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Abstract

Segmentation with depth is the challenging problem of obtaining three dimensional
information from a single two dimensional image. Unlike the standard segmentation
problem, the goal of segmentation with depth is to determine not only the boundaries
of objects that appear in the image, but also their relative distances to the observer
by making use of occlusion relations. Nitzberg, Mumford, and Shiota proposed a vari-
ational formulation of this problem; according to their model, called the 2.1D Sketch
model, the regions that the objects occupy and their relative depth are to be extracted
from the 2D image by minimizing a complicated functional. Numerically, this is
a highly non-trivial problem as the functional involves curvatures of the unknown
contours. In this paper, wee develop a level set based procedure for minimizing the
Nitzberg-Mumford-Shiota energy.

1 Introduction

We develop level set methods [23, 25] to numerically minimize the Nitzberg-Mumford-
Shiota (NMS) functional that was proposed for the segmentation with depth problem
[22, 21]. Segmentation with depth is different from standard segmentation [13, 19,
20, 17, 5, 6, 8, 9] which only depends on the gray-scale intensity distributions in im-
age domains (see Figure 1). Segmentation with depth refers to the difficult task of
extracting three dimensional information from a single two dimensional image that
depicts a scene with several objects in it. Unlike the standard segmentation problem,
segmentation with depth attempts to reconstruct both the regions occupied by dif-
ferent objects in the given two dimensional image and their relative distances (depth)
to the observer. To accomplish this, the model of Nitzberg-Mumford-Shiota tries to

*This work has been supported by ONR contract N00014-03-1-0888, NSF contract DMS-9973341
and NIH contract P20 MH65166.

tDepartment of Mathematics, University of California, Los Angeles, 405 Hilgard Avenue, Los
Angeles, CA, 90095. E-mail: wzhu@math.ucla.edu

tDepartment of Mathematics, University of California, Los Angeles, 405 Hilgard Avenue, Los
Angeles, CA, 90095. E-mail: TonyCQcollege.ucla.edu

$Department of Mathematics, University of California, Los Angeles, 405 Hilgard Avenue, Los
Angeles, CA, 90095. E-mail: esedoglu@math.ucla.edu



decompose the given image into regions that are allowed to overlap, and includes
terms that depend on the curvature of these regions’ boundaries. The curvature de-
pendence of the functional involved is one of the most difficult aspects of the model;
specifically, the energy has terms of the form:

- ¢(k)ds, (1)

where x denotes the curvature of the boundary of the region R and ¢ is a particular
function.

Front Behind

Figure 1: The first row contains the original image (Left) with two regions (middle and
right) given by any multi-phase gray-scale intensity based segmentation method, and the
second row illustrates the results from a segmentation with depth model. Besides the
occlusion relation between the two objects (”Front” and ”Behind” in this example), the
missing boundary of the behind object is also restored.

In [22], the authors avoid minimizing their functional directly. Instead, they pro-
pose a combinatorial algorithm that first detects edges and T-junctions in the given
2D image and then considers all possible ways of connecting the T-junctions by new
edges that is consistent with a given ordering hypothesis. The ordering hypothesis
with respect to which the detected T-junctions can be connected using the smallest
amount of energy is found to be the correct depth relation between the (possibly over-
lapping) regions. This is thus a combinatorial technique with very high complexity.
Moreover, it requires explicitly detecting T-junctions in the image as a preprocess-
ing step, which can be a significant source of errors (in the form of false positives
and misses). On the other hand, the model itself makes no explicit reference to T-
junctions; therefore it should be possible to minimize the energy without detecting
such features first.

In [10], Esedoglu and March propose a new, direct way of minimizing the Nitzberg-
Mumford-Shiota energy that is based on curve evolution and gradient descent. It



works in much the same way that the Chan-Vese algorithm ([8]) minimzes the Mumford-
Shah segmentation funcitonal ([19, 20]). Their technique makes essential use of I'—
convergence ideas ([14]) and a conjecture of E. De Giorgi ([12]) to approximate the
NMS functional by elliptic ones which are numerically much more convenient (Many
applications of the notion of I'— convergence appear in various contexts ([1, 3, 15, 16]).
This approach allows them to avoid detecting and connecting T-junctions explicitly;
these happen automatically as a consequence of the curve evolution (and involve
changes in the topology of the curves). However, the approximation technique used
by the authors force them to consider only quadratic dependence on curvature (i.e.
#(x) = 2?), which is an approximation to but is different from the correct choice pre-
scribed by NMS in their original formulation. The difference is significant as explained
by the authors in [10].

