1. An enterprising calculus student determines that for a particularly interesting (it is, after all, on a quiz) function $g(x), \int_{1}^{5} g(x) d x=3, g(1)=1$, and $g(5)=2$. If possible, find $\int_{1}^{5} x g\left(x^{2}+4\right) d x$ (if it isn't possible, explain why). (3 points)

Solution: We use substitution, letting $w=x^{2}+4$. Then $\frac{1}{2} d w=x$, and, noting that $w(1)=5$ and $w(5)=29$, we have $\int_{0}^{1} x g\left(x^{2}+4\right) d x=\frac{1}{2} \int_{5}^{2} 9 g(w) d w$. Which is problematic, because we don't know what the integral of g is for the domain $[5,29]$. So we aren't able to find the value of this integral without further information.
2. For the same tremendously interesting function $g(x)$ given in problem (1), find, if possible, $\int_{1}^{5} x g^{\prime}(x) d x$ (if it isn't possible, explain why). (3 points)

Solution: Here, we can use integration by parts. With $u=x$ and $v^{\prime}=g^{\prime}(x), u^{\prime}=1$ and $v=g(x)$, so $\int_{1}^{5} x g(x) d x=\left.x \cdot g(x)\right|_{1} ^{5}-\int_{1}^{5} g(x) d x$. Plugging in the values we know, this is $\int_{1}^{5} x g(x) d x=$ $5(2)-1-3=6$.
3. Let the function $f(x)=\int_{0}^{\cos (x)} \sin \left(t^{2}\right) d t+2$. What is the slope of the tangent line to $f(x)$ at $x=\frac{\pi}{4}$? Find an estimate for the value of $f\left(\frac{\pi}{4}\right)$ and use this to write an equation for the tangent line. (4 points)

Solution: The slope of the tangent line is $f^{\prime}\left(\frac{\pi}{4}\right)$. By the chain rule, we know that $f^{\prime}(x)=-\sin (x)$. $\sin \left(\cos ^{2}(x)\right)$, so $f^{\prime}\left(\frac{\pi}{4}\right)=-\sin \left(\frac{\pi}{4}\right) \cdot \sin \left(\cos ^{2}\left(\frac{\pi}{4}\right)\right)=-\frac{1}{\sqrt{2}} \cdot \sin \left(\frac{1}{2}\right)$. We can find the value of $f\left(\frac{\pi}{4}\right)$ by numerically integrating $\int_{0}^{\cos (\pi / 4)} \sin \left(t^{2}\right) d t$ to find $f\left(\frac{\pi}{4}\right) \approx 2.12$. Thus the tangent line is $y \approx 2.12-$ $\frac{\sin \left(\frac{1}{2}\right)}{\sqrt{2}}\left(x-\frac{\pi}{4}\right)$.

