rudin, Osher and Fatemi (ROF) defined in [15]. We
remind that image denoising aims at removing noise in images
while keeping main features such as edges and textures. It
is interesting to notice that a unified approach of image
segmentation and image denoising provides us with a global
minimization solution for the active contour model subject to
an intensity homogeneity constraint. Then the second model
is based on the standard active contour model [1], [5], [6]
and the piecewise-constant Mumford and Shah’s model [16],
which is related to the ACWE model of Chan and Vese [14].
Our model will “reconcile” the classical GAC model, based
on the detection of edges, and the ACWE model, based on
the detection of homogeneous regions, in a single framework
to globally minimize the active contour model subject to
intensity homogeneity constraints. Finally, the third model
uses the piecewise-smooth approximation of the Mumford-
Shah’s model to find a global active contour subject to smooth
intensity constraints.
This paper, besides developing new theoretical models to

carry out the global minimization of the active contour model,
also proposes new numerical schemes to perform the snake
evolution in an efficient and fast way. Thus, the traditional
contour propagation problem is solved with a dual formulation
of the total variation (TV) norm introduced and developed
in [17], [18], [19], [20], [21]. These original implementation
schemes are easy to implement and very fast compared with
usual schemes, based on the level set approach such as
Equation (3). Indeed, standard contour tracking algorithms
use a distance function (DF), as a level set function, to
implicitly and intrinsically represent the active contour. The
main problem is that the DF is not a solution of Equation (3),
which means that the level set function does not remain a DF
during the contour evolution process. This requires the user to
periodically re-initialize the level set function as a DF, which
is time-consuming, to ensure correct numerical computations
of the curvature and the normal to the contour. Finally, the
initial active contour has also to be embedded in a DF in the
standard approach, which also requires special techniques.
Thus the main contributions of this paper are as follows:
1) introduction of three theoretical models to carry out
the global minimization of the active contour/snake
segmentation model based on the Rudin-Osher-Fatemi
denoising model and the Mumford-Shah’s model,

2) definition of an enhanced segmentation model by uni-
fying into a global minimization framework the com-
plementary approaches of the geodesic/geometric active
contours model, based on the detection of edge points,
and the active contours without edges model, based on
the detection of homogeneous regions,

3) presentation of new numerical schemes, based on the
dual formulation of the TV-norm, to solve the global
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minimization problem of the snake propagation in an
efficient, easy and fast way.

The next section defines the global minimization model
based on the snake method and the ROF model, which
provides a unified way to perform image segmentation and
image denoising. Then Section III introduces the second
global minimization model based on the piecewise-constant
approximation of the Mumford-Shah’s model, which is known
as the ACWE model of Chan-Vese. We show that our model
improves the performances of the ACWE. Section IV presents
the global minimization model based on the piecewise-smooth
approximation of the Mumford-Shah’s model. We compare the
proposed model in this paper to other works in Section V.
Finally, we conclude in Section VI and give in Appendix the
proofs of the introduced theorems.
II. GLOBAL MINIMIZATION OF THE ACTIVE CONTOUR

MODEL BASED ON THE ROF MODEL

A. Theoretical Model
In this section, we unify the snake segmentation model with

the denoising Rudin, Osher and Fatemi model defined in [15].
The ROF model is one of the most famous and influential
variational and PDE-based image denoising models in image
processing. This denoising technique removes the noise while
preserving the edges in images. The minimization problem
associated with the ROF model is as follows:

min
u

{

EROF (u,λ) =

∫

Ω
|∇u|dx

︸ ︷︷ ︸

=:TV (u)

+λ

∫

Ω
(u − f)2 dx

}

, (4)

where Ω ⊂ RN is an open set representing the image domain,
f is a given (possibly noisy) image, TV (u) is the total
variation norm of the function u, and λ > 0 is an arbitrary
parameter related to the scale of observation of the solution.
Based on the approach of Chan, Esedoḡlu and Nikolova in
[13], we propose the following (non-strictly) convex energy
defined for any given observed image f ∈ L1(Ω) and any
positive parameter λ:

E1(u,λ) :=

∫

Ω
g(x)|∇u|dx

︸ ︷︷ ︸

=:TVg(u)

+λ

∫

Ω
|u − f |dx. (5)

The differences between Energy (5) and the ROF model (4)
are the introduction of the weighted TV-norm, TVg(u) with a
weight function g(x) and the replacement of the L2-norm by
the L1-norm as a fidelity measure w.r.t. the given image f .
These modifications have two important consequences. First,
the L1-norm, which has been introduced and well studied in
[22], [23], [24], [25], [26], [27], [28], [25], [29], outperforms
the standard ROF regularization model with the L2-norm for
some applications and presents important geometric properties
concerning global minimizers of functionals, which will be
used for the active contour global minimization problem.
Second, the introduction of a weight function, g, in the TV-
norm gives us the link between the snake/GAC model and the
proposed functional, E1, because the snake energy, defined in
Equation (1), is equal to the weighted TV-norm when g is an
edge indicator function and the function u is a characteristic

function, 1ΩC
, of a closed set ΩC ⊂ Ω which C denotes the

(non-connected) boundaries of ΩC :

TVg(u = 1ΩC
) =

∫

Ω
g(x)|∇1ΩC

|dx

=

∫

C

g(x)ds = EGAC(C).
(6)

Before establishing the global minimization theorem for
the active contour model, let us develop here the comparison
between the standard ROF model, the ROF model with the
L1-norm and the proposed model in Equation (5). Chan and
Esedoḡlu studied in [29] the differences between the ROF
model and the ROF model that uses the L1-norm as a fidelity
measure. They showed that the L1-norm better preserves
the contrast than the L2-norm and the order in which the
features disappear, in the regularization process, is completely
determined in terms of the geometry (such as area and length)
of the features and not in terms of the contrast such as in
the standard model. Figure 2 presents the difference between
the ROF model using the L1-norm and our model using the
L1-norm and the weight function g. The parameter λ for both
models is the largest value such that the four small circles in
the original image, Figure 2(a), are removed. We can see that
our model, using an edge indicator function, gives us a better
quality result because the edge function better preserves the
geometry of the original features such as the corners and the
largest disk.
Besides improving the regularization process of the ROF

model, the Energy (5) provides a global minimization of the
snake model. The global minimization result is based on the
following theorem:
Theorem 1: Suppose that g(x) ∈ [0, 1] and f(x), the given
image, is the characteristic function of a bounded domain
Ωf ⊂ Ω, for any given λ > 0, if u(x) is any minimizer of
E1(.,λ), then for almost every µ ∈ [0, 1] we have that the
characteristic function

1ΩC(µ)={x:u(x)>µ} (x), (7)

where C is the boundary of the set ΩC , is a global minimizer
of E1(.,λ).
Proof. See Appendix. !

