1. Consider the integral $\int_0^3 \pi (3-h)^2 dh$, which gives the volume of a region in space. Sketch the region, showing all relevant variables and lengths and the slice used to write the integral. (3 points)

Solution: The region is shown to the right. We arbitrarily choose h to be the vertical distance measured up the figure. Then the slice used to generate the integral has volume $\pi(3-h)^2 \Delta h$, so that it has a surface area of $\pi(3-h)^2$. We recognize this as the area of a circle with radius r=3-h, so the radius of the region is 3 when h=0 and 0 when h=3. Thus we must be finding the volume of the cone shown, which has height and base radius three.

2. Suppose that you are considering a career as a modern mathematical artist specializing in three-dimensional sculpture. Your latest work is to be a piece set on a base described as the region bounded by $y = e^x$, $y = 2e^{-x}$, and the y-axis. The cross-sections of the piece perpendicular to the x-axis are semi-circular. Sketch a representative slice and set up an integral to find the volume of the region. For a bonus point, evaluate the integral analytically (that is, by hand). But do #3 first. (3 points)

Solution: The region and a representative slice are shown to the right. Each slice has a cross-section that is half of a circle, the diameter of which is $d=2e^{-x}-e^x$. Thus the surface area of the slice is $\frac{1}{2}\pi((\frac{1}{2})(2e^{-x}-e^x))^2$, and the volume of the slice is $V_{sl}=\frac{1}{2}\pi((\frac{1}{2})(2e^{-x}-e^x))^2\Delta x$. Note that the curves that define the base intersect when $e^x=2e^{-x}$, or when $e^{2x}=2$, so $x=\frac{1}{2}\ln 2$. Thus the total volume is given by $\int_0^{\ln(2)/2}\frac{1}{2}\pi((\frac{1}{2})(2e^{-x}-e^x))^2dx$. To evaluate this, we can expand the square, finding the volume to be $\frac{\pi}{8}\int_0^{\ln(2)/2}4e^{-2x}-4+e^{2x}dx=\frac{\pi}{8}(-2e^{-2x}-4x+\frac{1}{2}e^{2x})|_0^{\ln(2)/2}=\frac{\pi}{8}(-1+2-2\ln(2)+1-\frac{1}{2})=\frac{\pi}{16}(3-4\ln(2))$.

3. Find the area of the region between $r = \cos(\frac{\theta}{2})$ and $r = \sin(\frac{\theta}{2})$ that lies in the first quadrant. (4 points)

Solution: The region in question is shown to the right, with the solid curve being $r=\cos(\frac{\theta}{2})$ and the dashed curve $r=\sin(\frac{\theta}{2})$. The region extends over $0\leq\theta\leq\frac{\pi}{2}$, which is the range of values for θ used to produce the graph. A polar slice of a region $r=f(\theta)$ is given to be $\Delta A=\frac{1}{2}(f(\theta))^2\,\Delta\theta$, so the area within $r=\cos(\frac{\theta}{2})$ is $\int_0^{\pi/2}\frac{1}{2}\cos^2(\frac{\theta}{2})\,d\theta=\frac{1}{4}+\frac{\pi}{8}$. Similarly, the area inside $r=\sin(\frac{\theta}{2})$ is $\int_0^{\pi/2}\frac{1}{2}\sin^2(\frac{\theta}{2})\,d\theta=\frac{\pi}{8}-\frac{1}{4}$. Thus the area between the two is $\frac{1}{2}$.