In this paper, we give a level set based formulation ([23, 25, 24]) to minimize the
NMS functional that is also based on curve evolution and gradient descent. How-
ever, our techniques allow us to use the more general curvature dependence directly,
without using approximations to them such as in ([1, 2, 3, 4]). This way, we get an
implementation that remains faithful to the model and avoids the issues caused by
using quadratic dependence as in [10].

The level set method of Osher and Sethian is particularly well-suited to handling
curvature dependent functionals, since the curvature of a contour has a very simple
expression in terms of the level set function that represents it. For example, let ¢ be
a level set function, then the curvature x along any level curve ¢ = ¢ (c is any real
value) can be represented as:
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With the representation, it is also trivial to handle the absolute value of curvature
that appears in the above functional. By using level set methods, the problem of
minimizing the Nitzberg-Mumford-Shiota functional turns out to be solving a system
of fourth order partial differential equations. This kind of equations were also solved
by the first two authors in [28] for capturing illusory contours. Moreover, we employ
a semi-implicit discretization scheme due to Smereka [26] to solve the resulting fourth
order equations. This method can speed up computations significantly, since explicit
schemes for these equations are notoriously slow to converge to a stationary state.

The rest of this paper is organized as follows. In the next section, we introduce
the background of segmentation with depth as well as the Nitzberg-Mumford-Shiota
functional. In section 3, we rewrite the functional in a level set formulation and
derive the associated Euler-Lagrange equations. We then discuss numerical solution
techniques including Smereka’s semi-implicit scheme in the subsequent section 4. In
section 5, we present some numerical experiments on synthetic images that appears
in [10]. Section 6 is devoted to our conclusions.



2 Nitzberg-Mumford-Shiota functional

In this section, we sketch the problem of segmentation with depth and present the
Nitzberg-Mumford-Shiota functional. Further details can be found in [22, 10].

The most important unknows of the Nitzberg-Mumford-Shiota model are the shapes
of the objects that make up the scene, and their relative distances to the observer (i.e.
their depth). The relative distances of the objects can be described by an ordering
between them. The shapes of the objects are described by subsets of the image do-
main. Since the model allows for occlusions, these regions need not be disjoint: Parts
of regions in the back (further from the observer) might be blocked from view by
parts of regions in front (closer to the observer). The model thus inevitably involves
reconstructing invisible parts of the regions’ boundaries. This calls for the notion
of "most likely completion” of a boundary contour. In the NMS model, the most
likely completion of a curve is expressed as the minimizer of a curvature dependent
functional.

The 2.1D model of NMS makes the following simplifying assumptions about the
three dimensional scene:

e Objects in the scene are not entangled,
e There are no self-occlusions,

e Grayscale intensities of different objects are approximately uniform and different
from each other.

The first two assumptions can be summarized as follows: the 2.1D sketch model of
NMS assumes that the objects making up the three dimensional scene live in distinct
planes which are parallel to each other and which are perpendicular to the line of
sight of the observer. The unknowns of the problem are:

e The ordering relation between the regions (which is in front of which),
e The (un-occluded) shapes of the regions,
e The approximate grayscale intensity of the corresponding objects.

Let f: Q — R! be a 2-D image defined on Q C R?, and Ry, ..., R, be the regions
occupied by objects inside the image. Denote the visible parts of the above objects
by R’l, i R’n respectively.

Suppose the regions Ry, ..., R, are listed in order of increasing distance to the
observer (i.e. depth), so that Ry, R,, are the nearest and farthest regions respectively.
Then the visible part R; of R; is given by:

R =R, R=R—|JR;, fori=2.n

j<i



For simplicity, we denote by R’n b =0- Uj <nt1 It; as the background. Then the
Nitzberg-Mumford-Shiota functional reads:

n+1

Z/aRmQa—Fﬁqﬁ ds+2/ T) — ¢;)%dz, (3)

where «, 3 are two nonnegative parameters, and the unknowns ¢; € R' denote the ap-
proximate gray-scale intensities (color) of of the corresponding objects. The function
¢ determines how the curvature information will be incorporated in the functional.
The authors choose ¢ as follows:

o(c) = { v Jol <1 (1)

jzf, [z >1

This choice of the function ¢, as opposed to the choice made in [10], allows corners
in boundaries of objects.

An important point is that the contour integrals in energy (3) are taken along
the entire length of the boundaries of the regions, not just the visible parts of these
boundaries. This term therefore dictates how the occluded parts of boundary curves
are best reconstructed. The area integrals in the energy (3) make up the ”fidelity”
terms in the model. They ensure that the reconstructed configuration of regions and
their ordering in three dimensional space yield a two dimensional image that agrees
with the observed one, namely f(z).

