

Fibered Quadratic Hopf Algebras Related to Schubert Calculus

Sergey Fomin¹

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 E-mail: fomin@math.mit.edu

and

Claudio Procesi1

Dipartimento di Matematica, Università di Roma "La Sapienza," Piazzale Aldo Moro, 2, 00185 Roma, Italy E-mail: claudio@mat.uniroma1.it

Communicated by Corrado de Concini

Received June 5, 1998

We introduce and study certain quadratic Hopf algebras related to Schubert calculus of the flag manifold. © 2000 Academic Press

Key Words: Hopf algebra; quadratic algebra; cohomology of the flag manifold.

INTRODUCTION

This paper contributes to the study of a particular family of quadratic associative algebras \mathcal{E}_n that were introduced and studied in [FK] in connection with their role in the Schubert calculus of the flag manifold.

We introduce new Hopf-algebraic tools for the study of the algebras \mathcal{E}_n . Specifically, we define a Hopf algebra structure on the twisted group algebra $\mathcal{E}_n\{\mathcal{S}_n\}$, where \mathcal{S}_n is the symmetric group. We then use this Hopf

¹ The authors were supported in part by NSF grant DMS-9700927 and by M.U.R.S.T.-Italy, respectively.

algebra structure to obtain a tensor product decomposition of \mathcal{E}_n , which in particular implies a Hilbert series factorization conjectured by Kirillov [K].

QUADRATIC ALGEBRAS

Fix a positive integer n. Let \mathcal{F}_n denote the free associative algebra generated by the symbols [ij], for all $i, j \in \{1, ..., n\}$, $i \neq j$, subject to the relations

$$[ij] + [ji] = 0.$$
 (1)

We will use the convention [ii] = 0.

Let \mathcal{E}_n be the quotient of \mathcal{F}_n modulo the ideal generated by the left-hand sides of the relations

$$[ij]^2 = 0, (2)$$

$$[ij][jk] + [jk][ki] + [ki][ij] = 0, \quad i, j, k \text{ distinct},$$
 (3)

$$[ij][kl] - [kl][ij] = 0, \quad i, j, k, l \text{ distinct.}$$
 (4)

The quadratic algebras \mathcal{E}_n were first introduced and studied in [FK] because of the role they play in the Schubert calculus of the flag manifolds. A tantalizing question posed in [FK] asks whether \mathcal{E}_n is generally finite-dimensional. The answer to this question is currently unknown.

In this paper, we prove that \mathcal{E}_n can be decomposed (as a graded module) into a tensor product, one of the tensor factors being \mathcal{E}_{n-1} . We describe the second factor implicitly, in terms of a certain family of twisted derivations.

The algebras \mathcal{E}_n are naturally graded; the formulas for their Hilbert polynomials, for $n \leq 5$, can be found in [FK]. Our main result implies that the Hilbert polynomial (or series?) of \mathcal{E}_{n-1} divides that of \mathcal{E}_n (and the ratio has non-negative coefficients), proving a conjecture stated in [K].

The algebras \mathcal{E}_n are not Koszul for $n \geq 3$ (proved by Roos [R]).

To provide some motivation, let us briefly explain the nature of the connection between the algebras \mathscr{E}_n and Schubert calculus, although this connection itself will not be a subject of our purely algebraic studies. The algebra \mathscr{E}_n contains a commutative subalgebra generated by the "Dunkl elements" $\theta_j = -\sum_{j < j} [ij] + \sum_{j < k} [jk]$. This subalgebra was shown in [FK] to be canonically isomorphic to the cohomology ring of the flag manifold. In other words, the algebra generated by the θ_j is canonically the quotient of the polynomial algebra by the ideal generated by the symmetric polynomials in the θ_j without constant term. Furthermore, the structure constants of the cohomology ring, with respect to the basis of Schubert cycles, can be interpreted via certain combinatorial action of \mathscr{E}_n on the group algebra of \mathscr{S}_n (see [FK]).

