MATH 115-018 QUIZ 6 / 17 Feb 2005

Name:___

NOTE: This quiz was a bit long and none-too-easy, so I marked it out of six points rather than 8.

1. (4 points) Find derivatives of each of the following functions. (a) $f(x) = (3x+2) \cdot 3^x$ (b) $z(y) = \sqrt{y^5 - e} - \sin(2)$ (c) $g(\theta) = \frac{4}{e^{7\theta}}$ (d) $r(t) = \pi 4^{(t+1)/t}$

Solution:

- (a) $f'(x) = 3 \cdot 3^x + (3x+2)\ln(3) \cdot 3^x$.
- **(b)** $z'(y) = \frac{1}{2}(y^5 e)^{-1/2} \cdot 5y^4$.
- (c) Note that $g(\theta) = 4e^{-7\theta}$, so that $g'(\theta) = -28e^{-7\theta}$. Alternately, using the quotient rule,

$$g'(\theta) = \frac{0 \cdot e^{7\theta} - 4 \cdot e^{7\theta} \cdot 7}{(e^{7\theta})^2}$$

(d) Note that $r(t) = \pi 4^{1+t^{-1}}$, so that $r'(t) = \pi \ln(4) \cdot 4^{1+t^{-1}} \cdot (-t^{-2})$. Alternately, without simplifying the exponent, and using the quotient rule,

$$r'(t) = \pi \ln(4) \cdot 4^{(t+1)/t} \cdot \left(\frac{1 \cdot t - (1+t) \cdot 1}{t^2}\right).$$

2. (2 points) The following table gives values for f(x), f'(x), g(x), and g'(x) at different values of x. If h(x) = g(f(x)), find h'(2). Be sure that it is clear how you obtain your answer (simply writing something like "8" will get no credit).

x =	-2	-1	0	1	2
f(x) =	2	0	1	-2	-1
f'(x) =	-1	1	2	0	-2
g(x) =	1	2	-2	-1	0
g'(x) =	0	-2	-1	2	1

Solution: Using the chain rule, $h'(2) = g'(f(2)) \cdot f'(2) = g'(-1) \cdot (-2) = (-2)(-2) = 4$. It's possible to get an estimate by finding values for h(1) and h(2) and using a difference quotient, but this isn't as accurate. (Let's find this: h(1) = g(f(1)) = g(-2) = 1 and h(2) = g(f(2)) = g(-1) = 2, so $h'(2) \approx \frac{h(2)-h(1)}{2-1} = \frac{2-1}{2-1} = 1$.)

3. (2 points) For what values of x is the *derivative* of the function $p(x) = x \cdot 3^x$ decreasing?

Another solution is to find $p'(x) = 3^x + x \cdot \ln(3) \cdot 3^x$ and then look for where this function is decreasing, but it's hard to get an accurate sense of where this is.

Solution: The derivative p'(x) is decreasing when the second derivative p''(x) is negative. Calculating these derivatives, we have $p'(x) = 3^x + x \cdot \ln(3) \cdot 3^x$, so that $p''(x) = 2\ln(3) \cdot 3^x + x \cdot \ln(3)^2 \cdot 3^x = \ln(3) \cdot 3^x \cdot (2 + x \ln(3))$. Note that $\ln(3) \approx 1.099 > 0$ and $3^x > 0$ for all x. Thus p''(x) < 0 if $2 + x \ln(3) < 0$, which is when $x \ln(3) < -2$, or $x < -\frac{2}{\ln(3)}$ (which is approximately x < -1.82, which we could also find by graphing p''(x)).