Theorem 1 is related to the global minimization of the active
contour model. Indeed, when function u is a characteristic
function of a set ΩC , whose boundary is denoted C, the
expression of Energy E1 is equal to:

E1(u = 1ΩC
,λ)=

∫

Ω
g|∇1ΩC

|dx + λ

∫

Ω
|1ΩC

− f |dx, (8)

=

∫

C

gds + λ

∫

Ω
|1ΩC

− f |dx. (9)

Hence, minimizing Energy (9) is equivalent to

minimize
∫

C

gds = EGAC(C) (The snake/GAC energy (1)),

while
approximating the given image f (in the L1 sense)
by a binary function of a set/region ΩC .
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(a) Original Image
f ∈ [0, 1].

(b) Level Set ∂{x :
f(x) > 0.5}.

(c) Final u with
TV − L1.

(d) Level Set ∂{x :
u(x) > 0.5}.

(e) Final u with
E1 = TVg − L1.

(f) Level Set ∂{x :
u(x) > 0.5}.

Fig. 2. Comparison between the ROF model using L1-norm as a fi delity
measure, Figures (c-d), and our model using the weighted TV-norm and the
L1-norm, Figures (e-f). The difference between both models is clear. The
result generated by our model better preserves the geometry of the original
features such as the corners and the largest circle.

Finally, since Energy E1 is convex but not strictly convex,
it does not possess local minima that are not global minima.
Hence any minimizer of Energy E1 is a global minimizer.
Thus, according to Theorem 1, for any minimizer u of E1,
the contour C of the set {x : u(x) > µ} for any µ ∈ [0, 1]
is a global minimizer of the active contour/snake energy for
binary images such as Figure 1.
The next two sections define two numerical schemes to

compute the global minimum of the active contour model.
Section II-B gives a PDE to find a global minimum and
Section II-C introduces a new algorithm, based on a dual
formulation of the TV-norm, to quickly compute a global
minimizer.

B. Standard Minimization based on a PDE
As we previously said, any minimizer u of E1 provides

a global minimum to the active contour model. Hence, the
standard calculus of variation model can be used to determine
a PDE which is guaranteed to find a global minimizer of the
segmentation model. The minimization flow of Functional E1

is:

∂tu = div

(

g
∇u

|∇u|

)

+ λ
u − f

|u − f | , (10)

= g div

(
∇u

|∇u|

)

+ 〈∇g,
∇u

|∇u| 〉 + λ
u − f

|u − f | ,(11)

where the first term of the right-hand side of (11) is the
curvature of the level sets of u, div

(
∇u
|∇u|

)

, multiplies by
the edge indicator function g, the second term is a shock term
which enhances the detection of edges and the third term of
the right-hand side is a data fidelity term w.r.t. the observed
image f . The evolution equation (11) can be discritized with
the following explicit numerical scheme:

un+1 − un

δt
= g(

√

(D0
xf)2 + (D0

yf)2) ·
{

D−
x N+,n

x,ε1
+

D−
y N+,n

y,ε1

}

+ (D0
xg)∧ · N−,n

x,ε1 + (D0
xg)∨ · N+,n

x,ε1+

(D0
yg)∧ · N−,n

y,ε1
+ (D0

yg)∨ · N+,n
y,ε1

+ λ
un − f

√

(un − f)2 + ε2
,

(12)

where D0
xf = (fix+1,iy

− fix−1,iy
)/2, D+

x u = uix+1,iy
−

uix,iy
and D−

x u = uix,iy
− uix−1,iy

are respectively the
central, forward and backward approximations of the spatial
derivatives in the x-direction, N±,n

x,ε = D±
x un

√
(D±

x un)2+(D±
y un)2+ε

is the approximation of the normal to the level sets of u in
the x-direction, the same approximations being held in the
y-direction, (·)∧ := max(·, 0), (·)∨ := min(·, 0), δt being
the temporal step, and ε1, ε2 small positive constants. In all
our experiments, we choose δt = 5.10−5, ε1 = 10−12 and
ε2 = 10−4.
The numerical scheme defined in Equation (12), deter-

mined from the classical Euler-Lagrange equations method,
is actually a very slow segmentation method because of
the regularization process of the TV-norm. Indeed, Energy
E1 is not directly minimized but the regularized version
∫

g(x)
√

|∇u|2 + ε1 + λ
∫ √

(u − f)2 + ε2 where ε1, ε2 are
very small parameters to be faithful to the original energy and
useful to avoid numerical instabilities. The direct consequence
of this regularization parameter is the obligation to use a
small temporal step to ensure a correct minimization process.
Thus a large number of iterations to reach the steady state
minimization solution is necessary. In other words, although it
is correct, the segmentation process remains slow. For instance,
let us come back to the first image, Figure 1. This time, we
consider a more challenging initial active contour because we
choose a characteristic function of a small disk outside both
objects, see Figure 3(a). Both objects are now successfully
segmented as we can see on Figure 3(b) thanks to the global
minimization property of our model but the segmentation
process takes 5 minutes. In the next section, we introduce
a new numerical model based on a dual formulation of the
TV-norm which gives a fast segmentation algorithm.
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(a) Initial Active Con-
tour.

(b) Final Active Con-
tour.

(c) Initial u. (d) Final u.

Fig. 3. Despite having an initial contour outside both objects, Figure (a), our
segmentation-denoising model successfully extracts both meaningful objects,
Figure (b), in the given noisy image. On Figures (a-b), the active contour is
given by the boundary of the set ΩC(µ = 0.5) = {x : u(x) > 0.5} and the
function u on Figure (d) is the minimizer of Energy E1, computed with the
discritized flow (12). The parameter µ is arbitrary chosen to 0.5, although
any value between 0 and 1 can be used without changing the segmentation
result because the fi nal function u is very close to a binary function. Hence,
our snake model, based on a global minimization approach, is independent of
the initial condition. This improves the standard active contour result obtained
on Figure 1 where a good initial guess is necessary to get the same result.