We will study \mathcal{E}_n along with the algebra \mathcal{G}_n (first considered in [K]) defined as the quotient of \mathcal{F}_n modulo (3)–(4); in other words, in \mathcal{G}_n we no longer require $[ij]^2 = 0$.

Twisted Group Algebras

The symmetric group \mathcal{G}_n acts on \mathcal{F}_n by $\sigma([ij]) = [\sigma(i)\sigma(j)]$. Since the relations (1)–(4) are \mathcal{G}_n -stable, we also have an \mathcal{G}_n -action on \mathcal{C}_n and \mathcal{G}_n .

For a group W acting on an algebra A (by algebra endomorphisms), let $A\{W\}$ denote the *twisted group algebra*, i.e., the algebra of linear combinations

$$\sum_{w \in W} a_w w, \qquad a_w \in A,$$

subject to the commutation rules wa = w(a)w, for any $w \in W$, $a \in A$. We remark that A is naturally an $A\{W\}$ -module.

Let us denote

$$\tilde{\mathcal{F}}_n \stackrel{\text{def}}{=} \mathcal{F}_n \{\mathcal{S}_n\}, \qquad \tilde{\mathcal{E}}_n \stackrel{\text{def}}{=} \mathcal{E}_n \{\mathcal{S}_n\}, \qquad \tilde{\mathcal{G}}_n \stackrel{\text{def}}{=} \mathcal{G}_n \{\mathcal{S}_n\}.$$

Notice that $\tilde{\mathcal{E}}_n$ and $\tilde{\mathcal{E}}_n$ are the quotients of $\tilde{\mathcal{F}}_n$ modulo the relations (2)–(4) and (3)–(4), respectively. In turn, $\tilde{\mathcal{F}}_n$ is generated by \mathcal{F}_n and the elements [ij], subject to (1) and the additional relations

$$w[ij] = [w(i)w(j)]w, \quad w \in \mathcal{S}_n. \tag{5}$$

Thus $\tilde{\mathcal{E}}_n$ can be defined by (1)–(5), together with some presentation of \mathcal{F}_n . We will denote by (ij) (or sometimes by s_{ij}) the transposition of i and j. The usual convention will be that (ij) stands for an element of \mathcal{F}_n viewed inside $\tilde{\mathcal{F}}_n$, $\tilde{\mathcal{E}}_n$, or $\tilde{\mathcal{E}}_n$, while s_{ij} will denote the corresponding automorphisms of these algebras. If we choose the set of all transpositions as a generating set for \mathcal{F}_n , then all relations will be (non-homogeneous) quadratic:

$$(ij)^2 = 1,$$

 $(ij)(jk) = (jk)(ki) = (ki)(ij),$
 $(ij)(kl) - (kl)(ij) = 0,$ all i, j, k, l distinct.

A non-faithful representation of \mathscr{E}_n in the polynomial ring $\mathbb{Z}[x_1,\ldots,x_n]$ can be constructed as follows. The symmetric group naturally acts on this ring by permuting variables. The generators [ij] are then represented by the divided difference operators ∂_{ij} defined by

$$\partial_{ij}f = \frac{f - s_{ij}f}{x_i - x_j}$$

(cf. [FK, Sect. 3.2]). The commutation relations in question are easily verified.

HOPF ALGEBRAS

We will now define a Hopf algebra structure on each of $\tilde{\mathcal{F}}_n$, $\tilde{\mathcal{E}}_n$, and $\tilde{\mathcal{G}}_n$, extending the natural Hopf algebra structure of the group algebra of \mathcal{F}_n . The reader is referred to [A] or [DCP, Sect. 1] for general Hopf algebra background.

