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INTRODUCTION

This paper contributes to the study of a particular family of quadratic
associative algebras €, that were introduced and studied in [FK] in con-
nection with their role in the Schubert calculus of the flag manifold.

We introduce new Hopf-algebraic tools for the study of the algebras %, .
Specifically, we define a Hopf algebra structure on the twisted group al-
gebra €,{%,}, where &, is the symmetric group. We then use this Hopf
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algebra structure to obtain a tensor product decomposition of %, , which in
particular implies a Hilbert series factorization conjectured by Kirillov [K].

QUADRATIC ALGEBRAS

Fix a positive integer n. Let &, denote the free associative algebra gen-
erated by the symbols [ij], for all i,j € {1,...,n}, i # j, subject to the
relations

[i7]+ [ji] = 0. (1)
We will use the convention [ii] = 0.

Let €, be the quotient of F, modulo the ideal generated by the left-hand
sides of the relations

[ij) =0, (2)
Lij]Ljk] + [jk[ki] + [killij] = 0, i, j, k distinct, 3)
Lijl[kl] — [k[ij] =0, i, j, k, [ distinct. (4)

The quadratic algebras %, were first introduced and studied in [FK] be-
cause of the role they play in the Schubert calculus of the flag manifolds.
A tantalizing question posed in [FK] asks whether €, is generally finite-
dimensional. The answer to this question is currently unknown.

In this paper, we prove that €, can be decomposed (as a graded module)
into a tensor product, one of the tensor factors being €,_;. We describe the
second factor implicitly, in terms of a certain family of twisted derivations.

The algebras %, are naturally graded; the formulas for their Hilbert poly-
nomials, for n < 5, can be found in [FK]. Our main result implies that the
Hilbert polynomial (or series?) of %,_; divides that of €, (and the ratio
has non-negative coefficients), proving a conjecture stated in [K].

The algebras %, are not Koszul for n > 3 (proved by Roos [R]).

To provide some motivation, let us briefly explain the nature of the con-
nection between the algebras €, and Schubert calculus, although this con-
nection itself will not be a subject of our purely algebraic studies. The
algebra €, contains a commutative subalgebra generated by the “Dunkl el-
ements” 0; = —>°;_;[ij] + X;_«[jk]. This subalgebra was shown in [FK] to
be canonically isomorphic to the cohomology ring of the flag manifold. In
other words, the algebra generated by the 6; is canonically the quotient of
the polynomial algebra by the ideal generated by the symmetric polynomi-
als in the 0; without constant term. Furthermore, the structure constants
of the cohomology ring, with respect to the basis of Schubert cycles, can
be interpreted via certain combinatorial action of €, on the group algebra
of &, (see [FK]).
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We will study €, along with the algebra 4, (first considered in [K]) de-
fined as the quotient of %, modulo (3)-(4); in other words, in 4, we no
longer require [ij]* = 0.

Twisted Group Algebras

The symmetric group &, acts on %, by o([ij]) = [¢(i)a(j)]. Since the
relations (1)-(4) are &,-stable, we also have an ,-action on %, and G,

For a group W acting on an algebra A (by algebra endomorphisms), let
A{W} denote the twisted group algebra, i.c., the algebra of linear combina-
tions

> a,w, a,e A,
weW
subject to the commutation rules wa = w(a)w, for any w € W, a € A. We
remark that A is naturally an A{W¥}-module.
Let us denote
75, 274%)  GEe{n) %25 (%)
Notice that €, and %, are the quotlents of 7, modulo the relations (2)—(4)
and (3)-(4), respectlvely In turn, 7, is generated by &, and the elements
[#j], subject to (1) and the addltlonal relations

wlijf] = [w@w(Hlw, weF,. ®)

Thus %, can be defined by (1)—(5), together with some presentation of 7.