C. Fast Minimization based on a Dual Formulation of the TV-
Norm
Based on [17], [18], [19], [20] and more precisely on [21],

we use a convex regularization of the variational model:

min
u

{

E1(u,λ) =

∫

Ω
g(x)|∇u|dx + λ

∫

Ω
|u − f |dx

}

, (13)

as follows:

min
u,v

{

Er
1(u, v,λ, θ) =

∫

Ω
g(x)|∇u|dx

︸ ︷︷ ︸

=TVg(u)

+

1

2θ

∫

Ω
(u + v − f)2 dx

︸ ︷︷ ︸

‖u+v−f‖2

L2

+λ

∫

Ω
|v|dx

︸ ︷︷ ︸

‖v‖L1

}

.
(14)

and the parameter θ > 0 is small so that we almost have
f = u + v where the function u represents the geometric in-
formation, i.e. the piecewise-smooth regions, and the function
v captures the texture information lying in the given image.
Since the functional Er

1 is convex, its minimizer can be
computed by minimizing Er

1 w.r.t. u and v separately, and iter-
ating until convergence as in the references mentioned above.
Thus, the following minimization problems are considered:
1) v being fixed, we search for u as a solution of:

min
u

{

TVg(u) +
1

2θ
‖ u + v − f ‖2

L2

}

, (15)

2) u being fixed, we search for v as a solution of:

min
v

{
1

2θ
‖ u + v − f ‖2

L2 +λ ‖ v ‖L1

}

, (16)

Proposition 1: The solution of (15) is given by:

u = f − v − θ div p,

where p = (p1, p2) is given by

g(x)∇
(

θ div p − (f − v)
)

−
∣
∣∇

(

θ div p − (f − v)
)∣
∣ p = 0.

(17)

The previous equation can be solved by a fixed point method:
p0 = 0 and

pn+1 =
pn + δt∇

(

div pn − (f − v)/θ
)

1 + δt
g(x) |∇

(

div pn − (f − v)/θ
)

|
(18)

Proof: See Appendix. !

Proposition 2: The solution of (16) is given by:

v =







f − u − θλ if f − u ≥ θλ
f − u + θλ if f − u ≤ −θλ
0 if |f − u| ≤ θλ

(19)

Proof: See Appendix. !

The iteration scheme (18) is straightforward to implement.
The discrete divergence operator div is given by [19]:

(div p)ix,iy
=







p1
ix,iy

− p1
ix−1,iy

if 1 < ix < Nx,
p1

ix,iy
if ix = 1,

−p1
ix−1,iy

if ix = Nx,

+







p2
ix,iy

− p2
ix,iy−1 if 1 < iy < Ny,

p2
ix,iy

if iy = 1,
−p2

ix,iy−1 if iy = Ny,
(20)

and the discrete gradient operator is as follows [19]:

(∇u)ix,iy
= ((∇u)1ix,iy

, (∇u)2ix,iy
) (21)

with
(∇u)1ix,iy

=

{

uix+1,iy
− uix,iy

if ix < Nx,
0 if ix = Nx,

(∇u)2ix,iy
=

{

uix,iy+1 − uix,iy
if iy < Ny,

0 if iy = Ny,
(22)

Finally, in all experiments, initial values are chosen to be
u0 = v0 = p1

0 = p2
0 = 0, the temporal step is equal to δt =

1/16 and a stopping test is max(|un+1−un|, |vn+1−vn|) ≤ ε.

D. Results
The new active contour model, given by the global mini-

mization of Energy (14), is applied to Picture 1. The numerical
energy minimization based on the dual formulation of the TV
energy, and not on the classical technique of Euler-Lagrange
equations such as in Section II-B, gives us the same result, see
Figure 4(a), in less than 5 seconds! We remind the reader that
5 minutes was necessary in the case of the Euler-Lagrange
equations method. Furthermore, the implementation of the
minimization is straightforward. Hence, our new snake model
provides not only a global minimum independent of the initial
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contour position but also an easy and fast algorithm to carry
out the segmentation process. This new way to solve the active
contour problem is also numerically much faster than classical
methods used in [5], [6] that consists of embedding the snake
in a distance function and re-initializing it periodically to
insure correct numerical computations of the curvature and
the normal to the level sets.
It is interesting to note that our segmentation framework

unifies image segmentation (snake model), image denoising
(ROF model) and now image decomposition using the energy
functional (14). Indeed, the introduction of the function v
in the minimization problem, naturally captures the textural
part lying in images. Image decomposition [30], [31], [20],
[21] consists of separating an image into its structural parts,
representing by the geometric/piecewise-smooth regions, and
textural parts, containing textures and noise. Thus the mini-
mization of Energy (14), leading to the global minimum of
the segmentation model, simultaneously performs an image
decomposition which improves the segmentation task. Indeed,
consider Figure 5. The standard GAC fails to segment the
rectangle, Figure 5(b), because it gets stuck in textures whereas
our model, thanks to the separation between geometric regions
and textures, is able to capture the black rectangle, Figure
5(c). Finally, performing image segmentation and image de-
composition at the same time can be useful for other image
processing tasks such as pattern recognition.
We also apply our model on a real-world image, Figure

6(a), corrupted with a salt-and-pepper noise unlike Figure 1
which is distorted by a Gaussian additive noise. Our model
successfully extracts the meaningful part of the given image
corresponding to the original text.

(a) Final Active
Contour.

(b) Final u. (c) Final v.

Fig. 4. Global minimization of the active contour/snake model with a
dual formulation of the TV-norm proposed in Propositions 1 and 2. Our
segmentation successfully extracts both meaningful objects, Figure (a), in less
than 5 seconds! Figures (b)-(c) present the fi nal functions u and v which
minimize the regularized energy Er

1
defi ned in (14). The minimization of

Functional Er
1
carries out the image decomposition task because u represents

the geometric information, i.e. the piecewise-smooth regions, and v captures
the texture information lying in the given image. Of course, this model also
improves the standard active contour result obtained on Figure 1 where a
good initial guess is needed to get the same result. Here the initial condition
is u0 = v0 = p1

0
= p2

0
= 0. We also have λ = 0.1, θ = 1.

III. GLOBAL MINIMIZATION OF THE ACTIVE CONTOUR
MODEL BASED ON THE MUMFORD-SHAH’S MODEL: THE

PIECEWISE Constant CASE
The previous section defined a new image segmentation

method based on the ROF model to determine a global
minimum of the standard geodesic/geometric active contour

(a) Initial Stan-
dard GAC.

(b) Final Stan-
dard GAC.

(c) “Global”
Active Contour.

(d) Final u. (e) Final v.

Fig. 5. The image decomposition used by the active contour/snake model
improves the segmentation task. We mixed a black rectangle with a texture
pattern. Figure (a) shows the segmentation obtained with a standard GAC
defi ned in Equations (1)-(3). The standard snake fails to segment the black
rectangle because it gets stuck in the textures. However, our model is able
to able to capture the black rectangle, Figure (c), thanks to the image
decomposition which separates the geometric part, Figure (d), and the texture
part, Figure (e), from the given image. We have u0 = v0 = p1

0
= p2

0
= 0

and λ = 0.001, θ = 0.05.

(a) Original image cor-
rupted by a salt-and-
paper noise.

(b) Final Active Con-
tour.

(c) Final u. (d) Final v.