The coproduct Δ , the antipode S, and the counit ϵ are defined on the generators [ij] and on group elements $w \in \mathcal{S}_n$ as follows:

$$\Delta([ij]) = [ij] \otimes 1 + (ij) \otimes [ij], \qquad \Delta(w) = w \otimes w,
S([ij]) = (ij)[ji], \qquad S(w) = w^{-1},
\epsilon([ij]) = 0. \qquad \epsilon(w) = 1.$$
(6)

We then extend Δ , S, and ϵ to $\widetilde{\mathcal{F}}_n$ so that Δ and ϵ are homomorphisms, and S an anti-homomorphism. Since \mathcal{F}_n is a free algebra, we only have to check the compatibility of our definition with the twisted group algebra structure (i.e., with the relation (5)); this is straightforward.

PROPOSITION 1. With the coproduct, antipode, and counit defined as above, \tilde{F}_n is a Hopf algebra. This Hopf algebra structure passes to the quotients $\tilde{\mathcal{E}}_n$ and $\tilde{\mathcal{E}}_n$.

Proof. Let us verify the remaining Hopf algebra axioms. Coassociativity:

$$(\Delta \otimes 1)(\Delta([ij])) = (\Delta \otimes 1)([ij] \otimes 1 + (ij) \otimes [ij])$$

$$= [ij] \otimes 1 \otimes 1 + (ij) \otimes [ij] \otimes 1 + (ij) \otimes (ij) \otimes [ij]$$

$$= (1 \otimes \Delta)([ij] \otimes 1 + (ij) \otimes [ij])$$

$$= (1 \otimes \Delta)(\Delta([ij])).$$

The antipode axioms $(\mu: \tilde{\mathcal{F}}_n \otimes \tilde{\mathcal{F}}_n \to \tilde{\mathcal{F}}_n$ denotes the multiplication map):

$$\mu(1 \otimes S)(\Delta([ij])) = \mu(1 \otimes S)([ij] \otimes 1 + (ij) \otimes [ij])$$

$$= [ij] + (ij)(ij)[ji] = 0 = \epsilon([ij]),$$

$$\mu(S \otimes 1)(\Delta([ij])) = \mu(S \otimes 1)([ij] \otimes 1 + (ij) \otimes [ij])$$

$$= (ij)[ji] + (ij)[ij] = 0 = \epsilon([ij]).$$

The counit axioms:

$$(\epsilon \otimes 1)(\Delta([ij])) = (\epsilon \otimes 1)([ij] \otimes 1 + (ij) \otimes [ij]) = [ij],$$

$$(1 \otimes \epsilon)(\Delta([ij])) = (1 \otimes \epsilon)([ij] \otimes 1 + (ij) \otimes [ij]) = [ij].$$

Let us prove the second part of the proposition. In what follows, we will use the notation

$$R[i, j, k] \stackrel{\text{def}}{=} [ij][jk] + [jk][ki] + [ki][ij]$$
(7)

for the left-hand side of (3); we will also denote by $(ijk) \in \mathcal{S}_n$ the cycle $i \to j \to k \to i$. Then the computations

$$\Delta([ij]^2) = [ij]^2 \otimes 1 + 1 \otimes [ij]^2,$$

$$S([ij]^2) = -[ij]^2,$$

$$\epsilon([ij]^2) = 0,$$

$$\Delta(R[i, j, k]) = R[i, j, k] \otimes 1 + (ijk) \otimes R[i, j, k],$$

$$S(R[i, j, k]) = -(ikj)R[i, j, k],$$

$$\epsilon(R[i, j, k]) = 0$$

show that the Hopf algebra operations in $\tilde{\mathcal{F}}_n$ preserve the defining ideals of $\tilde{\mathcal{E}}_n$ and $\tilde{\mathcal{E}}_n$.

ADJOINT ACTION AND TWISTED DERIVATIONS

Let us recall two important constructions.

Adjoint Action

Given a Hopf algebra A, the homomorphism

$$(1 \otimes S) \Delta : A \to A \otimes A^{\mathrm{op}},$$

where A^{op} is the opposite (Hopf) algebra, induces an action of A on itself, called the *adjoint* action (see, e.g., [DCP, Sect. 1.7]). Thus $a \in A$ acts on A by

$$x\mapsto \sum a_{(1)}xS(a_{(2)}),$$

where $\Delta a = \sum a_{(1)} a_{(2)}$.