We will denote by (ij) (or sometimes by s;;) the transposition of i and ;.
The usual convention will be that (ij) stands for an element of #, viewed
inside ,, €,, or G, while s;; will denote the corresponding automorphisms
of these algebras. If we choose the set of all transpositions as a generating
set for &,, then all relations will be (non-homogeneous) quadratic:

(ij)z =1,
(i) (k) = (jl)(ki) = (ki)(if),
(i)(kl) — (KD)(ij) =0, all i, j, k, [ distinct.
A non-faithful representation of €, in the polynomial ring Z[x,, ..., x,]
can be constructed as follows. The symmetric group naturally acts on this

ring by permuting variables. The generators [ij] are then represented by
the divided difference operators d;; defined by

f- Sijf

X —X;

(cf. [FK, Sect. 3.2]). The commutation relations in question are easily veri-
fied.

df =
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HOPF ALGEBRAS

€., and G,
extending the natural Hopf algebra structure of the group algebra of &,.
The reader is referred to [A] or [DCP, Sect. 1] for general Hopf algebra
background.

The coproduct A, the antipode S, and the counit € are defined on the
generators [ij] and on group elements w € &, as follows:

A(iD =il L+ () ®[ijl,  Aw)=wew,
S = DLl S(w) =w, (6)
e([ij]) = 0. e(w)=1.

We then extend A, S, and € to &, so that A and € are homomorphisms, and
S an anti-homomorphism. Since 7, is a free algebra, we only have to check
the compatibility of our definition with the twisted group algebra structure
(i.e., with the relation (5)); this is straightforward.

We will now define a Hopf algebra structure on each of 7,

ProposITION 1. With the coproduct, antipode, and counit defined as

above, F, is a Hopf algebra. This Hopf algebra structure passes to the
quotients €, and G,,.

Proof.  Let us verify the remaining Hopf algebra axioms. Coassociativity:
A e DA =A@ D([ij]le 1+ () & [i])
=[j]®1® 1+ (1) @ [§]1® 1+ (i) ® (i) ® [i]]
= (1 A)([ij]® 1+ (i) ® [if])
= (1@ A)(AED)-
The antipode axioms (u: %, ® %, — 7, denotes the multiplication map):
r(1® $)(A([i]) = w1 @ S)([i] @ 1 + (if) @ [if])
=[]+ @)EDL = 0 = e([i/]),
w(S ® (A1) = (S ® D([ij] ® 1+ (i) ® [i])
= (il + @)l = 0 = e([i/]).
The counit axioms:
(e ® D(A([i]) = (e ® D([ij] ® 1 + (i) ® [4]]) = [ij],
(1®e)A([i]) = (1@ e)([ij] ® 1 + (i) ® [1]]) = [if].

Let us prove the second part of the proposition. In what follows, we will
use the notation

R[i, j, k) < [ij][jk] + [jkki] + [killi]] (7)
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for the left-hand side of (3); we will also denote by (ijk) € &, the cycle
i - j — k — i. Then the computations

A1) = [ @ 1+ 1@ [if],

S(LifP) = ~[ifF,

e([ij1") = 0,
A(R[i, j, k1) = RIi, j, k] ® 1+ (ijk) ® R[i, j, k],
S(R[i, j, k) = —(kjRIE, J, k],
(R[i, j, k]) =0

show that the Hopf algebra operations in #, preserve the defining ideals of
€,and G,. 1

ADJOINT ACTION AND TWISTED DERIVATIONS

Let us recall two important constructions.

Adjoint Action
Given a Hopf algebra A4, the homomorphism

(1QS)A: A > A® AP,

where AP is the opposite (Hopf) algebra, induces an action of A on itself,
called the adjoint action (see, e.g., [DCP, Sect. 1.7]). Thus a € A acts on
A by

x> Y agyxS(ag),

where Aa = Z a(l)a(z)

In particular, consider the Hopf algebra %, . Then the elements w € ¥, C
, act by conjugation

1

>

w(x) =x > wxw~
while [ij] acts by
Dyyjy = x = [ij]x + (i)xNji] = [i]x — s;5(x) ] ®)

It follows that a(x) € 7, for any x € 7, and a € F,.
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Twisted Derivations

Recall [DCP, Sect. 5.1] that, given an algebra A4 with a distinguished
automorphism w, a twisted derivation relative to w is a linear map D: A — A
satisfying

D(ab) = D(a)b + w(a)D(b). 9)
For any a € A, the map D,: A — A defined by
D, x— ax —w(x)a

is a twisted derivation (an inner twisted derivation). For instance, the map
Dy;;; defined in (8) is an inner twisted derivation, with @ = [ij] and w = s;;.
(So our notation is consistent.)