Fig. 6. Application of our segmentation model to a real-world image.
The global minimization of the snake model extracts the text, Figure (b)-
(c), initially corrupted by a salt-and-paper noise. The segmentation-denoising
model allows us to denoise the given image and recover the original text. The
advantage of the proposed snake model compared with the standard active
contour model is obvious on this picture. We have λ = 0.0001, θ = 1.

model. This new model is thus independent of the initial
contour position. However, it is designed for (noised) binary
images such as Pictures 1, 5 and 6. In this section, we propose
to extend the previous technique to grey-scale images.
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A. Theoretical Model
We consider the global minimization problem of the ac-

tive contour/snake model [1], [5], [6] using the well-known
Mumford and Shah’s (MS) functional [16] and the Chan
and Vese’s model of active contours without edges (ACWE)
[14]. The MS model is one of the most influential variational
model to solve the image segmentation problem. This model
determines the optimal piecewise smooth approximation of a
given image, which is equivalent to partition an image into
distinct homogeneous regions which boundaries are sharp and
piecewise regular. The ACWE model is also an important
segmentation model based on curve evolution techniques, the
level set approach and the MS model. This model detects
boundaries of objects based on the detection of homogeneous
regions, like in the MS model, and not on the detection of
large image gradients such as in the classical snake model.
The efficiency of the ACWE model is presented in [14] on
various experimental results for which the classical snake
model, based on the image gradient, is not applicable. Chan
and Vese also noticed on experimental results that their model
has the tendency to compute a global minimizer. Finally, Chan,
Esedoḡlu and Nikolova proved in [13] that a global minimum
to the ACWE model exists.
In our approach, we propose to determine a global mini-

mum of the snake model by enhancing the standard ACWE
method. The enhancement is realized by unifying the classical
GAC model with the ACWE model in a global minimization
framework to detect at the same time object edges, based
on the detection of large image gradients and homogeneous
intensities regions. Hence, we unify the complementary ap-
proaches of the geodesic/geometric active contours model and
the active contours without edges model to create an improved
segmentation model. We will show that our model, besides
being independent of the initial condition, improves the model
of Chan and Vese when the contrast between meaningful
objects and the background is low. Then, we will propose
a fast numerical model, easy to implement, to carry out the
image segmentation.
The variational model of ACWE, which corresponds to the

two-phase piecewise constant approximation of the Mumford
and Shah’s model, is as follows:

min
ΩC ,c1,c2

{

EACWE(ΩC , c1, c2,λ) = Per(ΩC)+

λ

∫

ΩC

(c1 − f(x))2dx + λ

∫

Ω\ΩC

(c2 − f(x))2dx

}

,
(23)

where f is the given image, ΩC is a closed subset of the
image domain Ω, Per(ΩC) is the perimeter of the set ΩC ,
λ is an arbitrary positive parameter which controls the trade-
off between the regularization process and the fidelity of the
solution w.r.t. the original image f and c1, c2 ∈ R. The
variational model (23) determines the best approximation, in
the L2 sense of the image f as a set of (non-connected) regions
with only two different values, c1 and c2. If ΩC is fixed, the
values of c1 and c2 which minimize the energy EACWE are the
mean values inside and outside ΩC . Finally the term Per(ΩC)
imposes a smoothness constraint on the geometry of the set
ΩC which separates the piecewise constant regions.

The minimization problem (23) is non-convex since mini-
mization is carried over functions that take only the values c1

and c2, which is a non-convex collection. Hence, the optimiza-
tion problem can have local minima, which implies solutions
with wrong scales of details. Despite the non-convex nature
of (23), a natural way to determine a solution (ΩC , c1, c2) is
a two-step algorithm where c1 and c2 are first computed, then
the region ΩC is updated to decrease the energy EACWE .
Chan and Vese proposed in [14] a solution to determine an
evolution equation for the region ΩC based on a level set
based approach. They represent the regions ΩC and Ω \ ΩC

with the Heaviside function of a level set function (which
models a characteristic function). Hence the energy EACWE

can be written according to a level set function φ:

E2
ACWE(φ, c1, c2,λ) =

∫

Ω
|∇Hε(φ)|+

λ

∫

Ω

(

Hε(φ)(c1 − f(x))2 + Hε(−φ)(c2 − f(x))2
)

dx,
(24)

where Ω is the image domain and Hε is a regularization of
the Heaviside function. The flow minimizing Energy (24) is
the following one:

∂tφ = H ′
ε(φ)

{

div

(
∇φ
|∇φ|

)

−

λ
(

(c1 − f(x))2 − (c2 − f(x))2
)

︸ ︷︷ ︸

=:r1(x,c1,c2)

}

.
(25)

In [14], authors chose a non-compactly supported smooth
strictly monotone approximation of the Heaviside function. As
a result, the steady state solution of the gradient flow (25) is
the same as:

∂tφ = div

(
∇φ
|∇φ|

)

− λr1(x, c1, c2), (26)

and this equation is the gradient descent flow of the following
energy:

E3
ACWE(φ, c1, c2,λ) =

∫

Ω
|∇φ| + λ

∫

Ω
r1(x, c1, c2)φ dx. (27)

Based on the previous development, we propose to minimize
the following energy functional, for any given observed image
f ∈ L1(Ω) and any parameter λ > 0, to carry out the global
minimization of the segmentation task:

E2(u, c1, c2,λ) := TVg(u) + λ

∫

Ω
r1(x, c1, c2)u dx. (28)

The difference between Energy (28) and (27) is based on
the weighted total variation energy, TVg(u), of the function
u with a weight function g. This simple modification gives
us the link between the ACWE model and the standard snake
model when the function g is an edge indicator function and
the function u is a characteristic function, 1ΩC

. Indeed, Energy
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(28) is in the case of characteristic functions equal to:

E2(u = 1ΩC
, c1, c2,λ)

= TVg(1ΩC
) + λ

∫

Ω
r1(x, c1, c2)1ΩC

dx, (29)

=

∫

C

gds +

λ

∫

Ω

(

(c1 − f(x))2 − (c2 − f(x))2
)

1ΩC
dx. (30)

Hence, minimizing Energy (30) is equivalent to

minimize
∫

C

gds = EGAC(C) (The snake/GAC energy (1)),

while

approximating f (in the L2 sense) by two regions
ΩC and Ω \ ΩC with two values c1 and c2.

The previous observation, about the energy E2 and the char-
acteristic functions of sets, emphasizes the link between the
standard active contour model [1], [5], [6] and the ACWE
model [14]. Moreover, Energy E2 also provides us a global
minimum for the active contour model. The following theorem
states the existence of a global minimizer for Energy E2:
Theorem 2: Suppose that f(x), g(x) ∈ [0, 1], for any given
c1, c2 ∈ R and λ ∈ R+, if u(x) is any minimizer of
E2(., c1, c2,λ), then for almost every µ ∈ [0, 1] we have that
the characteristic function

1ΩC(µ)={x:u(x)>µ} (x), (31)

where C is the boundary of the set ΩC , is a global minimizer
of E2(., c1, c2,λ).
Proof. See Appendix. !