3 Level set method for minimizing the Nitzberg-
Mumford-Shiota functional

As noted in the introduction, the level set method of Osher and Sethian is very well
suited for the representation of functionals that involve geometric quantities such
as curvature. In this section, we first rewrite the NMS functional in terms of level
set functions that represent the unknown regions R;. Subsequently, we derive the
associated Euler-Lagrange equations in terms of the level set functions.

3.1 Level set formulation

The regions R; are among the unknowns of the optimization problem (3) and therefore
need to be updated during our iterative solution procedure. To represent them, we
introduce the level set functions ¢; so that R; = {¢;}, i =1,...,n.

Then, the first sum of (3) can be rewritten as follows:
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where k; = V - (\g%) is the curvature of any level curve, and §(x) is the derivative

of the Heaviside function:
1, x>0

in the distribution sense, or the Dirac function.
On the other hand, since R, = R; — U, Rj, and R, = {4; > 0} N(U;<i{w; < 0}),
we may rewrite the second sum of (3) as follows:

i { /Q(f = ) H () ﬁ(l - H(wj))dx} / — Cpt1) Qﬁ (7)

where H is the Heaviside function:
Combining (5) and (7), we obtain the Nitzberg-Mumford-Shiota functional in a
level set based formulation as follows:
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3.2 Derivation of the Euler-Lagrange equations

To derive the associated Euler-Lagrange equations of the functional (8), we here
only consider the curvature related terms, since the ﬁdelity terms are easy to handle.
For simplicity, let’s consider a functional E (1) = [, U(ky)|VY|0(¥)dz, where ¥ (z) =
a+ B¢(x) in the functional (8). In fact, the derlvatlon of the Euler-Lagrange equation
for a similar functional can be found in [7, 11]. The functional that we consider here
is an integral along a contour instead of on the whole domain (2.

Before deriving the Euler-Lagrange equation of ¢ according to the minimization of
E (1)), let’s notice two simple facts.

Lemma 1. Let 7 € R? be a unit vector, and I, P» : R2 — R? be two operators
with I(7) = 7, Pﬁ(?) (V- W)W, for any ¥ € R®. Then for the curvature

_>
k=V_. (%) we have % =V - ((I — Pg) \Vv1fpt|) where 7 = %.
Proof. Simple calculation shows the conclusion. O

Lemma 2. With the same notation as in lemma 1, we have (I — Px)V - W =

(I — P3)W - 0, for any ¥, W € R?.

We may thus obtain the following theorem.



Theorem 1. Let E(1 = [ V(K)|VY|d(¥)dz, and ¥ : R — R' is continuous and
piecewise dzﬁer@ntmble with U'(0) = 0, then the associated Euler-Lagrange equation
reads: (P = Pvy .)

VY]

3¢ 1 ,
=[Vy[V- [|vw| (k) = \V¢|(I P)(V(¥ (r)[V))]; 9)

with the boundary condition: 8_7’|39 = 0, kylao = 0, where 7 is the unit vector
outward normal to 0S2.

Proof. To get the Euler-Lagrange equation, let’s take the derivative of E according
to time ¢, then determine the derivative of 1 to ¢ by decreasing the functional E.
In fact,

~
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by the Neunman boundary condition, i.e. aw =V - 7 =0, we see that Vg - v =
(Vi - 7)7: — V- 7, = 0, therefore by app]ymg the Green-Gauss Theorem, we may
drop the two divergence terms, and get
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by lemma 2, (I — P)7 - W = ¥ - (I — P)W, we have
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1 ,
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Notice that V(' (k)|V9|d(v)) = V(¥ (k)|V9])d(¥) + ¥ (k)| V|6’ () V), then (I —
P)V (¥ ()|V[8(¥)) = 8§(¥)(I — P)V (¥ (k)| V1), since (I — P)Vip = 0. Therefore,
by applying Green-Gauss Theorem again and note that U'(k)|sq = 0, we drop the
divergence part in (12) and obtain

dE 1
g /w-wu—mu WIS - [ 69 [T wlw)
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Therefore if we choose ¢y = —§(¢))V - [\Vl¢| (I —P)(V(V'(k)|Vy])) — ‘gzl\lf( k)], we
see 2 < (. Moreover, by employing the standard technique which replaces 6(¢) by
|V¢| in [27] (the factor |V1)| also helps to accelerate the evolution process as discussed
in [18]), we then have the associated Euler-Lagrange equation:

a 1 ,
5 = IVeIv- [IW\ (k) — W(I—P)(V(\If () IVY])]- (14)

O

Let’s turn to the original Nitzberg-Mumford-Shiota functional (8). From Theorem
1, the system of Euler-Lagrange equations reads:

o o Vi o) — 1 B e .

b = VIV [T () = o (= Py )Y ()9
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with the boundary conditions: %\ag =0, Kilogn = 0,1 =1,...;n, where H(¢,41) = 1.
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4 Numerical Implementation

In this section, we show how to discretize each term in the equations (15) and explain
how to apply Smereka’s Semi-Implicit method to solve the equations.

