1. Consider the integral $\int_{0}^{3} \pi(3-h)^{2} d h$, which gives the volume of a region in space. Sketch the region, showing all relevant variables and lengths and the slice used to write the integral. (3 points)

Solution: The region is shown to the right. We arbitrarily choose h to be the vertical distance measured up the figure. Then the slice used to generate the integral has volume $\pi(3-h)^{2} \Delta h$, so that it has a surface area of $\pi(3-h)^{2}$. We recognize this as the area of a circle with radius $r=3-h$, so the radius of the region is 3 when $h=0$ and 0 when $h=3$. Thus we must be finding the volume of the cone shown, which has height and base radius three.

2. Suppose that you are considering a career as a modern mathematical artist specializing in threedimensional sculpture. Your latest work is to be a piece set on a base described as the region bounded by $y=e^{x}, y=2 e^{-x}$, and the y-axis. The cross-sections of the piece perpendicular to the x-axis are semi-circular. Sketch a representative slice and set up an integral to find the volume of the region. For a bonus point, evaluate the integral analytically (that is, by hand). But do $\# 3$ first. (3 points)

Solution: The region and a representative slice are shown to the right. Each slice has a cross-section that is half of a circle, the diameter of which is $d=2 e^{-x}-e^{x}$. Thus the surface area of the slice is $\frac{1}{2} \pi\left(\left(\frac{1}{2}\right)\left(2 e^{-x}-e^{x}\right)\right)^{2}$, and the volume of the slice is $V_{s l}=\frac{1}{2} \pi\left(\left(\frac{1}{2}\right)\left(2 e^{-x}-e^{x}\right)\right)^{2} \Delta x$. Note that the curves that define the base intersect when $e^{x}=2 e^{-x}$, or when $e^{2 x}=2$, so $x=\frac{1}{2} \ln 2$. Thus the total volume is given by $\int_{0}^{\ln (2) / 2} \frac{1}{2} \pi\left(\left(\frac{1}{2}\right)\left(2 e^{-x}-e^{x}\right)\right)^{2} d x$.

 To evaluate this, we can expand the square, finding the volume to be $\frac{\pi}{8} \int_{0}^{\ln (2) / 2} 4 e^{-2 x}-4+e^{2 x} d x=\frac{\pi}{8}\left(-2 e^{-2 x}-\right.$ $\left.4 x+\frac{1}{2} e^{2 x}\right)\left.\right|_{0} ^{\ln (2) / 2}=\frac{\pi}{8}\left(-1+2-2 \ln (2)+1-\frac{1}{2}\right)=\frac{\pi}{16}(3-$ $4 \ln (2)$).
3. Find the area of the region between $r=\cos \left(\frac{\theta}{2}\right)$ and $r=\sin \left(\frac{\theta}{2}\right)$ that lies in the first quadrant. (4 points)

Solution: The region in question is shown to the right, with the solid curve being $r=\cos \left(\frac{\theta}{2}\right)$ and the dashed curve $r=\sin \left(\frac{\theta}{2}\right)$. The region extends over $0 \leq \theta \leq \frac{\pi}{2}$, which is the range of values for θ used to produce the graph. A polar slice of a region $r=f(\theta)$ is given to be $\Delta A=\frac{1}{2}(f(\theta))^{2} \Delta \theta$, so the area within $r=\cos \left(\frac{\theta}{2}\right)$ is $\int_{0}^{\pi / 2} \frac{1}{2} \cos ^{2}\left(\frac{\theta}{2}\right) d \theta=\frac{1}{4}+\frac{\pi}{8}$. Similarly, the area inside $r=\sin \left(\frac{\theta}{2}\right)$ is $\int_{0}^{\pi / 2} \frac{1}{2} \sin ^{2}\left(\frac{\theta}{2}\right) d \theta=\frac{\pi}{8}-\frac{1}{4}$. Thus the area between the two is $\frac{1}{2}$.