The interpretation of Theorem 2 is as follows: for λ, c1, c2

being fixed, any minimizer u of E2, determined with any
minimization technique such as the Euler-Lagrange equations
method or another optimization method, the set of points in the
function u such as u is larger to an arbitrary positive constant,
e.g. µ = 0.5, defines a set ΩC whose boundary C represents
a global minimum of the snake model subject to intensity
homogeneity constraints.
Like the energy of ACWE [13], Energy E2 is homogeneous

of degree 1 in u. This means that this evolution equation does
not have a stationary solution if the minimization to u is
not restricted such as 0 ≤ u(x) ≤ 1. Thus, the constrained
minimization problem to carry out the segmentation task is in
fact as follows:

min
0≤u≤1

{

E2(u, c1, c2,λ) = TVg(u)+

λ

∫

Ω
r1(x, c1, c2)u dx

}

.

(32)

The constrained problem (32) is changed into an uncon-
strained minimization problem according to the following
theorem [13]:
Theorem 3: Let r1(x, c1, c2) ∈ L∞(Ω), for any given c1, c2 ∈
R and λ ∈ R+, then the following convex constrained

minimization problem

min
0≤u≤1

{

TVg(u) + λ

∫

Ω
r1(x, c1, c2)u dx

}

(33)

has the same set of minimizers as the following convex and
unconstrained minimization problem:

min
u

{

TVg(u) +

∫

Ω
λr1(x, c1, c2)u + αν(u) dx

}

(34)

where ν(ξ) := max{0, 2|ξ − 1
2 | − 1} is an exact penalty

function provided that the constant α is chosen large enough
compared to λ such as α > λ

2 ‖ r1(x) ‖L∞(Ω).
Proof. The proof is in [13] with the weighted TV-norm
replacing the TV-norm. !

Like in Section II-A, Energy E3 given by:

E3(u, c1, c2,λ,α) := TVg(u)+
∫

Ω
λr1(x, c1, c2)u + αν(u) dx,

(35)

is convex but not strictly convex, which mean that E3 does
not possess local minima that are not global minima. Hence
any minimizer of Energy E3 is a global minimizer. As we
did in Section II-B, we could compute a global minimizer
of E3 with the standard Euler-Lagrange equations technique
and the explicit gradient descent based algorithm (see [32]
for numerical details). However, as we explained in II-B, this
numerical minimization method is very slow because of the
regularization of the TV-norm. Thus, we introduce in the next
section a new numerical model, based on a dual formulation of
the TV-norm, which will define a fast segmentation algorithm,
much faster than the standard snake model.

B. Fast Minimization based on a Dual Formulation of the TV-
Norm
The variational problem:

min
u

{

E3(u, c1, c2,λ,α) = TVg(u)+

∫

Ω
λr1(x, c1, c2)u + αν(u) dx

}

.

(36)

is regularized in the same way as in Section II-C based on
[17], [18], [19], [20], [21]:

min
u,v

{

Er
3(u, v, c1, c2,λ,α, θ) = TVg(u)+

1

2θ
‖ u − v ‖2

L2 +

∫

Ω
λr1(x, c1, c2)v + αν(v) dx

}

.

(37)

where the parameter θ > 0 is chosen to be small. Since
Functional Er

3 is convex, its minimizer can be computed by
minimizing Er

3 w.r.t. u and v separately, and to iterate until
convergence. Thus, the following minimization problems are
considered:
1) v being fixed, we search for u as a solution of:

min
u

{

TVg(u) +
1

2θ
‖ u − v ‖2

L2

}

, (38)
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2) u being fixed, we search for v as a solution of:

min
v

{

1

2θ
‖ u − v ‖2

L2 +

∫

Ω
λr1(x, c1, c2)v + αν(v) dx

}

,

(39)

Proposition 3: The solution of (38) is given by:

u = v − θ div p,

where p = (p1, p2) is given by

g(x)∇
(

θ div p − v
)

−
∣
∣∇

(

θ div p − v
)∣
∣ p = 0.

(40)

The previous equation can be solved by a fixed point method:
p0 = 0 and

pn+1 =
pn + δt∇

(

div(pn) − v/θ
)

1 + δt
g(x) |∇

(

div(pn) − v/θ
)

|
(41)

Proof: The proof is the same as Proposition 1 when f − v is
replaced by v. !

Proposition 4: The solution of (39) is given by:

v = min
{

max
{

u(x) − θλr1(x, c1, c2), 0
}

, 1
}

. (42)

Proof: See Appendix. !

The iteration scheme (41) is straightforward to implement
as in Section II-C. Thus Equations (41) and (42) are iterated
in order to minimize Energy (37). Of course, the constants
c1 and c2 are updated periodically every 10 iterations. In all
experiments, initial values are u0 = v0 = p1

0 = p2
0 = 0, the

temporal step is equal to δt = 1/16 and the stopping criteria
is max(|un+1 − un|, |vn+1 − vn|) ≤ ε.

C. Results
The new snake model, given by the global minimization of

Energy (37), is applied to the cameraman picture, Figure 7.
The numerical minimization based on the dual formulation of
the TV-norm, and not on the classical technique of the Euler-
Lagrange equations, gives us the same result, Figure 7(a), in
less than 10 seconds! Furthermore, as we noticed in Section II-
D, the implementation of the minimization is straightforward,
fast and independent of the initial condition (we simply chose
u0 = v0 = p1

0 = p2
0 = 0 on Figure 7). Hence, this

new way to solve the active contour propagation problem
is numerically more efficient than classical methods, which
consists of embedding the snake in a distance function and
re-initializing it periodically to insure correct computations of
the curvature and the normal to the level sets.
Our segmentation model improves not only the GAC model

but also the ACWE model when the contrast between mean-
ingful objects and the background is low. Indeed, let us
consider the synthetic image on Figure 8(a). At the right
edge of the rectangular foreground object, the contrast changes
are very low even though there is still a clear discontinuity
delineating the edge. The result obtained using the standard
ACWE model is shown on Figure 8(b). No matter how large

the fidelity constant λ is chosen, the model will always prefer
to cut through the low contrast region of the foreground object
(does so exactly where the contrast is 0.5). There is no way to
avoid this by varying the parameters in the model, the active
contour always misses the correct boundary at the right edge
of the rectangle by at least the amount shown. However, the
solution obtained using our segmentation algorithm, shown on
Figure 8(c), provides enough of edge sensitivity, given by the
edge indicator function g, for the active contour to stay faithful
to the actual boundary of the foreground object.
We show the advantage of our model over the standard

ACWE model on a real-world image, Figure 9(a). Our model
is able to segment an important part of the liver, Figures 9(b)
and 9(d), despite of very low contrast changes, whereas the
standard ACWE model can not segment accurately the liver
as we can see on Figure 10 where different values of λ was
tested.