In particular, consider the Hopf algebra $\tilde{\mathscr{F}}_n$. Then the elements $w\in\mathscr{S}_n\subset\tilde{\mathscr{F}}_n$ act by conjugation

$$w(x) = x \mapsto wxw^{-1},$$

while [ij] acts by

$$D_{[ij]}: x \mapsto [ij]x + (ij)x(ij)[ji] = [ij]x - s_{ij}(x)[ij]. \tag{8}$$

It follows that $a(x) \in \mathcal{F}_n$ for any $x \in \mathcal{F}_n$ and $a \in \tilde{\mathcal{F}}_n$.

Twisted Derivations

Recall [DCP, Sect. 5.1] that, given an algebra A with a distinguished automorphism w, a twisted derivation relative to w is a linear map $D: A \to A$ satisfying

$$D(ab) = D(a)b + w(a)D(b). (9)$$

For any $a \in A$, the map D_a : $A \to A$ defined by

$$D_a: x \mapsto ax - w(x)a$$

is a twisted derivation (an *inner* twisted derivation). For instance, the map $D_{[ij]}$ defined in (8) is an inner twisted derivation, with a = [ij] and $w = s_{ij}$. (So our notation is consistent.)

Note that all of the above considerations apply to the Hopf algebras $\tilde{\mathcal{E}}_n$ and $\tilde{\mathcal{E}}_n$ as well. Let us summarize.

PROPOSITION 2. The Hopf algebra \mathcal{F}_n (resp. \mathcal{G}_n , \mathcal{E}_n) is invariant under the adjoint action of $\tilde{\mathcal{F}}_n$ (resp. $\tilde{\mathcal{G}}_n$, $\tilde{\mathcal{E}}_n$). The elements $w \in \mathcal{F}_n$ act by the automorphisms w([ij]) = [w(i)w(j)]. The element [ij] acts by the corresponding inner twisted derivation $D_{[ii]}$ (for the automorphism s_{ij}).

It is easy to check that the inner twisted derivations $D_{[ij]}$, i, j < n, in the algebra $\tilde{\mathcal{G}}_n$ act on the elements of the form [kn] by

$$D_{[ij]}([kn]) = 0 \quad \text{if } k \notin \{i, j\},$$

$$D_{[ij]}([in]) = -[in][jn],$$

$$D_{[ij]}([jn]) = [jn][in].$$
(10)

TENSOR PRODUCT DECOMPOSITION

Let us now study the subalgebra \mathcal{U}_{n-1} of \mathcal{F}_n that is (freely) generated by the elements

$$x_i \stackrel{\text{def}}{=} [i \, n],$$

for i = 1, ..., n - 1. The symmetric group \mathcal{G}_{n-1} acts on \mathcal{U}_{n-1} by

$$w(x_i) = x_{w(i)}. (11)$$

Motivated by (10), let us define, for $i, j \le n-1$, the twisted derivations D_{ij} (for the automorphisms s_{ij}) that act on the generators of \mathcal{U}_{n-1} by

$$D_{ij}(x_k) = 0 \quad \text{if } k \notin \{i, j\},$$

$$D_{ij}(x_i) = -x_i x_j,$$

$$D_{ii}(x_j) = x_i x_i.$$
(12)

PROPOSITION 3. Formulas (11) and (12) determine a well-defined action of the twisted group algebra $\tilde{\mathcal{F}}_{n-1}$ on the subalgebra \mathcal{U}_{n-1} .

Proof. We only have to check consistency with (1) and (5). Both are straightforward.

Recall the notation R[i, j, k] introduced in (7).