4.1 Discretization of the Euler-Lagrange equations

We first discuss the schemes for the fourth order terms in (15). The discretization is
essentially the same as the one in [7]. We include its details for the sake of complete-
ness of the present discussion.

As in [7], we rewrite them as follow:

o
5 = VeIV, (16)
where V' = (A, V2) = ¥4 0(r) = (1 = P)(V(¥ ()| V).
Then, denote ¥' (k)| V)| simply by A, we get:
N
Vi= \II(K:) |V¢| |Vw|3[ ac"yz)y y"pm]a (17)
and
Vy = U (k) &% < W,[ yby — Agihy], (18)

where A, = 0A/0x, Ay = 0A/0y.

Let (i,7) denote the pixel locations, h be the spatial step size and the time be
discretized to be {ndt}, where n =0,1,2,..., and dt is the time step. Then ¢}, refers
to the value of ¢ at pixel (7, 7) at time ndt

Let’s discuss the disretization of each term in (16~ 18). In (16), we approximate
|V | by central difference as:

W) — Y- Vij+1) — Viig—1) 19
VYl = \/[ o N2 4 | o I (19)

As for the terms in (17, 18), since

V-V(i,j) = Via(ig) + Vay(iy)
= Nenpg =Vieizg | Vagirie = Vai-12)

h h ’

(20)

we need to calculate the values of V; at the x-half-pixel (i 4+ 1/2, j), while the values
of V4 at the y-half-pixel (7,5 + 1/2).



We approximate the terms in (17) at (i +1/2,j) as follows:

K = miand(K/(i,j); K:(i,j))a
Pit1,4) — Vi)
7/’:6 h ’
Pt 1+ ) o Yligt1) = d)i’j_l)
2h ’ 2h ’

¥y, = minmod(

VYl = 92+,

(21)
A1) — A
Aw — 5] 5]
h b
_ U (B VOl = ¥ (56) [Vl g)
h )
4, = minmod(‘l"("&(i+1,j+1))|V¢\(z‘+1,j+1)2—h‘I’I(’f(z‘+1,j—1))|V1/)|(z'+1,j—1)’
U (8(,5+1) Vi) = ¥ (8,5+1) [V (=), (22)
2h ’

where
sgn(z) + sgn(y)
2
Similarly, we may approximate the terms in (18).
It is quite subtle to discretize the remain terms in (15). Specifically, it should be
careful to approximate |Vi|. In this paper, we use the technique that discussed in
[25] (see Chapter 6). The detail can be found in our previous work [28]. We omit
them here.
Moreover, we approximate the Heaviside function H(z) by a standard regularized
function as in [8], which reads:

minmod(z, y) = min(|z], |y[).

1 2
H.(x) = 5(1 + arctan(%)),

where € is a fixed small number. In the experiments, we choose € as small as h2.

4.2 Smereka’s Semi-Implicit method

Since equations (15) are fourth order and parabolic, we would expect the CLF con-
dition for an explicit scheme to require the time step size to be proportional to the
fourth power of spatial step size, i.e., dt ~ dz*. This restriction would result in an
intolerably long time for the minimization process. To ease the time step restriction,
we will apply a semi-implicit discretization method due to Smereka ([26]), which
significantly accelerated the convergence of the gradient descent.

10



For simplicity, as in [26], let’s denote the Euler-Lagrange equations as follows:

= S(w)a (24)

then, we can rewrite it as:
U = —AA%Y) + AA%Y + S(¢), (25)

where A? is a bi-Laplacian (since equations (15) are fourth order equations ) and A
is a positive parameter. Then we may discretize the equation (25) in time as:

Y — " = d(=AATYT + AATY" + S(y7)),

and then
YT = " 4 dt(1 4 dEAA?) IS (Y). (27)

The operator (1+ dtAA?) is positive definite, and it can be efficiently inverted by the
fast Fourier transform (FFT).

Therefore, in our case, we only need to calculate the values on the right side of (15)
at time nh as S(¢") for each function 1);, then we may get the values of v; at the
new time (n + 1)h by using FFT.