(a) Final Active
Contour.

(b) Final u.

Fig. 7. Global minimization of the active contour/snake model using the
Mumford-Shah’s model and the Chan-Vese’s model. Our segmentation model
“reconciles” in a consistent framework the standard GAC model, based on
the detection of edge points defi ned by large image gradients, and the ACWE
model, based on the detection of homogeneous regions defi ned from the
Mumford-Shah’s energy. A minimization of E2 realized with the Euler-
Lagrange equations technique takes about 10 minutes. Here, the numerical
minimization of E2, given on Figure (b), is carried out with a dual formulation
of the TV-norm in less than 10 seconds! As in Section II, the active contour on
Figure (a) is given by the boundary of the set ΩC(µ = 0.5) = {x : u(x) >
0.5}. The parameter µ is arbitrary chosen to 0.5, even if any value between 0
and 1 can be used without changing the segmentation result because the fi nal
function u is very close to a binary function. We choose λ = 0.1, θ = 1.

IV. GLOBAL MINIMIZATION OF THE ACTIVE CONTOUR
MODEL BASED ON THE MUMFORD-SHAH’S MODEL: THE

PIECEWISE Smooth CASE
The previous section defined an image segmentation model

based on the two-phase piecewise constant approximation,
also known as the cartoon version, of the MS model to
determine a minimum of the snake model independently of
the initial contour position. In the following section, we
extend the previous model to the two-phase piecewise smooth
approximation of the MS model. The variational problem to
solve is given by Vese and Chan (VC) in [33] by:

min
ΩC ,s1,s2

{

EV C(ΩC , s1, s2, η,λ) = Per(ΩC)+

λ

∫

ΩC

(

(s1(x) − f(x))2 + η|∇s1(x)|2
)

dx

λ

∫

Ω\ΩC

(

(s2(x) − f(x))2 + η|∇s2(x)|2
)

dx

}

,

(43)
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(a) Original image.

(b) Final Active Con-
tour given by the
ACWE model.

(c) Final Active Con-
tour given by our
model.

Fig. 8. Segmentation using the Active Contours Without Edges (ACWE)
model of Chan-Vese, Figure (b), and our model which unifi es the ACWE
and the geodesic/geometric active contours (GAC), Figure (c). This synthetic
image illustrates one important advantage of our segmentation model over the
standard ACWE model. Indeed, whatever the value of the fi delity constant λ,
the ACWE model can not fully segment the rectangular foreground object. It
will always prefer to cut through the low contrast region of the foreground
object, see Figure (b). However, our segmentation algorithm is able to fully
capture the boundary of the foreground object, Figure (c), even though the
contrast changes are very low at the right edge of the rectangular object,
because the model uses the edge indicator function g defi ned in the GAC
model. We choose λ = 0.01, θ = 1 for Figure (b) and λ = 0.0001, θ = 1
for Figure (c).

(a) Original image. (b) Final Active Con-
tour.

(c) Final u. (d) Final Active Con-
tour.

Fig. 9. Our segmentation model is able to segment an important part
of the liver despite of very low contrast changes, Figures (b)-(d). The fi ne
segmentation result is obtained by unifying the ACWE model and the GAC
model which accurately detects boundaries thanks to the edge indicator
function g. The Standard ACWE can not segment as accurately as our model
as shown on Figure 10. We choose λ = 0.5, θ = 0.1.

(a) Final ACWE with
λ = 0.0001.

(b) Final ACWE with
λ = 0.0001.

(c) Final ACWE with
λ = 0.001.

(d) Final ACWE with
λ = 0.001.

(e) Final ACWE with
λ = 0.01.

(f) Final ACWE with
λ = 0.01.

Fig. 10. Segmentation using the ACWE model. Whatever the fi delity constant
λ, the ACWE can not produce the same result obtained on Figures 9(b) and
9(d) because it does not use an edge indicator function g. Figures (a)-(f)
presents different results given by different values of λ.

where Ω is the image domain, f is the given image, s1 and
s2 are two C1 functions defined on ΩC and on Ω \ ΩC

respectively, λ > 0 controls the regularization of the length
of the boundary of smooth regions and η > 0 controls
the regularization of the intensities of smooth regions. The
variational problem (43) determines the best approximation,
in the L2 sense, of the given image f as a set of smooth
regions represented by the function s(x) such that

s(x) :=

{

s1(x) if x ∈ ΩC ,
s2(x) if x ∈ Ω \ ΩC ,

(44)

and C = ∂ΩC = ∂(Ω \ ΩC) is the boundary between the
smooth regions. Like (23), the minimization problem (43) is
also non-convex, which implies the existence of local minima
and possibly unsatisfactory segmentation results. As in Section
III-A, both regions ΩC and Ω \ ΩC are represented by a
regularized Heaviside function, Hε(.), of a level set function
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φ. This leads to the following energy:

E2
CV (ΩC , s1, s2, η,λ) =

∫

Ω
|∇Hε(φ)|+

λ

∫

Ω
Hε(φ)

(

(s1 − f)2 + η|∇s1|2
)

dx

λ

∫

Ω
Hε(−φ)

(

(s2 − f)2 + η|∇s2|2
)

dx.

(45)

Minimizing E2
CV w.r.t. the functions s1 and s2 using the

calculus of variations gives us:
{

s1 − f = η∆s1 in ΩC ,
s2 − f = η∆s2 in Ω \ ΩC ,

(46)

with the Neumann boundary conditions:
{

∂s1

∂N = 0 on ∂ΩC ∪ ∂Ω,
∂s2

∂N = 0 on ∂(Ω \ ΩC) ∪ ∂Ω.
(47)

And the flow minimizing the energy (45) is as follows:

∂tφ = H ′
ε(φ)

{

div
(

∇φ
|∇φ|

)

−

λ
(

(s1 − f)2 − (s2 − f)2 + η|∇s1|2 − η|∇s2|2
)

︸ ︷︷ ︸

=:r2(x,s1,s2,η)

}

(48)

If a non-compactly supported smooth approximation of the
Heaviside function is chosen, the steady state solution of the
gradient flow (48) is the same as:

∂tφ = div

(
∇φ
|∇φ|

)

− λr2(x, s1, s2, η) (49)

and this equation is the gradient descent flow of the energy:

E3
CV (φ, s1, s2, η,λ) =

∫

Ω
|∇φ|+

λ

∫

Ω
r2(x, s1, s2, η)φ dx.

(50)

As a result, the following constrained minimization problem
is proposed for any given image f ∈ L1(Ω) and any positive
parameter λ > 0:

min
0≤u≤1

{

E3(u, s1, s2, η,λ) =

∫

Ω
g|∇u|+

λ

∫

Ω
r2(x, s1, s2, η)u dx

}

.