Note that all of the above considerations apply to the Hopf algebras &,
and €, as well. Let us summarize.

PROPOSITION 2.  The Hopf algebra F,, (resp. G,,, €,,) is invariant under the
adjoint action of F,, (resp. G, , €,). The elements w € ¥, act by the automor-
phisms w([ij]) = [w())w(}j)]. The element [ij] acts by the corresponding inner
twisted derivation Dy;;) (for the automorphism s;;).

It is easy to check that the inner twisted derivations Dy, i, j < n, in the
algebra G, act on the elements of the form [kn] by

Dyyjy([kn]) =0 if k ¢ {i, j},
Dyyjy([in]) = —[in][jn], (10)
Dyyjy([jn]) = [jn][in].

TENSOR PRODUCT DECOMPOSITION

Let us now study the subalgebra %,_; of 7, that is (freely) generated by
the elements

x; Einl,

fori=1,...,n— 1. The symmetric group ¥,_; acts on %,_; by
w(x;) = Xw(iy: (11)

Motivated by (10), let us define, for i, j < n — 1, the twisted derivations D;
(for the automorphisms s;;) that act on the generators of %,_; by

Dij(xk) =0 ifk¢{i/},

Dij(xi) = —XiXj,

(12)

Dl](x]) - x]‘xi.
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ProposITION 3. Formulas (11) and (12) determine a well-defined action
of the twisted group algebra F,_, on the subalgebra U, .

Proof. We only have to check consistency with (1) and (5). Both are
straightforward. 1

Recall the notation R[i, j, k] introduced in (7).

PROPOSITION 4. The action of the elements R[i, j, k] € 9, on Up_1
is trivial, i.e., they act by R|[i, J, k](x) = 0. Thus U,_; is naturally a G, _;-
module.

Proof. Induction on the degree of a monomial x in the variables x;.
Note that R[i, j, k](1) = 0. Let x = x,N. If h ¢ {i, j, k}, then we have
R[i, j, k](x,N) = x,R[i, j, k](N) = 0. Otherwise it suffices to check the
case h = i (by symmetry). Using (9) and (12), we obtain

R[l’ Ja k](xtN)

= (DyDjx + Dy Dy; + Dy;Dyj) (x;N)

= D;j(x;Dj(N)) + D (x;x, N + x,Dj;(N))
+ Dki(—xinN + x]Dl](N))

= —xinDjk(N) + ijljD]k(N) + xikajN + xl‘Xijk(N)
+ xkijki(N)
+ XJD]kal(N) — xikajN — xkijki(N) + x]Dlel](N)

= X]R[l, j: k](N)a

and the claim follows. 1

Let #,_; be the minimal ideal of the free algebra %,_, that contains the
elements x% and is stable under the twisted derivations D;; . Denote €,_; =
U,_1/F,—1 - To illustrate, consider the special case n = 3. The algebra ¢,

is generated by x; and x,, subject to the relations
xj=x3=0, X1XyX1 + Xpx1x, = 0. (13)

We note that, in view of (10), the map x; — [in] extends to an algebra
homomorphism €,_; — €,,.

LEMMA. The module action of F,_, on U,_, factors to a module action
of €,_, on 6,_;.
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Proof.  'We have to show that, modulo ¥, , the elements D;; satisfy
the relations (2)—(4). We already checked (3), and (4) is trivial. Let us
prove D?j(M ) € ¥,_; by induction on the degree of a monomial M in the
variables x;.

Let M = x,N. If h ¢ {i, j}, then D};(M) = x,D;;(N) € ¥,_,. Otherwise

Dlzj(xlN) = Dij(—xix]'N + x]D,](N))

= (xisz- - szxl')N - xjx,-Dij(N) + xj-xl-Dl-/-(N) + xtDlZ]N (S jn71

and, similarly, D}(x;N) € %, ;. 1

Action on the Tensor Product

We will now consider €, ; ® €, ; as a module under €, ,, using the
Hopf algebra structure on €,_; and the two module structures on the fac-
tors:

a(x®y) = aqy(x) @ apy(y).
For example, the element [ij], for i,j < n — 1, acts by an operator {ij}
given by
{ij}(x®y) = D;jx ® y + 5;i(x) ® [i]]y.