Smereka’s semi-implicit method will relax the CFL condition considerably, since the
operator A? helps to smooth possible high oscillating waves. Numerical experiments
in the following section also show that we may choose a much larger time step size
than what is required by CFL condition.

4.3 Procedure of minimizing NMS functional

During the evolution of the variables ; according to equation (15), the unknown
intensities ¢; also need to be updated. Variations of the objective energy E with
respect to the ¢; yield the following optimality conditions:

_ Jo FH() H;;(l — H(1y))
Jo Hw) T2 (1 = H(y)

i=1,..,n. (28)

]

and

R0 H)
+1 = n .
" fQ Hj:l(l _H(wj))

Then, given the initial guesses for the level set functions v; and the intensity con-
stants ¢;, we iteratively solve the equations (15) and (28), (29).

Now, let’s discuss how to choose the initial guesses. We first employ any multi-
phase segmentation method, for instance Chan-Vese’s method [9], to segment the
image domain (2 into several regions in each of which the intensity is homogenous,
and thus obtain the associated level set function and intensity constant for each

region. Then, as in [10], we use these results as the initial guesses for solving (15)
and (28), (29).

(29)

11



Moreover, the re-initializations of 1; are necessary during the above evolutions.
Otherwise, the terms derived from fidelity ones in (15) will make 1; keep increasing
or decreasing to infinity. On the other hand, the process of re-initializations can not
be taken more frequently since it will prevent the zero level sets from growing.

5 Numerical Experiments

In this section, we present numerical results of applying our technique on some syn-
thetic images, including the typical example (Bar and Fork) that appears in [10].

5.1 Two regions and a background

We here show two examples: Bar and Fork, Ellipse and Disk. For each example, the
intensities for the two regions and the background are 1.0, 0.5, and 0 respectively.

The first example is an image with a bar and a broken fork inside a background
(Figure 2). For this case, there are only two possible orderings: the bar is in front of
the fork, or vice versa. We minimize the Nitzberg-Mumford-Shiota functional under
both of these order hypothesis separately. The way that we build the hypothesis into
the computation is by the assignment of initial conditions for the regions, i.e., in one
of the computations, we take the bar to be the initial guess for the region that is in
front and the broken fork to be the initial guess for the region that is behind, and we
switch them for the other case. The values are listed as follow:

e Bar front, Fork behind, the NMS functional = 0.1762.
e Fork front, Bar behind, the NMS functional = 0.2718.

This shows that the assumption that the bar is in front of the fork yields a smaller
value of the NMS functional, the scene is made up of a fork that is behind and
occluded by a vertical bar.

In Figure 3, we list the evolution process of the two regions under the first assump-
tion of ordering. From these groups of figures, one can see how the broken fork is
connecting while the bar is keeping stable; note especially the behavior of its corners.
It is the choice of ¢(x) = |x| when |z| big in (3) that preserves the corners. The
choice ¢(x) = x? would inevitably smear those corners.

We omit the evolution process under the second assumption since the two regions
are keeping stable.

Moreover, in the experiments, due to the use of Smereka’s Semi-Implicit method,
we choose the time step size dt = 5 x 10™*, which is far larger than dt = 10~° which
is required by the strict CFL condition.

The second example is an image with an ellipse and a crescent on top of a dark

background (Figure 4). We calculate the values of the Nitzberg-Mumford-Shiota
functional for the two ordering as follow:

12



Figure 2: Bar and Fork. From left to right, these figures are the original image and the
two regions obtained from standard segmentation model.

e Ellipse front, Crescent behind, the NMS functional = 0.1404.
e Crescent front, Ellipse behind, the NMS functional = 0.2812.

This shows that the ellipse is in front of the disk (instead of crescent!). In Figure 5,
we list the evolution process of the two regions under the first assumption of ordering
and we still omit the process under the second assumption. From these groups of
figures, one can see how the crescent is growing to be a moon while the front ellipse
is keeping stable.

5.2 Three regions and a background

We present here an example with an annulus and two bars inside a background (Figure
6). The intensities for them are 1.0, 0.9, 0.8, and 0. respectively.

Since there are three objects inside the image, 3! = 6 cases of the ordering should
be considered. Here we list the evolution process under the ordering assumption
that the Annulus is in front of the vertical Bar while the horizontal Bar is behind
the vertical Bar, which yields the smallest value of the Nitzberg-Mumford-Shiota’s
functional (Figure 7).

6 Conclusion

In this paper, we develop a level set based technique to numerically minimize the
Nitzberg-Mumford-Shiota functional that appears in the variational formulation of
the segmentation with depth problem. Our technique allows us to directly handle
general curvature related terms. The numerical experiments listed in this paper
demonstrate that the technique yields desirable results.
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