PROPOSITION 4. The action of the elements $R[i, j, k] \in \widetilde{\mathcal{F}}_{n-1}$ on \mathcal{U}_{n-1} is trivial, i.e., they act by R[i, j, k](x) = 0. Thus \mathcal{U}_{n-1} is naturally a $\widetilde{\mathcal{G}}_{n-1}$ -module.

Proof. Induction on the degree of a monomial x in the variables x_i . Note that R[i, j, k](1) = 0. Let $x = x_h N$. If $h \notin \{i, j, k\}$, then we have $R[i, j, k](x_h N) = x_h R[i, j, k](N) = 0$. Otherwise it suffices to check the case h = i (by symmetry). Using (9) and (12), we obtain

$$R[i, j, k](x_{i}N)$$

$$= (D_{ij}D_{jk} + D_{jk}D_{ki} + D_{ki}D_{ij})(x_{i}N)$$

$$= D_{ij}(x_{i}D_{jk}(N)) + D_{jk}(x_{i}x_{k}N + x_{k}D_{ki}(N))$$

$$+ D_{ki}(-x_{i}x_{j}N + x_{j}D_{ij}(N))$$

$$= -x_{i}x_{j}D_{jk}(N) + x_{j}D_{ij}D_{jk}(N) + x_{i}x_{k}x_{j}N + x_{i}x_{j}D_{jk}(N)$$

$$+ x_{k}x_{j}D_{ki}(N)$$

$$+ x_{j}D_{jk}D_{ki}(N) - x_{i}x_{k}x_{j}N - x_{k}x_{j}D_{ki}(N) + x_{j}D_{ki}D_{ij}(N)$$

$$= x_{i}R[i, j, k](N),$$

and the claim follows.

Let \mathcal{J}_{n-1} be the minimal ideal of the free algebra \mathcal{U}_{n-1} that contains the elements x_i^2 and is stable under the twisted derivations D_{ij} . Denote $\mathscr{C}_{n-1} = \mathcal{U}_{n-1}/\mathcal{J}_{n-1}$. To illustrate, consider the special case n=3. The algebra \mathscr{C}_2 is generated by x_1 and x_2 , subject to the relations

$$x_1^2 = x_2^2 = 0,$$
 $x_1 x_2 x_1 + x_2 x_1 x_2 = 0.$ (13)

We note that, in view of (10), the map $x_i \mapsto [in]$ extends to an algebra homomorphism $\mathcal{C}_{n-1} \to \mathcal{C}_n$.

LEMMA. The module action of $\tilde{\mathcal{F}}_{n-1}$ on \mathcal{U}_{n-1} factors to a module action of $\tilde{\mathcal{E}}_{n-1}$ on \mathcal{C}_{n-1} .

Proof. We have to show that, modulo \mathcal{J}_{n-1} , the elements D_{ij} satisfy the relations (2)–(4). We already checked (3), and (4) is trivial. Let us prove $D_{ij}^2(M) \in \mathcal{J}_{n-1}$ by induction on the degree of a monomial M in the variables x_i .

Let $M = x_h N$. If $h \notin \{i, j\}$, then $D_{ij}^2(M) = x_h D_{ij}^2(N) \in \mathcal{J}_{n-1}$. Otherwise

$$\begin{split} D_{ij}^2(x_iN) &= D_{ij} \left(-x_i x_j N + x_j D_{ij}(N) \right) \\ &= \left(x_i x_j^2 - x_j^2 x_i \right) N - x_j x_i D_{ij}(N) + x_j x_i D_{ij}(N) + x_i D_{ij}^2 N \in \mathcal{J}_{n-1} \end{split}$$

and, similarly, $D_{ij}^2(x_jN) \in \mathcal{J}_{n-1}$.

