Math 471: Tentative Syllabus

Winter 2013

- 1. Convergence of algorithms.
 - a. Rate of convergence.
 - b. Order of convergence.
- 2. Nonlinear equations and root finding.
 - a. Bisection method.
 - b. Fixed point iterations and their convergence.
 - c. Newton's method.
 - d. Secant method.
 - e. Accelerating convergence.
- 3. Linear systems of equations.
 - a. Gaussian elimination: PALU decomposition.
 - b. The Fast Fourier Transform.
 - c. Classical iterative methods (Jacobi, Gauss-Seidel, SOR) and their convergence.
 - d. Conjugate gradients.
 - e. GMRES.
- 4. Eigenvalue problems.
 - a. Power method.
 - b. Inverse and shifted inverse iteration.
 - c. Reduction to Hessenberg form.
 - d. Simultaneous iteration.

- 5. Interpolation.
- 6. Numerical integration.
 - a. Newton-Coates quadrature.
 - b. Gaussian quadrature.
 - c. Romberg integration.
- 7. Initial value problems for systems of ODEs.
 - a. Euler's method.
 - b. High order, one-step methods: Taylor methods.
 - c. Runge-Kutta methods.
 - d. Multistep methods.
 - e. Convergence and stability analysis.
- 8. Two point boundary value problems: Finite differences.
- 9. The Poisson equation on rectangular domains.
- 10. Multigrid.