1. (2 points) What is a good estimate for $\lim_{x\to 0} \frac{2^x-1}{x}$? Give your answer to at least three decimal places, and explain in a sentence how you know it is that accurate.

Solution: The limit means that we let x get smaller and smaller, eventually being so small as to be infinitessimal. Plugging in smaller and smaller values of x, we get the following table of values.

x =	0.1	0.01	0.001	0.0001
$\frac{2^x - 1}{x} =$	0.717735	0.695555	0.693387	0.693171
x =	-0.1	-0.01	-0.001	-0.0001
$\frac{2^x-1}{x}$	0.669670	0.690750	0.692907	0.693123

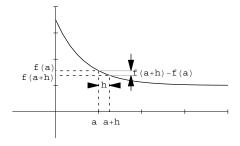
We see that for all $|x| \le 0.001$ the corresponding values of $\frac{2^x - 1}{x}$ are, to three decimal places, equal to 0.693. We therefore conclude that $\lim_{x\to 0} \frac{2^x - 1}{x} = 0.693$.

2. (3 points) What is the limit definition for the derivative of a function f(x) at the point x = a? Illustrate the parts of the definition on the figure shown below, to the right.

Solution: The limit definition fo the derivative of f(x) at x = a is

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}.$$

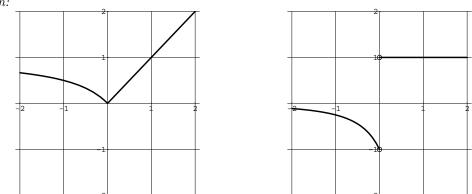
We can show the parts of this on the graph to the right as follows: x = a and x = a + h are two points on the x-axis, and f(a) and f(a + h) are the corresponding y-coordinates on the graph of f(x). Then f(a + h) - f(a) is the vertical distance between the y-coordinates, and h the horizontal distance between the x-coordinates. Thus $\frac{f(a+h)-f(a)}{h}$ is just the slope of



the line between those two points, and as we let h go to zero the points x = a + h and x = a come together so that we end up with the slope of the curve at the point x = a, which is f'(a).

3. (3 points) If the graph to the left below shows f(x), sketch in the axes to the right f'(x).

Solution:



Note that the derivative is *undefined* at x = 0, because of the sharp corner there.