Action on the Tensor Product

We will now consider $\mathscr{C}_{n-1}\otimes\mathscr{C}_{n-1}$ as a module under $\widetilde{\mathscr{C}}_{n-1}$, using the Hopf algebra structure on $\widetilde{\mathscr{C}}_{n-1}$ and the two module structures on the factors:

$$a(x \otimes y) = \sum a_{(1)}(x) \otimes a_{(2)}(y).$$

For example, the element [ij], for $i, j \le n - 1$, acts by an operator $\{ij\}$ given by

$${ij}(x \otimes y) = D_{ij}x \otimes y + s_{ij}(x) \otimes [ij]y.$$

In the same way, $\mathcal{U}_{n-1} \otimes \mathcal{G}_{n-1}$ is a module under $\tilde{\mathcal{G}}_{n-1}$.

Let $\{in\}$: $\mathcal{U}_{n-1} \otimes \mathcal{G}_{n-1} \to \mathcal{U}_{n-1} \otimes \mathcal{G}_{n-1}$ be the operator of multiplication by x_i in the left factor: $\{in\}(x \otimes y) = x_i x \otimes y$. We also denote $\{ni\} = -\{in\}$.

PROPOSITION 5. The operators $\{ij\}$ satisfy the basic relations (3).

Proof. The only nontrivial thing to check is the identity R[i, j, n] = 0,

$$\begin{aligned} & (\{ij\}\{jn\} + \{jn\}\{ni\} + \{ni\}\{ij\})(x \otimes y) \\ & = \{ij\}(x_{j}x \otimes y) - \{jn\}(x_{i}x \otimes y) + \{ni\}(D_{ij}(x) \otimes y + s_{ij}(x) \otimes [ij]y) \\ & = x_{j}x_{i}x \otimes y + x_{i}D_{ij}(x) \otimes y + x_{i}s_{ij}(x) \otimes [ij]y \\ & - x_{j}x_{i}x \otimes y - x_{i}D_{ij}(x) \otimes y - x_{i}s_{ij}(x) \otimes [ij]y \\ & = 0. \end{aligned}$$

Thus $\mathcal{U}_{n-1}\otimes\mathcal{G}_{n-1}$ acquires a \mathcal{G}_n -module structure, which clearly factors to an \mathcal{C}_n -module structure on $\mathcal{C}_{n-1}\otimes\mathcal{C}_{n-1}$.

Consider the additive homomorphism π : $\mathcal{E}_n \to \mathcal{E}_{n-1} \otimes \mathcal{E}_{n-1}$ defined by $a \mapsto a(1 \otimes 1)$; in other words, we apply the module action that has just

been introduced to the identity element. (There is also a similar map $\mathcal{G}_n \to \mathcal{U}_{n-1} \otimes \mathcal{G}_{n-1}$.)

Going in the opposite direction, consider the map $p: \mathscr{C}_{n-1} \otimes \mathscr{C}_{n-1} \to \mathscr{C}_n$ given in the following natural way. We have an algebra map $p_1: \mathscr{C}_{n-1} \to \mathscr{C}_n$ given by $x_i \mapsto [in]$, and the embedding $p_2: \mathscr{C}_{n-1} \to \mathscr{C}_n$ given by $[ij] \mapsto [ij]$. Let us then define $p(a \otimes b) = p_1(a)p_2(b)$.

THEOREM 1. The maps p and π are inverse to each other, and establish an isomorphism of the graded modules \mathcal{E}_n and $\mathcal{E}_{n-1} \otimes \mathcal{E}_{n-1}$. Analogously, we obtain an isomorphism between \mathcal{G}_n and $\mathcal{U}_{n-1} \otimes \mathcal{G}_{n-1}$.

Proof. From the explicit definitions of the module structures it is easily seen that the composition $\pi \circ p$ is the identity map. On the other hand, the commutation relations (3)–(4) can be used in a "straightening" procedure that rewrites any element in \mathcal{E}_n as a linear combination of elements of the form $[i_1n]\cdots [i_ln]x$, with $x\in\mathcal{E}_{n-1}$. This implies that p is surjective, and the claim follows.

