
Some Notes on Improper Integrals

(see also <http://www.math.lsa.umich.edu/%7eglarose/classes/calcII/>)

This isn’t a general consideration of improper integrals; for that, see the web page noted above. Here
we look a bit more carefully at integrals of functions that have vertical asymptotes, partly to see how to set
them up and evaluate them, and partly to see some of the subtlety that can show up there. In particular,
let’s consider the integral

∫ 2

0

x

x2 − 1
dx.

We know from the graph, shown to the figure to the right below, that this is an improper integral, because
the integrand (the function x

x2
−1 ) has a singularity at x = 1 (that is, there’s a vertical asymptote there).
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Figure 1: graph of x

x2
−1

Before considering the integral that jumps over the singular-
ity, let’s stop to make sure that we’re on top of the more tractible

integral
∫ 2

1
x

x2
−1 dx. We note that the left endpoint of the domain

[1, 2] is problematic, so we can evaluate this by rewriting the in-
tegral with the smaller domain [b, 2] (with 1 < b < 2) and then
seeing what happens as we approach the range that we want (that
is, as b → 1+). That is, we have

∫ 2

1

x

x2 − 1
dx = lim

b→1+

∫ 2

b

x

x2 − 1
dx = lim

b→1+

1

2
ln |x2 − 1|

∣

∣

∣

∣

2

b

=
1

2
lim

b→1+

(

ln(3) − ln |b2 − 1|
)

.

The original integral exists if this limit is well-defined, but it isn’t! As b → 1+, b2 − 1 → 0, and the natural
log function isn’t defined at zero. Thus the limit is not defined, and we say that the original integral diverges.
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Figure 2: graph of
∣

∣

∣

x

x2
−1

∣

∣

∣

One more diversion before we consider the original integral we

had above: suppose we had been finding
∫ 2

0
| x

x2
−1 | dx. The function

| x

x2
−1 | is what we’d expect, shown in figure 2, to the right. Then

it’s clear that if we were trying to evaluate the integral we’d have
to break it into pieces:

∫ 2

0

|
x

x2 − 1
| dx =

∫ 1

0

|
x

x2 − 1
| dx +

∫ 2

1

|
x

x2 − 1
| dx

= −

∫ 1

0

x

x2 − 1
dx +

∫ 2

1

x

x2 − 1
dx.1

Then we can evaluate both of these as we did before, and, knowing that the second diverges (and, if we
worked out the first, knowing that it diverges as well) we can clearly say that the integral as a whole diverges.

Finally, what about the integral
∫ 2

0
x

x2
−1 dx? The first thing we note from figure 2 above is that the

function x

x2
−1 actually isn’t symmetric about x = 1! Thus, the problem is tricky: we expect that some of

the area below the x-axis (as seen in figure 1) will cancel that above the x-axis, but it’s not necessarily clear
if that will be enough to make the integral converge!

To get some insight on this, let’s first do some numerical calculations. Integrating with a calculator (or

other tool), we find
∫ 0.99

0
x

x2
−1 dx +

∫ 2

1.01
x

x2
−1 dx = 0.544306,

∫ 0.9999

0
x

x2
−1 dx +

∫ 2

1.0001
x

x2
−1 dx = 0.549256,

and
∫ 0.999999

0
x

x2
−1 dx +

∫ 2

1.000001
x

x2
−1 dx = 0.549306. This looks promising: these sums appear to be con-

verging to 0.549306 (which is actually strikingly like ln 3
2 ). But there’s a big “if” here: they seem to be

1
: Note that we can drop the absolute values for the second integral because we know for x larger than one the integrand is always

positive; similarly, for the first integral we know that by multiplying it by negative one we get a positive value and can then drop the

absolute values.



converging if we make sure that at every step the boundaries creep toward x = 1 at the same rate. What
happens if they don’t?

Let’s look at a different set of integrals to see:
∫ 0.99

0
x

x2
−1 dx+

∫ 2

1.001
x

x2
−1 dx = 1.69784,

∫ 0.999

0
x

x2
−1 dx+

∫ 2

1.00001
x

x2
−1 dx = 2.85159, and

∫ 0.9999

0
x

x2
−1 dx +

∫ 2

1.0000001
x

x2
−1 dx = 3.99819. These certainly don’t look

as if they’re approaching anything. So the magic of making sure that the boundaries move together clearly
matters.

Let’s try to explore this more rigorously. We know

∫ 2

0

x

x2 − 1
dx =

∫ 1

0

x

x2 − 1
dx +

∫ 2

1

x

x2 − 1
dx = lim

b→1−

∫

b

0

x

x2 − 1
dx + lim

c→1+

∫ 2

c

x

x2 − 1
dx.

Note that we’ve picked two different parameters for the two limits, because we want to be sure that we’re
not making any accidental assumptions about how the areas cancel. Continuing to evaluate the integrals,
we get

lim
b→1−

∫

b

0

x

x2 − 1
dx + lim

c→1+

∫ 2

c

x

x2 − 1
dx

=
1

2
lim

b→1−

(

ln

∣

∣

∣

∣

b − 1

b + 1

∣

∣

∣

∣

− ln |1|

)

+
1

2
lim

c→1+

(

ln(3) − ln

∣

∣

∣

∣

c − 1

c + 1

∣

∣

∣

∣

)

.

So what’s happening? If we’re really careful and make sure that b and c are doing exactly the same thing,
then the two limit terms cancel and we’re left with ln 3

2 . But if this isn’t the case, all bets are off! We have
two limits that are sailing off to −∞ and ∞, respectively, and the sum of these values could be anything.
Because of this, we can’t say that this integral converges.

We can, however, say that this is more complicated than anything that we’d be likely to see on a

midterm. Be sure that you can explain and evaluate
∫ 2

1
x

x2
−1 dx,

∫ 1

0
x

x2
−1 dx, or

∫ 2

0
| x

x2
−1 | dx, however.