In the same way, %, ; ® 6,_; is a module under G, ;.

Let {in}: U, ®%,_; > U,_; ® G,_, be the operator of multiplication
by x; in the left factor: {in}(x ® y) = x;x ® y. We also denote {ni} =
—{in}.

PROPOSITION 5. The operators {ij} satisfy the basic relations (3).

Proof. The only nontrivial thing to check is the identity R[i, j, n] = 0,

({ijHin} + {jnH{ni} + {niH{ij})(x ® y)
={il}(x;x ®y) — {jn}(x;x ® y) + {ni}(D;;(x) ® y + 5;(x) ® [if]y)
=x;,Xx ® Y+ x;Dyi(x) ® y + x;5,(x) @ [i]]y
—Xxx®y —x;Dy(x) ® y — x;5;(x) ® [if]y
=0.

Thus %,_; ® 6,_; acquires a G,-module structure, which clearly factors
to an é,-module structure on €, _; ® €,_; .

Consider the additive homomorphism #: €, — €6,_; ® €,_; defined by
a — a(l ® 1); in other words, we apply the module action that has just
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been introduced to the identity element. (There is also a similar map 4, —
cMn—l ® rgn—l )

Going in the opposite direction, consider the map p: €, ® 6, — €,
given in the following natural way. We have an algebra map p,: €,_; — %,
given by x; — [in], and the embedding p,: ¢, ; — €, given by [ij] — [i]].
Let us then define p(a ® b) = p,(a) p,(b).

THEOREM 1. The maps p and  are inverse to each other, and establish
an isomorphism of the graded modules €, and €,_; ® €,_,. Analogously, we
obtain an isomorphism between 6, and U,_ ® G,_;.

Proof.  From the explicit definitions of the module structures it is easily
seen that the composition 7 o p is the identity map. On the other hand, the
commutation relations (3)—(4) can be used in a “straightening” procedure
that rewrites any element in %,, as a linear combination of elements of the
form [iyn]---[ijn]x, with x € €,_;. This implies that p is surjective, and
the claim follows. 1

COROLLARY. The algebras €, and G, have tensor product decompositions
(as graded modules)

=€, 10€, ,Q Q6 QF,
G U QU @ ® Uy ® Uy

As a corollary, we obtain the corresponding factorization of the Hilbert
series that was conjectured in [Ki, Conjecture 8.6].

To illustrate, let n = 3. Let x;, x, be the generators of ¢, and let y,
be the generator of ¢,. Recall that €, is given by (13), and therefore its
Hilbert polynomial is equal to 1429 +2¢*> + ¢°> = (14 ¢q)(1 + g + ¢°). The
only relation in €, is y7 = 0, which gives the Hilbert polynomial 1+ ¢. We
conclude that the Hilbert polynomial for €; equals (1 + ¢)*(1 + g + ¢°),

matching [FK, (2.8)].
We have in fact proved the following more precise statement.

THEOREM 2. The subalgebra i, of €, generated by the elements [ik], for
i < k, is canonically isomorphic to €. The multiplication map

Ay @Ay 2 ® -+ Q@ dy ® sty = €,
Ay 1®a, 2@~ Qa; @ ay > a4, 14, 5+ Ay
is a linear isomorphism.

The next natural step would be to obtain a more explicit description of
the ideal ¥,_; that defines the algebra €,_;. At present, we do not know
such a description. Applying the twisted derivations Dy,, Dy, ... (in this
order) to the relation x? = 0, we obtain the “cyclic” relations

X1Xp o Xy g X+ XpX3 0 Xy XX+ X X X, 0%, = 0. (14)
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We can then apply an arbitrary permutation of indices to (14). Even then,
these relations (which are just another form of [FK, Lemma 7.2]) do not
determine the ideal ¥, ;. The simplest instance of this appears in €,: ap-
plying the twisted derivation D5 to the cyclic identity

X1XpX3X4X 1 + XoX3X4X 1 Xy + X3X4X X0 X3 + X4X1X3X3%4 =0

results in a new 10-term relation in degree 6 (see [Ki, (8.10)]).
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