COROLLARY. The algebras \mathcal{E}_n and \mathcal{G}_n have tensor product decompositions (as graded modules)

$$\mathcal{E}_n \cong \mathcal{C}_{n-1} \otimes \mathcal{C}_{n-2} \otimes \cdots \otimes \mathcal{C}_2 \otimes \mathcal{C}_1,$$

$$\mathcal{G}_n \cong \mathcal{U}_{n-1} \otimes \mathcal{U}_{n-2} \otimes \cdots \otimes \mathcal{U}_2 \otimes \mathcal{U}_1.$$

As a corollary, we obtain the corresponding factorization of the Hilbert series that was conjectured in [Ki, Conjecture 8.6].

To illustrate, let n=3. Let x_1, x_2 be the generators of \mathscr{C}_3 , and let y_1 be the generator of \mathscr{C}_2 . Recall that \mathscr{C}_2 is given by (13), and therefore its Hilbert polynomial is equal to $1+2q+2q^2+q^3=(1+q)(1+q+q^2)$. The only relation in \mathscr{C}_1 is $y_1^2=0$, which gives the Hilbert polynomial 1+q. We conclude that the Hilbert polynomial for \mathscr{C}_3 equals $(1+q)^2(1+q+q^2)$, matching [FK, (2.8)].

We have in fact proved the following more precise statement.

THEOREM 2. The subalgebra \mathcal{A}_k of \mathcal{E}_n generated by the elements [ik], for i < k, is canonically isomorphic to \mathcal{E}_k . The multiplication map

$$\mathcal{A}_{n-1} \otimes \mathcal{A}_{n-2} \otimes \cdots \otimes \mathcal{A}_2 \otimes \mathcal{A}_1 \to \mathcal{E}_n,$$

$$a_{n-1} \otimes a_{n-2} \otimes \cdots \otimes a_2 \otimes a_1 \mapsto a_{n-1} a_{n-2} \cdots a_2 a_1$$

is a linear isomorphism.

The next natural step would be to obtain a more explicit description of the ideal \mathcal{J}_{n-1} that defines the algebra \mathcal{C}_{n-1} . At present, we do not know such a description. Applying the twisted derivations D_{12}, D_{23}, \ldots (in this order) to the relation $x_1^2 = 0$, we obtain the "cyclic" relations

$$x_1 x_2 \cdots x_{n-1} x_1 + x_2 x_3 \cdots x_{n-1} x_1 x_2 + \cdots + x_{n-1} x_1 \cdots x_{n-2} x_{n-1} = 0.$$
 (14)

We can then apply an arbitrary permutation of indices to (14). Even then, these relations (which are just another form of [FK, Lemma 7.2]) do *not* determine the ideal \mathcal{J}_{n-1} . The simplest instance of this appears in \mathcal{C}_4 : applying the twisted derivation D_{13} to the cyclic identity

$$x_1x_2x_3x_4x_1 + x_2x_3x_4x_1x_2 + x_3x_4x_1x_2x_3 + x_4x_1x_2x_3x_4 = 0$$

results in a new 10-term relation in degree 6 (see [Ki, (8.10)]).

REFERENCES

- [A] E. Abe, Hopf Algebras, Cambridge Univ. Press, Cambridge, MA, 1980.
- [DCP] C. De Concini and C. Procesi, "Quantum Groups," Lecture Notes in Mathematics, Vol. 1565, pp. 31–140, Springer-Verlag, Berlin, 1993.
- [FK] S. Fomin and A. N. Kirillov, Quadratic algebras, Dunkl elements, and Schubert calculus, Adv. in Geometry, Progress in Math., Vol. 172, pp. 147–182, Birkhäuser, Boston, 1999.
- [Ki] A. N. Kirillov, "On Some Quadratic Algebras," Preprint CRM-2478, 1997; also q-alg/9705003.
- [R] J.-E. Roos, Some non-Koszul algebras, Adv. in Geometry, Progress in Math., Vol. 172, pp. 385–389, Birkhäuser, Boston, 1999.