(51)

We point out that the two functions s1 and s2 in the
formulation (45) need to be defined only on their respective
domains (namely ΩC and Ω \ ΩC) because of the Heaviside
function. However, in the relaxed formulation given in (51),
these functions need to be defined in the entire domain Ω (by
a suitable extension).
The difference between Energy (51) and (50) is based on

the weighted total variation energy, TVg(u), which gives us
the link between the GAC model and the MS model when the
function g is an edge indicator function and the function u is

a characteristic function, 1ΩC
. Indeed, Energy (51) in the case

of characteristic functions is equal to:

E3(u = 1ΩC
, s1, s2, η,λ)

=

∫

Ω
g|∇1ΩC

| + λ

∫

Ω
r2(x)1ΩC

dx,

=

∫

C

gds + λ

∫

Ω

(

(s1 − f)2 − (s2 − f)2 +

η|∇s1|2 − η|∇s2|2
)

1ΩC
dx.

(52)

Hence, minimizing Energy (52) is equivalent to

minimize
∫

C

gds = EGAC(C) (The snake/GAC energy (1)),

while

approximating f (in the L2 sense) by
two piecewise smooth regions ΩC and Ω \ ΩC .

The previous observation, about Energy E3 and characteristic
functions of sets, emphasizes the relation between the standard
active contour model [1], [5], [6] and the VC model [33].
Besides, Energy E3 also provides us a global minimum for
the active contour model. Indeed, the following theorem states
the existence of a global minimizer for Energy E3:
Theorem 4: Suppose that f(x), g(x) ∈ [0, 1], for any given
s1, s2 ∈ C1(Ω) and λ, η ∈ R+, if u(x) is any minimizer of
E3(., s1, s2, η,λ), then for almost every µ ∈ [0, 1] we have
that the characteristic function

1ΩC(µ)={x:u(x)>µ} (x), (53)

where C is the boundary of the set ΩC , is a global minimizer
of E3(., s1, s2, η,λ).
Proof. The proof is similar to the proofs of Theorems 2 and
3 when the function r1 is replaced by the function r2. !

The interpretation of Theorem 4 is as follows: for s1, s2, η,λ
being fixed, any minimizer u of E3, determined with any
minimization technique such as the Euler-Lagrange equations
method or another optimization method, the set of points in the
function u such as u is larger to an arbitrary positive constant,
e.g. µ = 0.5, defines a set ΩC whose boundary C represents
a global minimum of the snake model.
Finally, a minimizer of the energy E3 can be found using

the Euler-Lagrange equations technique like in Section II-
B (see [32] for numerical details) or the dual formulation
of the TV-norm like in Section III-B. Figure 11(b) presents
the segmentation of the cameraman picture carrying out by
the minimization of energy E3 and Theorem 4. Figure 11(d)
shows the optimal two-phase piecewise smooth approximation
of the original image given by the MS model. Notice that
the two functions s1, s2 are initially chosen to f and updated
every 10 iterations according to Equation (46). Finally, Figure
12 present the segmentation and the denoising of a smooth
foreground object.

V. COMPARISON WITH RELATED WORKS

In this section, we consider three works related with our
approach.
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(a) Original Image. (b) Final Active
Contour.

(c) Final u. (d) Smooth approxi-
mation of (a).

Fig. 11. Segmentation using the GAC model and the two-phase piecewise
smooth approximation of the MS model defi ned by Vese-Chan in [33]. Figure
(b) presents the fi nal active contour and Figure (d) the optimal two-phase
piecewise smooth approximation of the given image.

(a) Original Image. (b) Final Active
Contour.

(c) Initial u. (d) Denoised Im-
age.

Fig. 12. Segmentation using the GAC model and the two-phase piecewise
smooth approximation of the MS model defi ned by Vese-Chan in [33]. Our
segmentation model also performs at the same time the image denoising
because Figure (d) presents the regularized version of Figure (a).

The first related approach is naturally the work of Chan,
Esedoḡlu and Nikolova [13] because the global minimization
of the snake/GAC model proposed in this paper is inspired by
their work. However, our approach is more general because
we propose a unified framework to use the GAC model
and the ACWE model. Experimental results in Section III-C

demonstrate the advantage of using the GAC model with the
ACWE model when the contrast changes between meaningful
objects and the background are very low. Finally, we propose
a fast numerical scheme to perform the global minimization
of our variational model, which is not the case in [13].
The second related work is the paper [34] of Cohen and

Kimmel which also addresses the problem of determining
a global minimum for the GAC energy. Their approach is
different from ours since it is focused on finding a minimal
path between two given end points of an open curve. As
noticed in [35], object segmentation is not easy to carry out in
their approach because the method needs a number of points
on the boundary of the object to be extracted. Furthermore
the model is naturally designed to capture open curves, such
as minimal paths on road images, but not directly closed
curves because it requires a complementary method based on
a topology-based saddle search routine.
Finally, in [35], Appleton and Talbot propose to determine

a global minimum for the GAC model for closed curves under
the restriction that the curve contains a specified internal point.
Authors present very good object segmentation results in vari-
ous medical images. However, the need of a specified internal
point can limit the segmentation process because it means that
object with multiple closed curves can not be extracted without
a set of seed points. For example, the two objects presented
on Figure 1 can not be directly segmented with only one
internal point. Their model needs to detect two internal points,
which is not our case. Finally, the extension of their model to
higher-dimensional images is not straightforward whereas the
extension is natural in our approach.

VI. CONCLUSION
As we said at the beginning, the active contour/snake model

is a well-known image segmentation model which is more
and more used in various image processing applications such
as in automated surveillance, graphics animation, robotics or
medical imaging. Its success is based on strong theoretical
properties and efficient numerical schemes. The only drawback
of this segmentation model is the existence of local minima in
its functional energy, which makes critical the initial contour
to extract meaningful objects lying in images. Hence we
proposed in this paper a new approach to determine a global
minimum of the snake energy in order to become independent
of the initial position of the contour. We think that this
new approach can have numerous applications in the image
processing tasks previously mentioned.
The core of our models was to express the energy function-

als in terms of level sets as observed by Strang in [36], [37]
and solve geometric problems as proposed by Chan-Esedoḡlu-
Nikolova [13]. Thus we defined three new variational models
based on the unification of the classical snake/GAC model
[1], [5], [6], the denoising Rudin-Osher-Fatemi model [15],
the segmentation Mumford-Shah model [16] and the active
contours without edges model [14]. In the case of the ROF
model, we obtained a global minimization theorem for binary
images. It was interesting to notice that the computation of
the global minimum was done by decomposing an image
into a geometric part, i.e. smooth part, and a texture part
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as in [20], [21]. Experimental results showed that the image
decomposition improves the segmentation task. In the case
of the ACWE model of Chan-Vese for grey-scale images, we
showed that our model improves classical segmentation results
at the location of smooth transitions between objects and the
background thanks to the edge indicator function.
We established theorems to prove the existence of global

