1. Consider the integral $\int_{0}^{3} \pi(3-h)^{2} d h$, which gives the volume of a region in space. Sketch the region, showing all relevant variables and lengths and the slice used to write the integral. (3 points)
2. Suppose that you are considering a career as a modern mathematical artist specializing in threedimensional sculpture. Your latest work is to be a piece set on a base described as the region bounded by $y=e^{x}, y=2 e^{-x}$, and the y-axis. The cross-sections of the piece perpendicular to the x-axis are semi-circular. Sketch a representative slice and set up an integral to find the volume of the region. For a bonus point, evaluate the integral analytically (that is, by hand). But do $\# 3$ first. (3 points)
3. Find the area of the region between $r=\cos \left(\frac{\theta}{2}\right)$ and $r=\sin \left(\frac{\theta}{2}\right)$ that lies in the first quadrant. (4 points)
