1. An enterprising calculus student determines that for a particularly interesting (it is, after all, on a quiz) function $g(x), \int_{1}^{5} g(x) d x=3, g(1)=1$, and $g(5)=2$. If possible, find $\int_{1}^{5} x g\left(x^{2}+4\right) d x$ (if it isn't possible, explain why). (3 points)
2. For the same tremendously interesting function $g(x)$ given in problem (1), find, if possible, $\int_{1}^{5} x g^{\prime}(x) d x$ (if it isn't possible, explain why). (3 points)
3. Let the function $f(x)=\int_{0}^{\cos (x)} \sin \left(t^{2}\right) d t+2$. What is the slope of the tangent line to $f(x)$ at $x=\frac{\pi}{4}$? Find an estimate for the value of $f\left(\frac{\pi}{4}\right)$ and use this to write an equation for the tangent line. (4 points)