minimizers to our segmentation variational models. We deter-
mined not one but several global minima of the active contour
model, which looks to be a drawback. However, all global
solutions are close to each other because the minimizers u are
very close to binary functions.
We also proposed efficient and fast numerical schemes to

globally minimize the variational segmentation models. The
proposed algorithms, based on a dual formulation of the TV-
norm proposed and developed in [17], [18], [19], [20], [21], are
easy to implement. This new way to solve the standard contour
propagation problem allows us to avoid the usual drawback
in the level set approach that consists of initializing the active
contour in a distance function and re-initializing it periodically
during the evolution to ensure a correct computation of the
curvature and the normal to the level sets, which is time-
consuming.
Future works will investigate the extension of this global

minimization approach to other image processing variational
models, which most of them suffers from the existence of
local minima. One application of our work has been done in
[38] to unify image segmentation, image denoising and image
inpainting.
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APPENDIX I: PROOF OF THEOREM 1
Defi nition 1: Let Ω ⊂ RN be an open set, u ∈ L1(Ω) and g
a positive valued continuous and bounded function in Ω. The
weighted total variation norm of u with the weight function g
is defined by

TVg(u) =

∫

Ω
g(x)|∇u|dx

= sup
ϕ∈Φg

{∫

Ω
u(x) divϕ(x) dx

}

,
(54)

where

Φg :=
{

ϕ ∈ C1(Ω,R) : |ϕ(x)| ≤ g, for all x ∈ Ω
}

. (55)

Strang in [37] defines the coarea formula for the TVg-norm
as follows:

∫

Ω
g|∇u| =

∫ ∞

−∞

(
∫

γµ

gds

)

dµ, (56)

=

∫ ∞

−∞
Perg(Eµ := {x : u(x) > µ}) dµ, (57)

where γµ is the boundary of the set Eµ on which u(x) > µ.
Hence, the term Perg(Eµ) =

∫

γµ
gds is the perimeter of the

set Eµ weighted by the function g.

Proof of Theorem 1. The proof is in [13], based on [36],
[37], by replacing the TV-norm by the weighted TV-norm
introduced in Definition 1. It basically consists of expressing
Energy E1, defined in (5), in terms of the level sets of u and
f and solving a geometric problem point-wise in µ. !

APPENDIX II: PROOF OF PROPOSITIONS 1 AND 2

Proof of Proposition 1. The proof is based on [17], [19]. The
u-minimization in Er

1 is

min
u

{
∫

Ω
g(x)|∇u|dx +

1

2θ

∫

Ω
(u − (f − v)

︸ ︷︷ ︸

=:f2

)2dx

}

. (58)

We proceed exactly as in [17] and [19]. As shown in
[17], Equation (58) can be written with the dual variable
p = (p1, p2):

min
u

max
|p|≤g

∫

Ω
udiv p +

1

2θ
(u − f2)

2 dx (59)

One can now switch the min and the max to obtain the
equivalent

max
|p|≤g

min
u

∫

Ω
udiv p +

1

2θ
(u − f2)

2 dx (60)

The inner minimization in (60) is point-wise in u. Carrying it
out gives:

div p +
1

θ
(u − f2) = 0 ⇒ u = f − v − θ div p. (61)

Substituting the expression (61) for minimal u into the
max−min problem (60) gives

max
|p|≤g

∫

Ω
(f2 − θ div p) div p +

θ

2
(div p)2 dx (62)

Simplifying a bit:

max
|p|≤g

∫

Ω
f2 div p − θ

2
(div p)2 dx. (63)

Variations of Energy in (63) with respect to the vector field p
give:

∫

Ω
(−∇f2 + θ∇div p) · δp dx. (64)

Along with the point-wise constraint |p|2 − g2 ≤ 0, one gets
the optimality condition:

−∇ (θ div p − f2) + λ(x)p = 0, (65)

where the Lagrange multiplier λ(x) ≥ 0 for all x. As
Chambolle shows in [19], it can be determined and eliminated
as follows: If the constraint is not active at a point x, i.e. if
|p(x)|2 < g2(x), then λ(x) = 0. Otherwise, if the constraint
is active at a point x, i.e. if |p(x)|2 = g2(x), then

|∇ (θ div p − f2)|2 − λ2g2(x) = 0, (66)

which leads to the conclusion that in either case, the value of
λ(x) is given by:

λ =
1

g(x)
|∇ (θ div p − f2)| . (67)

Substituting (67) into (65) gives:

−∇ (θ div p − f2) +
1

g(x)
|∇ (θ div p − f2)| p = 0. (68)

We can use a semi-implicit gradient descent algorithm, as
proposed by Chambolle in [19], to solve (68):

pn+1 =
pn + δt∇ (div pn − f2/θ)

1 + δt
g(x) |∇ (div pn − f2/θ)|

(69)

Hence, the difference of the iteration process (and the whole
calculation) from the standard work of Chambolle is the
appearance of the factor g(x) in the denominator. !

Proof of Proposition 2. The proof is the same as the one
proposed in [39], [21]. It is a simple 1-D minimization
problem, since all the equations are independent, and the
computation is straightforward. !

APPENDIX III: PROOF OF THEOREM 2

Proof of Theorem 2. The proof is in [13], based on [36],
[37], [29], by replacing the TV-norm by the weighted TV-
norm introduced in Definition 1. Like in the proof of Theorem
1, it basically consists of expressing Energy (28) in terms of
the level sets of u and f and solving a geometric problem
point-wise in µ. !



15

APPENDIX IV: PROOF OF PROPOSITION 4

Proof of Proposition 4: Assume that µ has been chosen large
enough (compared to λ and ‖f‖L∞ ) so that exact penalty
formulation works. We now consider the v-minimization:

min
v

∫

Ω
λr1(x, c1, c2)v + αν(v) +

1

2θ
(v − u)2 dx (70)

The following claim helps with this step:

Claim: If u(x) ∈ [0, 1] for all x, then so is v(x) after the
v-minimization. Conversely, if v(x) ∈ [0, 1] for all x, then so
is u(x) after the u-minimization.
This claim allows us to ignore the ν(v) term: Its presence
in the energy is equivalent to cutting off v(x) at 0 and at
1 (similar to what happens in [21]). On the other hand, if
v(x) ∈ [0, 1], then the point-wise optimal v(x) is found as:

θλr1 + (v − u) = 0 ⇒ v(x) = u(x) − θλr1(x, c1, c2). (71)

Thus, the v-minimization can be achieved through the follow-
ing update:

v = min
{

max
{

u(x) − θλr1(x, c1, c2), 0
}

, 1
}

.! (72)


